1
|
Aguilar Rico F, Derogar M, Cubo L, Quiroga AG. Synthetic routes and chemical structural analysis for guiding the strategies on new Pt(II) metallodrug design. Dalton Trans 2024; 53:14949-14960. [PMID: 39177496 DOI: 10.1039/d4dt00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Metals in medicine is a distinct and mature field of investigation. Its progress in recent times cannot be denied, as it provides opportunities to advance our knowledge of the properties, speciation, reactivity and biological effects of metals in a medicinal context. The development of novel Pt(II) compounds to combat cancer continues to make valuable contributions but it has not yet achieved a complete cure. The chemistry of this field is basic for drug design improvements and our analysis of the chemical procedures is a practical tool for achieving effective Pt(II) anticancer drugs. We present chemical approaches in a manner that can be used to strategically plot new synthetic routes choosing right pathways. Clarifying the chemical challenge will help the scientific community to be aware of the ease and/or difficulty of the procedure before and after further studies, such as speciation, reactivity and biological action which are also very arduous and costly. The work provides information to tackle many challenges in chemistry, combining the knowledge on the Pt(II) reagent preparation together with the reactivity of the biological units used in the Pt(II) drug design. We discuss and include the description of the chemical reactions, the importance of multiple steps and the right order of such reactions to achieve the final drugs, analyzing the coordination principles as well as the organic and organometallic basis. This thorough study of the routes helps to detect the simpler or more complicated reactivity and will serve to improve the synthesis performance with possible post-modifications.
Collapse
Affiliation(s)
- Francisco Aguilar Rico
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maryam Derogar
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Leticia Cubo
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- IadChem, Institute for Advance Research in Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
A review on the chemistry of novel platinum chelates based on azo-azomethine ligands. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Numerous platinum group metals (PGMs) complexes contain azo-azomethine-based ligands. Azo-azomethine ligands are N-donor ligands that have extended conjugated π-bonded systems and both azo (–N=N–) and aldimine (–C=N–) functions in their structure. Plenty of platinum (Pt) complexes with azo-imine ligands have been prepared and characterized. Various multidentate azo-imine ligands coordinated with different platinum metal substrates afforded structurally diverse platinum chelates. Nonetheless, many azo-imine-based platinum complexes demonstrated a wide range of biological activities, photo-switchable properties, and redox activities. The review encompasses a general overview of platinum complexes with versatile azo-azomethine ligands, their synthetic protocol, spectroscopic and structural features, chemical reactivity, and multipurpose applications in different areas.
Collapse
|
3
|
Synthesis, Characterization, and Anticancer Activity of Benzothiazole Aniline Derivatives and Their Platinum (II) Complexes as New Chemotherapy Agents. Pharmaceuticals (Basel) 2021; 14:ph14080832. [PMID: 34451928 PMCID: PMC8399196 DOI: 10.3390/ph14080832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/05/2022] Open
Abstract
We describe the synthesis, characterization, molecular modeling, and in vitro anticancer activity of three benzothiazole aniline (BTA) ligands and their corresponding platinum (II) complexes. We designed the compounds based on the selective antitumor properties of BTA, along with three types of metallic centers, aiming to take advantage of the distinctive and synergistic activity of the complexes to develop anticancer agents. The compounds were characterized using nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, mass spectrometry, elemental analysis, and tested for antiproliferative activity against multiple normal and cancerous cell lines. L1, L2, and L1Pt had better cytotoxicity in the liver, breast, lung, prostate, kidney, and brain cells than clinically used cisplatin. Especially, L1 and L1Pt demonstrated selective inhibitory activities against liver cancer cells. Therefore, these compounds can be a promising alternative to the present chemotherapy drugs.
Collapse
|
4
|
Shi H, Kasparkova J, Soulié C, Clarkson GJ, Imberti C, Novakova O, Paterson MJ, Brabec V, Sadler PJ. DNA-Intercalative Platinum Anticancer Complexes Photoactivated by Visible Light. Chemistry 2021; 27:10711-10716. [PMID: 34046954 PMCID: PMC8361943 DOI: 10.1002/chem.202101168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Photoactivatable agents offer the prospect of highly selective cancer therapy with low side effects and novel mechanisms of action that can combat current drug resistance. 1,8-Naphthalimides with their extended π system can behave as light-harvesting groups, fluorescent probes and DNA intercalators. We conjugated N-(carboxymethyl)-1,8-naphthalimide (gly-R-Nap) with an R substituent on the naphthyl group to photoactive diazido PtIV complexes to form t,t,t-[Pt(py)2 (N3 )2 (OH)(gly-R-Nap)], R=H (1), 3-NO2 (2) or 4-NMe2 (3). They show enhanced photo-oxidation, cellular accumulation and promising photo-cytotoxicity in human A2780 ovarian, A549 lung and PC3 prostate cancer cells with visible light activation, and low dark cytotoxicity. Complexes 1 and 2 exhibit pre-intercalation into DNA, resulting in enhanced photo-induced DNA crosslinking. Complex 3 has a red-shifted absorption band at 450 nm, allowing photoactivation and photo-cytotoxicity with green light.
Collapse
Affiliation(s)
- Huayun Shi
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Jana Kasparkova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Clément Soulié
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Olga Novakova
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Martin J. Paterson
- Institute of Chemical SciencesSchool of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Viktor Brabec
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 13561265BrnoCzech Republic
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
5
|
A kinetic investigation of mononuclear trans-platinum(II) complexes with mixed amine ligands. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
A Pt(IV)-based mononitro-naphthalimide conjugate with minimized side-effects targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. Bioorg Chem 2020; 101:104011. [PMID: 32599363 DOI: 10.1016/j.bioorg.2020.104011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Platinum(Pt)(II) drugs and new Pt(IV) agents behave the dysregulation of apoptosis as the result of DNA damage repair and thus, are less effective in the treatment of resistant tumors. Herein, mononitro-naphthalimide Pt(IV) complex 10b with minimized side-effects was reported targeting DNA damage response via a dual-DNA-damage approach to overcome cisplatin resistance. 10b displayed remarkably evaluated antitumor (70.10%) activities in vivo compared to that of cisplatin (52.88%). The highest fold increase (FI) (5.08) for A549cisR cells and the lowest (0.72) for A549 indicated 10b preferentially accumulated in resistant cell lines. The possible molecular mechanism indicates that 10b targets resistant cells in a totally different way from the existing Pt drugs. The cell accumulation and the Pt levels in genomic DNA from 10b is almost 5 folds higher than that of cisplatin and oxaliplatin, indicating the naphthalimide moiety in 10b exhibits preferentially DNA damage. Using 5'-dGMP as a DNA model, the DNA-binding properties of 10b (1 mM) with 5'-dGMP (3 mM) in the presence of ascorbic acid (5 mM) deduced that 10b was generated by the combination of cisplatin with 5'-dGMP after reduction by ascorbic acid. Moreover, 10b promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity. The up-regulated γH2A.X and down-regulated RAD51 indicates that 10b not only induced severe DNA damage but also inhibited the DNA damage repair, thus resulting in its higher cytotoxicity in comparison to that of cisplatin. Their preferential accumulation in cancer cells (SMMC-7721) compared to the matched normal cells (HL-7702 cells) demonstrated that they were potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 10b for 4T1 cells in vivo indicated that naphthalimide-Pt(IV) conjugates behaved a vital function in the treatment of breast cancer. For the first time, our study implies a significant strategy for Pt drugs to treat resistance cancer targeting DNA damage repair via dual DNA damage mechanism in a totally new field.
Collapse
|
7
|
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int J Mol Sci 2020; 21:ijms21062116. [PMID: 32204470 PMCID: PMC7139614 DOI: 10.3390/ijms21062116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023] Open
Abstract
Following previous studies devoted to trans–Pt(3-af)2Cl2, in this paper, the molecular structure and intermolecular interactions of the title complex are compared with other cisplatin analogues of which the crystal structures are presented in the Cambridge Structural Database (CSD). Molecular Hirshfeld surface analysis and computational methods were used to examine a possible relationship between the structure and anticancer activity of trans–Pt(3-af)2Cl2. The purpose of the article was also to investigate the effect of hyperthermia on the anticancer activity of cisplatin, cytostatics used in the treatment of patients with ovarian cancer and a new analogue of cisplatin-trans–Pt(3-af)2Cl2. The study was conducted on two cell lines of ovarian cancer sensitive to Caov-3 cytostatics and the OVCAR-3 resistant cisplatin line. The study used the MTT (3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), and the quantitative evaluation method for measuring gene expression, i.e., qPCR with TagMan probes. Reduced survivability of OVCAR-3 and Caov-3 cells exposed to cytostatics at elevated temperatures (37 °C, 40 °C, 43 °C) was observed. Hyperthermia may increase the sensitivity of cells to platinum-based antineoplastic drugs and paclitaxel, which may be associated with the reduction of gene expression related to apoptotic processes.
Collapse
Affiliation(s)
- Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| | - Magdalena Orzechowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Agnieszka J. Rybarczyk-Pirek
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Justyna Dominikowska
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Alicja Bieńkowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| |
Collapse
|
8
|
Synthesis and biological evaluation of new mono naphthalimide platinum(IV) derivatives as antitumor agents with dual DNA damage mechanism. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02561-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Matesanz AI, Herrero JM, Faraco EJ, Cubo L, Quiroga AG. New Platinum(II) Triazole Thiosemicarbazone Complexes: Analysis of Their Reactivity and Potential Antitumoral Action. Chembiochem 2020; 21:1226-1232. [PMID: 31746118 DOI: 10.1002/cbic.201900545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/18/2019] [Indexed: 12/30/2022]
Abstract
The synthesis and characterization of three new platinum complexes, with 3,5-diacetyl-1,2,4-triazole bis(4-N-isopropylthiosemicarbazone) as a ligand, are reported. The specific conditions under which solvent coordination takes place are reported and the X-ray structure of the complex with one solvent molecule of dimethyl sulfoxide is resolved. Analysis of the reactivity of these platinum compounds aids in finding the best solution profile for biological investigations. Then, the interactions of the complexes with biological models, such as calf-thymus DNA, are studied by using UV spectroscopy and tracking the changes in electrophoretic mobility produced in the supercoiled plasmid DNA model. Initial screening of these potential antitumoral compounds indicates possible selective antitumoral action.
Collapse
Affiliation(s)
- Ana I Matesanz
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Jorge M Herrero
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Eva J Faraco
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Leticia Cubo
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
10
|
Guo Y, He Y, Wu S, Zhang S, Song D, Zhu Z, Guo Z, Wang X. Enhancing Cytotoxicity of a Monofunctional Platinum Complex via a Dual-DNA-Damage Approach. Inorg Chem 2019; 58:13150-13160. [PMID: 31539237 DOI: 10.1021/acs.inorgchem.9b02033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) is an attractive cellular target for anticancer agents in addition to nuclear DNA (nDNA). The cationic platinum(II) complex cis-[Pt(NP)(NH3)2Cl]NO3 (PtNP, NP = N-(2-ethylpyridine)-1,8-naphthalimide) bearing the DNA-intercalating moiety NP was designed. The structure of PtNP was fully characterized by single-crystal X-ray crystallography, NMR, and HRMS. PtNP is superior to cisplatin in both in vitro and in vivo anticancer activities with low systemic toxicity. The interaction of PtNP with CT-DNA demonstrated that PtNP could effectively bind to DNA through both covalent and noncovalent double binding modes. In addition to causing significant damage to nDNA and remarkable inhibition to DNA damage repair, PtNP also distributed in mitochondria, inducing mtDNA damage and affecting the downstream transcriptional level of mitochondrion-encoded genes. In addition, PtNP disturbed the physiological processes of mitochondria by reducing the mitochondrial membrane potential and promoting the generation of reactive oxygen species. Mechanistic studies demonstrate that PtNP induced apoptosis via mitochondrial pathways by upregulating Bax and Puma and downregulating Bcl-2 proteins, leading to the release of cytochrome c and activation of caspase-3 and caspase-9. As a dual-DNA-damage agent, PtNP is able to improve the anticancer activity by damaging both nuclear and mitochondrial DNA, thus providing a new anticancer mechanism of action for the naphthalimide monofunctional platinum(II) complexes.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Shengde Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
11
|
Cabrera S, Navas F, Matesanz AI, Maroto M, Riedel T, Dyson PJ, Quiroga AG. Versatile Route to trans-Platinum(II) Complexes via Manipulation of a Coordinated 3-(Pyridin-3-yl)propanoic Acid Ligand. Inorg Chem 2019; 58:7200-7208. [DOI: 10.1021/acs.inorgchem.9b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Tina Riedel
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
12
|
Wang Q, Li G, Liu Z, Tan X, Ding Z, Ma J, Li L, Li D, Han J, Wang B. Naphthalimide Platinum(IV) Compounds as Antitumor Agents with Dual DNA Damage Mechanism to Overcome Cisplatin Resistance. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Xiaoxiao Tan
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Jing Ma
- Institute of Chemical Biology; College of Pharmacy; Henan University; 475004 Kaifeng P.R. China
| | - Lanjie Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Dacheng Li
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Jun Han
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| | - Bingquan Wang
- Institute of Biopharmaceutical Research; Liaocheng University; 252059 Liaocheng P.R. China
| |
Collapse
|
13
|
Tomczyk MD, Walczak KZ. l,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur J Med Chem 2018; 159:393-422. [PMID: 30312931 DOI: 10.1016/j.ejmech.2018.09.055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
Abstract
In this review, we describe a detailed investigation about the structural variations and relative activity of 1,8-naphthalimide based intercalators and anticancer agents. The 1,8-naphthalimides binds to the DNA via intercalation, and exert their antitumor activities through Topoisomerase I/II inhibition, photoinduced DNA damage or related mechanism. Here, our discussion focused on works published over the last ten years (2007-2017) related to therapeutic applications, in the order of cancer treatment followed by other properties of 1,8-naphthalimides. In preparing for this review, we considered that several seminal reviews have appeared over the last fifteen years and focused on closely related subjects, however, none of them is exhaustive.
Collapse
Affiliation(s)
- Mateusz D Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Krzysztof Z Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
14
|
Wang Q, Tan X, Liu Z, Li G, Zhang R, Wei J, Wang S, Li D, Wang B, Han J. Design and synthesis of a new series of low toxic naphthalimide platinum(IV) antitumor complexes with dual DNA damage mechanism. Eur J Pharm Sci 2018; 124:127-136. [PMID: 30153524 DOI: 10.1016/j.ejps.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023]
Abstract
Naphthalimide platinum(IV) antitumor complexes with potential dual DNA damage mechanism were designed, synthesized and evaluated for antitumor activities. The incorporation of DNA targeted naphthalimide group to the platinum(IV) system exerts much positive impacts on their antitumor efficacy. The mechanism research reveals that the title compounds could interact with dsDNA in platinum(IV) form via the naphthalimide group and cause DNA lesion. The further reduction would release platinum(II) complexes and naphthalimide acids which would induce remarkable secondary damage to DNA. Furthermore, the naphthalimide platinum(IV) compounds could combine with human serum albumin via electrostatic force, which are favourable for their storage and transport in blood. Moreover, the title compounds exhibit higher accumulation in tumor cells, and exert lower toxic and higher safe properties than oxaliplatin in vivo.
Collapse
Affiliation(s)
- Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Xiaoxiao Tan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Guoshuai Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Shiben Wang
- College of Pharmacy, Liaocheng University, Liaocheng 252059, PR China
| | - Dacheng Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China.
| | - Bingquan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, PR China
| |
Collapse
|
15
|
Echeverri M, Alvarez-Valdés A, Navas F, Perles J, Sánchez-Pérez I, Quiroga AG. Using phosphine ligands with a biological role to modulate reactivity in novel platinum complexes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171340. [PMID: 29515851 PMCID: PMC5830740 DOI: 10.1098/rsos.171340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 05/04/2023]
Abstract
Three platinum complexes with cis and trans configuration cis-[Pt(TCEP)2Cl2], cis-[Pt(tmTCEP)2Cl2] and trans-[Pt(TCEP)2Cl2], where TCEP is tris(2-carboxyethyl)phosphine, have been synthesized and fully characterized by usual techniques including single-crystal X-ray diffraction for trans-[Pt(TCEP)2Cl2] and cis-[Pt(tmTCEP)2Cl2]. Here, we also report on an esterification process of TCEP, which takes place in the presence of alcohols, leading to a platinum complex coordinated to an ester tmTCEP (2-methoxycarbonylethyl phosphine) ligand. The stability in solution of the three compounds and their interaction with biological models such as DNA (pBR322 and calf thymus DNA) and proteins (lysozyme and RNase) have also been studied.
Collapse
Affiliation(s)
- Marcelo Echeverri
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Francisco Navas
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Josefina Perles
- Single Crystal XRD Laboratory, SIdI, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - A. G. Quiroga
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Cai L, Yu C, Ba L, Liu Q, Qian Y, Yang B, Gao C. Anticancer platinum-based complexes with non-classical structures. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4228] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linxiang Cai
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Congtao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Linkui Ba
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Qinghua Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yunxu Qian
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Bo Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|
17
|
Biancalana L, Batchelor LK, Dyson PJ, Zacchini S, Schoch S, Pampaloni G, Marchetti F. α-Diimine homologues of cisplatin: synthesis, speciation in DMSO/water and cytotoxicity. NEW J CHEM 2018. [DOI: 10.1039/c8nj04195d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α-Diimine Pt(ii) complexes display variable stability in DMSO and DMSO/water mixtures, depending on the nature of the N-substituents. The most stable compounds are moderately cytotoxic, or are essentially inactive, against A2780 and A2780cisR cancer cell lines.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- I-40136 Bologna
- Italy
| | - Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
18
|
Navas F, Mendes F, Santos I, Navarro-Ranninger C, Cabrera S, Quiroga AG. Enhanced Cytotoxicity and Reactivity of a Novel Platinum(IV) Family with DNA-Targeting Naphthalimide Ligands. Inorg Chem 2017; 56:6175-6183. [DOI: 10.1021/acs.inorgchem.7b00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco Navas
- Departamento de
Química Inorgánica, Universidad Autónoma de Madrid, ES-28049 Madrid, Spain
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior
Técnico, Universidade de Lisboa, 2695-066 Bobadela
LRS, Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior
Técnico, Universidade de Lisboa, 2695-066 Bobadela
LRS, Portugal
| | | | - Silvia Cabrera
- Departamento de
Química Inorgánica, Universidad Autónoma de Madrid, ES-28049 Madrid, Spain
| | - Adoración G. Quiroga
- Departamento de
Química Inorgánica, Universidad Autónoma de Madrid, ES-28049 Madrid, Spain
| |
Collapse
|
19
|
Agudo-López A, Prieto-García E, Alemán J, Pérez C, Díaz-García CV, Parrilla-Rubio L, Cabrera S, Navarro-Ranninger C, Cortés-Funes H, López-Martín JA, Agulló-Ortuño MT. Mechanistic added value of a trans-Sulfonamide-Platinum-Complex in human melanoma cell lines and synergism with cis-Platin. Mol Cancer 2017; 16:45. [PMID: 28231799 PMCID: PMC5324334 DOI: 10.1186/s12943-017-0618-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cisplatin is a potent antitumor agent. However, toxicity and primary and secondary resistance are major limitations of cisplatin-based chemotherapy, leading to therapeutic failure. We have previously reported that mono-sulfonamide platinum complexes have good antitumor activity against different tumoral cell lines and with a different and better cytotoxic profile than cisplatin. Besides, N-sulfonamides have been used extensively in medicinal chemistry as bactericides, anticonvulsant, inhibitors of the carbonic anhydrase, inhibitors of histone deacetylases, and inhibitors of microtubule polymerization, among others. METHODS We aimed to compare the cytotoxic effects of cisplatin and a trans-sulfonamide-platinum-complex (TSPC), in two human melanoma cell lines that differ in their TP53 status: SK-MEL-5, TP53 wild type, and SK-MEL-28, TP53 mutated. We performed cytotoxicity assays with both drugs, alone and in combination, cell cycle analyses, western blotting and immunoprecipitation, and fluorescence immunocytochemistry. RESULTS TSPC had similar antiproliferative activity than cisplatin against SK-MEL-5 (3.24 ± 1.08 vs 2.89 ± 1.12 μM) and higher against SK-MEL-28 cells (5.83 ± 1.06 vs 10.17 ± 1.29 μM). Combination of both drugs inhibited proliferation in both cell lines, being especially important in SK-MEL-28, and showing a synergistic effect. In contrast to cisplatin, TSPC caused G1 instead G2/M arrest in both cell lines. Our present findings indicate that the G1 arrest is associated with the induction of CDKN1A and CDKN1B proteins, and that this response is also present in melanoma cells containing TP53 mutated. Also, strong accumulation of CDKN1A and CDKN1B in cells nuclei was seen upon TSPC treatment in both cell lines. CONCLUSIONS Overall, these findings provide a new promising TSPC compound with in vitro antitumor activity against melanoma cell lines, and with a different mechanism of action from that of cisplatin. Besides, TSPC synergism with cisplatin facilitates its potential use for co-treatment to reduce toxicity and resistance against cisplatin. TSPC remains a promising lead compound for the generation of novel antineoplastic agent and to explore its synergism with other DNA damaging agents.
Collapse
Affiliation(s)
- Alba Agudo-López
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
| | - Elena Prieto-García
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department (Module 1), Universidad Autónoma de Madrid, C/Fco Tomás y Valiente, 5. Cantoblanco, 28049 Madrid, Spain
| | - Carlos Pérez
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
| | - C. Vanesa Díaz-García
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
| | - Lucía Parrilla-Rubio
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Avda de Córdoba S/N, 28041 Madrid, Spain
| | - Silvia Cabrera
- Inorganic Chemistry Department (Module 7), Universidad Autónoma de Madrid, C/Fco Tomás y Valiente, 5, Cantoblanco, 28049 Madrid, Spain
| | - Carmen Navarro-Ranninger
- Inorganic Chemistry Department (Module 7), Universidad Autónoma de Madrid, C/Fco Tomás y Valiente, 5, Cantoblanco, 28049 Madrid, Spain
| | - Hernán Cortés-Funes
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Avda de Córdoba S/N, 28041 Madrid, Spain
| | - José A. López-Martín
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
- Medical Oncology Service, Hospital Universitario 12 de Octubre, Avda de Córdoba S/N, 28041 Madrid, Spain
| | - M. Teresa Agulló-Ortuño
- Laboratory of Translational Oncology, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i + 12), Avda de Córdoba S/N, 28041 Madrid, Spain
| |
Collapse
|
20
|
Zhou W, Yu T, Vazin M, Ding J, Liu J. Cr3+ Binding to DNA Backbone Phosphate and Bases: Slow Ligand Exchange Rates and Metal Hydrolysis. Inorg Chem 2016; 55:8193-200. [DOI: 10.1021/acs.inorgchem.6b01357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tianmeng Yu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Vazin
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
21
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Li M, Lai L, Zhao Z, Chen T. Aquation Is a Crucial Activation Step for Anticancer Action of Ruthenium(II) Polypyridyl Complexes to Trigger Cancer Cell Apoptosis. Chem Asian J 2015; 11:310-20. [DOI: 10.1002/asia.201501048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/12/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Meng Li
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Lanhai Lai
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Zhennan Zhao
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P. R China
| |
Collapse
|
23
|
Icsel C, Yilmaz VT, Kaya Y, Durmus S, Sarimahmut M, Buyukgungor O, Ulukaya E. Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis. J Inorg Biochem 2015; 152:38-52. [DOI: 10.1016/j.jinorgbio.2015.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
24
|
Liu F, Gou S, Chen F, Fang L, Zhao J. Study on Antitumor Platinum(II) Complexes of Chiral Diamines with Dicyclic Species as Steric Hindrance. J Med Chem 2015; 58:6368-77. [DOI: 10.1021/jm501952r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fengfan Liu
- Pharmaceutical Research Center and School of Chemistry
and Chemical Engineering, Southeast University, Campus of Jiulong Lake in Jiangning
District, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory
for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry
and Chemical Engineering, Southeast University, Campus of Jiulong Lake in Jiangning
District, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory
for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry
and Chemical Engineering, Southeast University, Campus of Jiulong Lake in Jiangning
District, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory
for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Lei Fang
- Pharmaceutical Research Center and School of Chemistry
and Chemical Engineering, Southeast University, Campus of Jiulong Lake in Jiangning
District, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory
for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry
and Chemical Engineering, Southeast University, Campus of Jiulong Lake in Jiangning
District, Nanjing 211189, China
| |
Collapse
|
25
|
Ryan GJ, Poynton FE, Elmes RBP, Erby M, Williams DC, Quinn SJ, Gunnlaugsson T. Unexpected DNA binding properties with correlated downstream biological applications in mono vs. bis-1,8-naphthalimide Ru(ii)-polypyridyl conjugates. Dalton Trans 2015; 44:16332-44. [DOI: 10.1039/c5dt00360a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of two 1,8-napthalimide-conjugated Ru(ii)-polypyridyl complexes which exhibit different DNA binding and photocleavage behavior is presented.
Collapse
Affiliation(s)
- Gary J. Ryan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Fergus E. Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Robert B. P. Elmes
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Marialuisa Erby
- School of Biochemistry and Immunology
- and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - D. Clive Williams
- School of Biochemistry and Immunology
- and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| | - Susan J. Quinn
- School of Chemistry and Chemical Biology
- University College Dublin
- Dublin 4
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- Dublin 2
- Ireland
| |
Collapse
|
26
|
Icsel C, Yilmaz VT, Kaya Y, Samli H, Harrison WTA, Buyukgungor O. New palladium(ii) and platinum(ii) 5,5-diethylbarbiturate complexes with 2-phenylpyridine, 2,2′-bipyridine and 2,2′-dipyridylamine: synthesis, structures, DNA binding, molecular docking, cellular uptake, antioxidant activity and cytotoxicity. Dalton Trans 2015; 44:6880-95. [DOI: 10.1039/c5dt00728c] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA interaction, antioxidant and cytotoxic activities of Pd(ii)/Pt(ii) 5,5-diethylbarbiturate complexes were evaluated.
Collapse
Affiliation(s)
- Ceyda Icsel
- Department of Chemistry
- Faculty of Arts and Sciences
- Uludag University
- 16059 Bursa
- Turkey
| | - Veysel T. Yilmaz
- Department of Chemistry
- Faculty of Arts and Sciences
- Uludag University
- 16059 Bursa
- Turkey
| | - Yunus Kaya
- Department of Chemistry
- Faculty of Arts and Sciences
- Uludag University
- 16059 Bursa
- Turkey
| | - Hale Samli
- Department of Genetics
- Faculty of Veterinary Medicine
- Uludag University
- 16059 Bursa
- Turkey
| | | | - Orhan Buyukgungor
- Department of Physics
- Faculty of Arts and Sciences
- Ondokuz Mayis University
- 55159 Samsun
- Turkey
| |
Collapse
|