1
|
Dankert F, Messelberger J, Authesserre U, Swain A, Scheschkewitz D, Morgenstern B, Munz D. A Lead(II) Substituted Triplet Carbene. J Am Chem Soc 2024; 146:29630-29636. [PMID: 39423155 PMCID: PMC11528407 DOI: 10.1021/jacs.4c10205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
Reaction of the pincer-type ligand L3 supported complex [L3PbBr][BArF24] (1) with Li[(C(═N2)TMS)] furnishes [L3Pb(C(═N2)TMS)][BArF24] (2). Diazo-compound 2 eliminates dinitrogen upon irradiation affording formal plumba-alkyne 3, which persists in cold fluoroarene solutions. Variable temperature UV/Vis and NMR spectroscopies in combination with quantum-chemical calculations identify 3 as a metal-substituted triplet carbene. In-crystallo irradiation of [L3Pb(C(═N2)TMS)(tol)][BArF24] (2·tol) provides a snapshot of intermolecular C-H bond insertion with toluene (4).
Collapse
Affiliation(s)
- Fabian Dankert
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Julian Messelberger
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Ugo Authesserre
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Abinash Swain
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Saarland
University, Inorganic and General
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Saarland
University, Inorganic Solid-State
Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Dominik Munz
- Saarland
University, Coordination Chemistry, Campus C4.1, D-66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Galeev AR, Dmitriev MV, Novikov AS, Maslivets AN. Heterocycle-guided synthesis of m-hetarylanilines via three-component benzannulation. Beilstein J Org Chem 2024; 20:2208-2216. [PMID: 39286792 PMCID: PMC11403807 DOI: 10.3762/bjoc.20.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
A one-pot three-component synthesis of substituted meta-hetarylanilines from heterocycle-substituted 1,3-diketones has been developed. The electron-withdrawing power of the heterocyclic substituent (which can be estimated on the basis of calculated Hammett constants) in the 1,3-diketone plays a pivotal role in the studied reaction. The series of meta-hetarylanilines prepared (21-85% isolated yield) demonstrates the synthetic utility of the developed method.
Collapse
Affiliation(s)
- Andrey R Galeev
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm, 614990, Russian Federation
| | - Maksim V Dmitriev
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm, 614990, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, 199034, Russian Federation
- Research Institute of Chemistry, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, Moscow, 117198, Russian Federation
| | - Andrey N Maslivets
- Department of Chemistry, Perm State University, ul. Bukireva 15, Perm, 614990, Russian Federation
| |
Collapse
|
3
|
Nguyen DT, Helling C, Jones C. Synthesis and Characterization of Bulky 1,3-Diamidopropane Complexes of Group 2 Metals (Be-Sr). Chem Asian J 2024; 19:e202400498. [PMID: 38760323 DOI: 10.1002/asia.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Reaction of lithium 1,3-diamidopropane Li2(TripNCN) (TripNCN=[{(Trip)NCH2}2CH2]2-, Trip=2,4,6-triisopropylphenyl) with BeBr2(OEt2)2 gave the diamido beryllium complex, [(TripNCN)Be(OEt2)]. Deprotonation reactions between the bulkier 1,3-diaminopropane (TCHPNCN)H2 (TCHPNCN=[{(TCHP)NCH2}2CH2]2-, TCHP=2,4,6-tricyclohexylphenyl) and magnesium alkyls afforded the adduct complexes [(TCHPNCN)Mg(OEt2)] and [(TCHPNCN)Mg(THF)2], depending on the reaction conditions employed. Treating [(TCHPNCN)Mg(THF)2] with the N-heterocyclic carbene :C{(MeNCMe)2} (TMC) gave [(TCHPNCN)Mg(TMC)2] via substitution of the THF ligands. Reactions of (ArNCN)H2 (Ar=Trip or TCHP) with Mg{CH2(SiMe3)}2, in the absence of Lewis bases, yielded the N-bridged dimers [{(ArNCN)Mg}2]. Salt metathesis reactions between alkali metal salts M2(TCHPNCN) (M=Li or K) and CaI2 or SrI2 led to the THF adduct compounds [(TCHPNCN)Ca(THF)3] and [(TCHPNCN)Sr(THF)4], the differing number of THF ligands in which is a result of the different sizes of the metals involved. The described complexes hold potential as precursors to kinetically protected, low oxidation state group 2 metal species.
Collapse
Affiliation(s)
- Dat T Nguyen
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Christoph Helling
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia
| |
Collapse
|
4
|
Wenger JS, Johnstone TC. A Sterically Accessible Monomeric Stibine Oxide Activates Organotetrel(IV) Halides, Including C-F and Si-F Bonds. J Am Chem Soc 2024; 146:19350-19359. [PMID: 38959432 PMCID: PMC11258792 DOI: 10.1021/jacs.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Phosphine oxides and arsine oxides are common laboratory reagents with diverse applications that stem from the chemistry exhibited by these monomeric species. Stibine oxides are, in contrast, generally dimeric or oligomeric species because of the reactivity-quenching self-association of the highly polarized stiboryl (Sb=O/Sb+-O-) group. We recently isolated Dipp3SbO (Dipp = 2,6-diisopropylphenyl), the first example of a kinetically stabilized monomeric stibine oxide, which exists as a bench-stable solid and bears an unperturbed stiboryl group. Herein, we report the isolation of Mes3SbO (Mes = mesityl), in which the less bulky substituents maintain the monomeric nature of the compound but unlock access to a wider range of reactivity at the unperturbed stiboryl group relative to Dipp3SbO. Mes3SbO was found to be a potent Lewis base in the formation of adducts with the main-group Lewis acids PbMe3Cl and SnMe3Cl. The accessible Lewis acidity at the Sb atom results in a change in the reactivity with GeMe3Cl, SiMe3Cl, and CPh3Cl. With these species, Mes3SbO formally adds the E-Cl (E = Ge, Si, C) bond across the unsaturated stiboryl group to form a 5-coordinate stiborane. The biphilicity of Mes3SbO is sufficiently potent to activate even the C-F and Si-F bonds of C(p-MeOPh)3F and SiEt3F, respectively. These results mark a significant contribution to an increasingly rich literature on the reactivity of polar, unsaturated main-group motifs. Furthermore, these results highlight the utility of a kinetic stabilization approach to access unusual bonding motifs with unquenched reactivity that can be leveraged for small-molecule activation.
Collapse
Affiliation(s)
- John S. Wenger
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| | - Timothy C. Johnstone
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
5
|
Scheiner S. Transition from covalent to noncovalent bonding between tetrel atoms. Phys Chem Chem Phys 2024; 26:15978-15986. [PMID: 38775057 DOI: 10.1039/d4cp01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The strength and nature of the bonding between tetrel (T) atoms in R2T⋯TR2 is examined by quantum calculations. T atoms cover the range of Group 14 atoms from C to Pb, and substituents R include Cl, F, and NH2. Systems vary from electrically neutral to both positive and negative overall charged radicals. There is a steady weakening progression in T-T bond strength as the tetrel atom grows larger, transitioning smoothly from a strong covalent to a much weaker noncovalent bond for the larger T atoms. The latter have some of the characteristics of a ditetrel bond, but there are also significant deviations from a classic bond of this type. The T2Cl4- anions are more strongly bonded than the corresponding cations, which are in turn stronger than the neutrals.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah 84322-0300, USA.
| |
Collapse
|
6
|
Wenger JS, Johnstone TC. Recent advances in the stabilization of monomeric stibinidene chalcogenides and stibine chalcogenides. Dalton Trans 2024; 53:8524-8534. [PMID: 38717258 DOI: 10.1039/d4dt00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The elucidation of novel bonding situations at heavy p-block elements has greatly advanced recent efforts to access useful reactivity at earth-abundant main-group elements. Molecules with unsaturated bonds between heavier, electropositive elements and lighter, electronegative elements are often highly polarized and competent in small-molecule activations, but the reactivity of these molecules may be quenched by self-association of monomers to form oligomeric species where the polar, unsaturated groups are assembled in a head-to-tail fashion. In this Frontier, we discuss the synthetic strategies employed to isolate monomeric σ2,λ3-stibinidene chalcogenides (RSbCh) and monomeric σ4,λ5-stibine chalcogenides (R3SbCh). These classes of molecules each feature polarized antimony-chalcogenide bonds (Sb = Ch/Sb+-Ch-). We highlight how the synthesis and isolation of these molecules has led to the discovery of novel reactivity and has shed light on fundamental aspects of inorganic structure and bonding. Despite these advances, there are critical aspects of this chemistry that remain underdeveloped and we provide our perspective on yet-unrealized synthetic targets that may be achieved with the continued development of the strategies described herein.
Collapse
Affiliation(s)
- John S Wenger
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
7
|
Bi L, Jamnuch S, Chen A, Do A, Balto KP, Wang Z, Zhu Q, Wang Y, Zhang Y, Tao AR, Pascal TA, Figueroa JS, Li S. Molecular-Scale Visualization of Steric Effects of Ligand Binding to Reconstructed Au(111) Surfaces. J Am Chem Soc 2024; 146:11764-11772. [PMID: 38625675 PMCID: PMC11066864 DOI: 10.1021/jacs.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Sasawat Jamnuch
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Amanda Chen
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Zhe Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| |
Collapse
|
8
|
Tran PM, Wang Y, Lahm ME, Wei P, Molnar CJ, Schaefer HF, Robinson GH. Germanium(II) Dithiolene Complexes. Chemistry 2023; 29:e202302258. [PMID: 37603856 DOI: 10.1002/chem.202302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
The 1 : 2 reaction of the imidazole-based dithiolate (2) with GeCl2 • dioxane in THF/TMEDA gives 3, a TMEDA-complexed dithiolene-based germylene. Compound 3 is converted to monothiolate-complexed (5) and N-heterocyclic carbene-complexed (7) germanium(II) dithiolene complexes via Lewis base ligand exchange. A bis-dithiolene-based germylene (8), involving a 3c-4e S-Ge-S bond, has also been synthesized through controlled hydrolysis of 7. The bonding nature of 3, 5, and 8 was investigated by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Phuong M Tran
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Yuzhong Wang
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Mitchell E Lahm
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Pingrong Wei
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Christopher J Molnar
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Henry F Schaefer
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| | - Gregory H Robinson
- Department of Chemistry, Centre for Computational Chemistry, The University of Georgia, Athens, Georgia, 30602-2556, USA
| |
Collapse
|
9
|
Parvathy P, Parameswaran P. Inorganometallic allenes [(Mn(η 5-C 5H 5)(CO) 2) 2(μ-E)] (E = Si-Pb): bis-allylic anionic delocalisation similar to organometallic allene but differential σ-donation and π-backdonation. Phys Chem Chem Phys 2023; 25:26526-26537. [PMID: 37752826 DOI: 10.1039/d3cp03211f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The chemistry of heavy group-14 tetrel atoms is known to diverge from that of the lighter congener carbon. Here, we report the structure and bonding in inorganometallic allenes [(MnCp(CO)2)2(μ-E)] (2E, E = Si-Pb; Cp = η5-C5H5). These inorganometallic allenes are structurally similar to the lighter organometallic analog [(MnCp(CO)2)2(μ-C)] (2C). The bonding analysis of these compounds at the M06/def2-TZVPP//BP86/def2-SVP level of theory identifies a linear Mn-E-Mn spine with delocalised, mutually orthogonal π-systems across this back-bone. This results in a bis-allylic anionic bonding scenario. However, the strength of the Mn-E bonding is found to be weaker in these inorganometallic allenes. The energy decomposition analysis at the BP86/TZ2P//BP86/def2-SVP level of theory further reveals that the bonding in these compounds cannot be represented by one unique heuristic bonding model, but multiple bonding models. For all 2E (E = C-Pb), the Dewar-Chatt-Duncanson bonding model is one of the best bonding representations, where the central tetrel atom acts as a 4e- σ-donor and 4e- π-acceptor. The bonding analysis indicates that the carbon atom in the organometallic allene acts as a better π-acceptor than σ-donor, while the heavier tetrel atoms in the inorganometallic allenes are better σ-donors than π-acceptors. The npz-orbital is found to be a better σ-donor than the valence ns-orbital. However, when the bonding representation is changed to a traditional electron-sharing model, the contribution from the ns-orbital was found to be the largest in comparison to the interaction from the remaining three valence np-orbitals. It can be suggested that the ns-orbitals contribute more towards chemical bonding when participating via an electron-sharing interaction than a donor-acceptor interaction.
Collapse
Affiliation(s)
- Parameswaran Parvathy
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India.
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Kerala, 673601, India.
| |
Collapse
|
10
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Lamprecht A, Lindl F, Endres L, Krummenacher I, Braunschweig H. Coinage metal complexes of BN analogues of m-terphenyl ligands. Chem Commun (Camb) 2023; 59:10149-10152. [PMID: 37530102 DOI: 10.1039/d3cc03467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We report the synthesis of a series of group 11 metal complexes with sterically demanding anionic nitrogen ligands based on the 1,2-azaborinine motif. The ligands, which share structural similarities with m-terphenyls, have been used to stabilize two-coordinate phosphine complexes and dimeric complexes with close contacts between the metal centers. Spectroscopic, crystallographic, and theoretical investigations reveal close parallels to the related m-terphenyl complexes, including metallophilic interactions in the dimers.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Felix Lindl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Lukas Endres
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
12
|
Wenger JS, Getahun A, Johnstone TC. Variation in pnictogen-oxygen bonding unlocks greatly enhanced Brønsted basicity for the monomeric stibine oxide. Dalton Trans 2023; 52:11325-11334. [PMID: 37530432 DOI: 10.1039/d3dt02113k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Phosphine oxides and arsine oxides feature highly polarized pnictoryl groups (Pn+-O-/Pn = O; Pn = P, As) and react as Brønsted bases through O-centered lone pairs. We recently reported the first example of a monomeric stibine oxide, Dipp3SbO (Dipp = diisopropylphenyl), allowing periodic trends in pnictoryl bonding to be extended to antimony for the first time. Computational studies suggest that, as the pnictogen atom becomes heavier, delocalization of electron density from the O-centered lone pairs to the Pn-C σ* orbitals is attenuated, destabilizing the lone pairs and increasing the donor capacity of the pnictine oxide. Herein, we assess the Brønsted basicity of a series of monomeric pnictine oxides (Dipp3PnO; Pn = P, As, and Sb). Stoichiometric reactivity between Dipp3PnO and a series of acids demonstrates the greatly enhanced ability of Dipp3SbO to accept protons relative to the lighter congeners, consistent with theoretical isodesmic reaction enthalpies and proton affinities. 1H NMR spectrometric titrations allow for the pKaH,MeCN determination of Dipp3AsO and Dipp3SbO, revealing a 106-fold increase in Brønsted basicity from Dipp3AsO to Dipp3SbO. The increased basicity can be exploited in catalysis; Dipp3SbO exhibits dramatically increased catalytic efficiency in the Brønsted base-catalyzed transesterification between p-nitrophenyl acetate and 2,2,2-trifluoroethanol. Our results unambiguously confirm the drastic increase in Brønsted basicity from Dipp3PO < Dipp3AsO < Dipp3SbO, a direct consequence of the variation in the electronic structure of the pnictoryl bond as the pnictogen atom increases in atomic number.
Collapse
Affiliation(s)
- John S Wenger
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | - Addis Getahun
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
13
|
Hannah TJ, McCarvell WM, Kirsch T, Bedard J, Hynes T, Mayho J, Bamford KL, Vos CW, Kozak CM, George T, Masuda JD, Chitnis SS. Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis. Chem Sci 2023; 14:4549-4563. [PMID: 37152250 PMCID: PMC10155930 DOI: 10.1039/d3sc00917c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth(iii) complexes (cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters ε-caprolactone and rac-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Collapse
Affiliation(s)
- Tyler J Hannah
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - W Michael McCarvell
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Tamina Kirsch
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Joseph Bedard
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Toren Hynes
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Jacqueline Mayho
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Karlee L Bamford
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| | - Cyler W Vos
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Christopher M Kozak
- Department of Chemistry, Memorial University of Newfoundland St. John's NL A1B 3X7 Canada
| | - Tanner George
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - Jason D Masuda
- Department of Chemistry, Saint Mary's University 923 Robie St. Halifax NS B3H 3C3 Canada
| | - S S Chitnis
- Chemistry Department, Dalhousie University 6274 Coburg Rd Halifax NS B3H 4R2 Canada
| |
Collapse
|
14
|
Wenger JS, Weng M, George GN, Johnstone TC. Isolation, bonding and reactivity of a monomeric stibine oxide. Nat Chem 2023; 15:633-640. [PMID: 36959510 PMCID: PMC10159848 DOI: 10.1038/s41557-023-01160-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
In contrast to phosphine oxides and arsine oxides, which are common and exist as stable monomeric species featuring the corresponding pnictoryl functional group (Pn=O/Pn+-O-; Pn = P, As), stibine oxides are generally polymeric, and the properties of the unperturbed stiboryl group (Sb=O/Sb+-O-) remain unexplored. We now report the isolation of the monomeric stibine oxide, Dipp3SbO (where Dipp = 2,6-diisopropylphenyl). Spectroscopic, crystallographic and computational studies provide insight into the nature of the Sb=O/Sb+-O- bond. Moreover, isolation of Dipp3SbO allows the chemistry of the stiboryl group to be explored. Here we show that Dipp3SbO can act as a Brønsted base, a hydrogen-bond acceptor and a transition-metal ligand, in addition engaging in 1,2-addition, O-for-F2 exchange and O-atom transfer. In all cases, the reactivity of Dipp3SbO differed from that of the lighter congeners Dipp3AsO and Dipp3PO.
Collapse
Affiliation(s)
- John S Wenger
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Monica Weng
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
15
|
Zheng X, Crumpton AE, Protchenko AV, Heilmann A, Ellwanger MA, Aldridge S. Disproportionation and Ligand Lability in Low Oxidation State Boryl-Tin Chemistry. Chemistry 2023; 29:e202203395. [PMID: 36399407 PMCID: PMC10947314 DOI: 10.1002/chem.202203395] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.
Collapse
Affiliation(s)
- Xiongfei Zheng
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Agamemnon E. Crumpton
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andrey V. Protchenko
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Mathias A. Ellwanger
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
16
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous Decomposition of an Extraordinarily Twisted and Trans-Bent Fully-Phosphanyl-Substituted Digermene to an Unusual Ge I Cluster. Angew Chem Int Ed Engl 2022; 61:e202208851. [PMID: 35946808 PMCID: PMC9804623 DOI: 10.1002/anie.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/05/2023]
Abstract
Ditetrelenes R2 E=ER2 (E=Si, Ge, Sn, Pb) substituted by multiple N/P/O/S-donor groups are extremely rare due to their propensity to disaggregate into their tetrylene monomers R2 E. We report the synthesis of the first fully phosphanyl-substituted digermene {(Mes)2 P}2 Ge=Ge{P(Mes)2 }2 (3, Mes=2,4,6-Me3 C6 H2 ), which adopts a highly unusual structure in the solid state, that is both strongly trans-bent and highly twisted. Variable-temperature 31 P{1 H} NMR spectroscopy suggests that 3 persists in solution, but is subject to a dynamic equilibrium between two conformations, which have different geometries about the Ge=Ge bond (twisted/non-twisted) due to a difference in the nature of their π-stacking interactions. Compound 3 undergoes unprecedented, spontaneous decomposition in solution to give a unique GeI cluster {(Mes)2 P}4 Ge4 ⋅5 CyMe (7).
Collapse
Affiliation(s)
- Keith Izod
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Mo Liu
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Peter Evans
- Main Group Chemistry LaboratoriesSchool of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Corinne Wills
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Casey M. Dixon
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Paul G. Waddell
- School of ChemistryNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | | |
Collapse
|
17
|
Wang Y, Chen AA, Balto KP, Xie Y, Figueroa JS, Pascal TA, Tao AR. Curvature-Selective Nanocrystal Surface Ligation Using Sterically-Encumbered Metal-Coordinating Ligands. ACS NANO 2022; 16:12747-12754. [PMID: 35943141 DOI: 10.1021/acsnano.2c04595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic ligands are critical in determining the physiochemical properties of inorganic nanocrystals. However, precise nanocrystal surface modification is extremely difficult to achieve. Most research focuses on finding ligands that fully passivate the nanocrystal surface, with an emphasis on the supramolecular structure generated by the ligand shell. Inspired by molecular metal-coordination complexes, we devised an approach based on ligand anchoring groups that are flanked by encumbering organic substituents and are chemoselective for binding to nanocrystal corner, edge, and facet sites. Through experiment and theory, we affirmed that the surface-ligand steric pressures generated by these organic substituents are significant enough to impede binding to regions of low nanocurvature, such as nanocrystal facets, and to promote binding to regions of high curvature such as nanocrystal edges.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
| | - Amanda A Chen
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
| | - Krista P Balto
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| | - Yu Xie
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
| | - Joshua S Figueroa
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| | - Tod A Pascal
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
| | - Andrea R Tao
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92023, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023, United States
| |
Collapse
|
18
|
Izod K, Liu M, Evans P, Wills C, Dixon CM, Waddell PG, Probert MR. Spontaneous decomposition of an extraordinarily twisted and trans‐bent fully‐phosphanyl‐substituted digermene to an unusual Ge(I) cluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Keith Izod
- University of Newcastle School of Chemistry Bedson Building NE1 7RU Newcastle upon Tyne UNITED KINGDOM
| | - Mo Liu
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Peter Evans
- Newcastle University School of Chemistry UNITED KINGDOM
| | - Corinne Wills
- Newcastle University School of Chemistry UNITED KINGDOM
| | | | | | | |
Collapse
|
19
|
Boreen MA, Ye CZ, Kerridge A, McCabe KN, Skeel BA, Maron L, Arnold J. Does Reduction-Induced Isomerization of a Uranium(III) Aryl Complex Proceed via C-H Oxidative Addition and Reductive Elimination across the Uranium(II/IV) Redox Couple? Inorg Chem 2022; 61:8955-8965. [PMID: 35654478 DOI: 10.1021/acs.inorgchem.2c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reaction of the uranium(III) bis(amidinate) aryl complex {TerphC(NiPr)2}2U(Terph) (2, where Terph = 4,4″-di-tert-butyl-m-terphenyl-2'-yl) with a strong reductant enabled isolation of isomeric uranium(III) bis(amidinate) aryl product {TerphC(NiPr)2}2U(Terph*) (3, where Terph* = 4,4″-di-tert-butyl-m-terphenyl-4'-yl). In terms of connectivity, 3 differs from 2 only in the positions of the U-C and C-H bonds on the central aryl ring of the m-terphenyl-based ligand. A deuterium labeling study ruled out mechanisms for this isomerization involving intermolecular abstraction or deprotonation of the ligand C-H bonds activated during the reaction. Due to the complexity of this rapid, heterogeneous reaction, experimental studies could not further distinguish between two different intramolecular C-H activation mechanisms. However, high-level computational studies were consistent with a mechanism that included two sets of unimolecular, mononuclear C-H oxidative addition and reductive elimination steps involving uranium(II/IV).
Collapse
Affiliation(s)
- Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Karl N McCabe
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Brighton A Skeel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Caise A, Griffin LP, McManus C, Heilmann A, Aldridge S. Reversible Uptake of CO
2
by Pincer Ligand Supported Dimetallynes. Angew Chem Int Ed Engl 2022; 61:e202117496. [DOI: 10.1002/anie.202117496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Liam P. Griffin
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Caitilín McManus
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
21
|
Caise A, Griffin LP, McManus C, Heilmann A, Aldridge S. Reversible Uptake of CO2 by Pincer Ligand Supported Dimetallynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexa Caise
- University of Oxford Chemistry UNITED KINGDOM
| | | | | | | | - Simon Aldridge
- University of Oxford Chemistry Inorganic Chemistry LaboratorySouth Parks Road SN77RR Oxford UNITED KINGDOM
| |
Collapse
|
22
|
Beer H, Linke A, Bresien J, Mlostoń G, Celeda M, Villinger A, Schulz A. Synthesis of Bicyclic P,S-Heterocycles via the Addition of Thioketones to a Phosphorus-Centered Open-Shell Singlet Biradical. Inorg Chem 2022; 61:2031-2038. [PMID: 35041414 DOI: 10.1021/acs.inorgchem.1c03207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formal addition reactions between the open-shell singlet biradical [P(μ-NTer)]2 (1Ter) and xanthione, thioxanthione, as well as ferrocenyl naphthyl thioketone were studied in detail. Reactions were performed at room temperature and led to the formation of strained [2.1.1]-cage P,S-heterocycles (3). All addition products were isolated and fully characterized by spectroscopic methods. Furthermore, reversible cleavage of the xanthenthione-biradical addition product into the parent compounds (biradical and thioketone) could be demonstrated by 31P{1H} NMR spectroscopy. The thermodynamic stability of all cyclization products with respect to the elimination of thioketone was studied by quantum-chemical computations including solvent effects. Regarding the dissociation of addition products 3 into the fragment molecules 1Ter and ketone/thioketone, calculations prove that a significantly larger distortion energy in ketones compared with thioketones causes lower thermodynamic stability of the ketone adducts.
Collapse
Affiliation(s)
- Henrik Beer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany
| | - Alexander Linke
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany.,Leibniz-Institut für Katalyse eV, Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź Poland
| | - Małgorzata Celeda
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź Poland
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany.,Leibniz-Institut für Katalyse eV, Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany.,Leibniz-Institut für Katalyse eV, Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| |
Collapse
|
23
|
Keuter J, Hepp A, Lips F. Trapping Experiments during Reductive Debrominations of Aminotribromosilanes with Alkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster
| | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstraße 28–30 48149 Münster
| |
Collapse
|
24
|
Falconer RL, Byrne KM, Nichol GS, Krämer T, Cowley MJ. Reversible Dissociation of a Dialumene*. Angew Chem Int Ed Engl 2021; 60:24702-24708. [PMID: 34520616 PMCID: PMC8596890 DOI: 10.1002/anie.202111385] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Dialumenes are neutral AlI compounds with Al=Al multiple bonds. We report the isolation of an amidophosphine-supported dialumene. Our X-ray crystallographic, spectroscopic, and computational DFT analyses reveal a long and extreme trans-bent Al=Al bond with a low dissociation energy and bond order. In solution, the dialumene can dissociate into monomeric AlI species. Reactivity studies reveal two modes of reaction: as dialumene or as aluminyl monomers.
Collapse
Affiliation(s)
| | - Keelan M. Byrne
- Department of ChemistryMaynooth UniversityMaynoothCo. KildareIreland
| | | | - Tobias Krämer
- Department of ChemistryMaynooth UniversityMaynoothCo. KildareIreland
| | | |
Collapse
|
25
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Fischer M, Manßen M, Schmidtmann M, Klüner T, Beckhaus R. Selective propargylic C(sp 3)-H activation of methyl-substituted alkynes versus [2 + 2] cycloaddition at a titanium imido template. Chem Sci 2021; 12:13711-13718. [PMID: 34760155 PMCID: PMC8549805 DOI: 10.1039/d1sc04334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022] Open
Abstract
The reaction of the titanium imido complex 1b with 2-butyne leads to the formation of the titanium azadiene complex 2a at ambient temperature instead of yielding the archetypical [2 + 2] cycloaddition product (titanaazacyclobutene) which is usually obtained by combining titanium imido complexes and internal alkynes. The formation of 2a is presumably caused by an initial propargylic C(sp3)–H activation step and quantum chemical calculations suggest that the outcome of this unexpected reactivity is thermodynamically favored. The previously reported titanaazacyclobutene I (which is obtained by reacting 1b with 1-phenyl-1-propyne) undergoes a rearrangement reaction at elevated temperature to give the corresponding five-membered titanium azadiene complex 2b. An unexpected reactivity between a titanium imido complex and internal alkynes was unveiled yielding titanaazacyclobutenes instead of the expected [2 + 2] cycloaddition products.![]()
Collapse
Affiliation(s)
- Malte Fischer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QR UK .,Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg Germany
| | - Manfred Manßen
- Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 D-72076 Tübingen Germany .,Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg Germany
| | - Thorsten Klüner
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg Germany
| |
Collapse
|
27
|
|
28
|
Muhasina PV, Parameswaran P. Gallium Ligand Coordinated Group 15 Compounds (LGa−ECp', L=(CHNMe)
2
CH, E=N − Bi, Cp'=η
1
‐C
5
H
5
): Changeover from Electron‐Sharing to Donor‐Acceptor σ‐Interaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202102415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Puthan Veetil Muhasina
- Department of Chemistry National Institute of Technology Calicut, NIT Campus PO Kozhikode 673 601 Kerala India
| | - Pattiyil Parameswaran
- Department of Chemistry National Institute of Technology Calicut, NIT Campus PO Kozhikode 673 601 Kerala India
| |
Collapse
|
29
|
Crossman AS, Shi JX, Krajewski SM, Maurer LA, Marshak MP. Synthesis, reactivity, and crystallography of a sterically hindered acyl triflate. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Caise A, Griffin LP, Heilmann A, McManus C, Campos J, Aldridge S. Controlling Catenation in Germanium(I) Chemistry through Hemilability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Liam P. Griffin
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Caitilín McManus
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Jesús Campos
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
31
|
Caise A, Griffin LP, Heilmann A, McManus C, Campos J, Aldridge S. Controlling Catenation in Germanium(I) Chemistry through Hemilability. Angew Chem Int Ed Engl 2021; 60:15606-15612. [PMID: 33939867 PMCID: PMC8362110 DOI: 10.1002/anie.202104643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 01/06/2023]
Abstract
We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal-metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo-dimetallynes) can be controlled by the use of (acidic/basic) "protecting groups" and through variation of the ligand scaffold. Reduction of ArNiPr2 GeCl (ArNiPr2 =2,6-(i Pr2 NCH2 )2 C6 H3 )-featuring hemilabile Ni Pr2 donors-yields (ArNiPr2 Ge)4 (2), which contains a tetrameric Ge4 chain. 2 represents a novel type of a linear homo-catenated GeI compound featuring unsupported E-E bonds. Trapping experiments reveal that a key structural component is the central two-way Ge=Ge donor-acceptor bond: reactions with IMe4 and W(CO)5 (NMe3 ) give the base- or acid-stabilized digermynes (ArNiPr2 Ge(IMe4 ))2 (4) and (ArNiPr2 Ge{W(CO)5 })2 (5), respectively. The use of smaller N-donors leads to stronger Ge-N interactions and quenching of catenation behaviour: reduction of ArNEt2 GeCl gives the digermyne (ArNEt2 Ge)2 , while the unsymmetrical system ArNEt2 GeGeArNiPr2 dimerizes to give tetranuclear (ArNEt2 GeGeArNiPr2 )2 through aggregation at the Ni Pr2 -ligated GeI centres.
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Liam P. Griffin
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Caitilín McManus
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Jesús Campos
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
32
|
Liu Y, Taylor LJ, Argent SP, McMaster J, Kays DL. Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions. Inorg Chem 2021; 60:10114-10123. [PMID: 34197113 DOI: 10.1021/acs.inorgchem.0c03623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au) and [2,6-Xyl2C6H3M]2 (3, M = Cu; 4, M = Ag) are dimeric in the solid state, although different geometries are observed depending on the ligand. These complexes feature short metal-metal distances in the expected range for metallophilic interactions. While 1-4 are readily isolated using this metathetical route, the gold complex 6 is unstable in solution at ambient temperatures and has only been obtained in low yield from the decomposition of (2,6-Mes2C6H3)Au·SMe2 (5). NMR spectroscopic measurements, including diffusion-ordered spectroscopy, suggest that 1-4 remain dimeric in a benzene-d6 solution. The metal-metal interactions have been examined computationally using the Quantum Theory of Atoms in Molecules and by an energy decomposition analysis employing natural orbitals for chemical valence.
Collapse
Affiliation(s)
- Yu Liu
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Laurence J Taylor
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Stephen P Argent
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jonathan McMaster
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Deborah L Kays
- School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
33
|
Wang G, Walley JE, Dickie DA, Molino A, Wilson DJD, Gilliard RJ. s‐Block Multiple Bonds: Isolation of a Beryllium Imido Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guocang Wang
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Jacob E. Walley
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Andrew Molino
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne Australia
| | - David J. D. Wilson
- Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne Australia
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
34
|
Wang G, Walley JE, Dickie DA, Molino A, Wilson DJD, Gilliard RJ. s-Block Multiple Bonds: Isolation of a Beryllium Imido Complex. Angew Chem Int Ed Engl 2021; 60:9407-9411. [PMID: 33411396 DOI: 10.1002/anie.202016027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/07/2022]
Abstract
A common feature of d- and p-block elements is that they participate in multiple bonding. In contrast, the synthesis of compounds containing homo- or hetero-nuclear multiple bonds involving s-block elements is extremely rare. Herein, we report the synthesis, molecular structure, and computational analysis of a beryllium imido (Be=N) complex (2), which was prepared via oxidation of a molecular Be0 precursor (1) with trimethylsilyl azide Me3 SiN3 (TMS-N3 ). Notably, compound 2 features the shortest known Be=N bond (1.464 Å) to date. This represents the first compound with an s-block metal-nitrogen multiple bond. All compounds were characterized experimentally with multi-nuclear NMR spectroscopy (1 H, 13 C, 9 Be) and single-crystal X-ray diffraction studies. The bonding situation was analyzed with density functional theory (DFT) calculations, which supports the existence of π-bonding between beryllium and nitrogen.
Collapse
Affiliation(s)
- Guocang Wang
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Jacob E Walley
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Rd./ PO Box 400319, Charlottesville, VA, 22904, USA
| |
Collapse
|
35
|
Walley JE, Warring LS, Wang G, Dickie DA, Pan S, Frenking G, Gilliard RJ. Carbodicarbene Bismaalkene Cations: Unravelling the Complexities of Carbene versus Carbone in Heavy Pnictogen Chemistry. Angew Chem Int Ed Engl 2021; 60:6682-6690. [PMID: 33290596 PMCID: PMC7986408 DOI: 10.1002/anie.202014398] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 12/24/2022]
Abstract
We report a combined experimental and theoretical study on the first examples of carbodicarbene (CDC)-stabilized bismuth complexes, which feature low-coordinate cationic bismuth centers with C=Bi multiple-bond character. Monocations [(CDC)Bi(Ph)Cl][SbF6 ] (8) and [(CDC)BiBr2 (THF)2 ][SbF6 ] (11), dications [(CDC)Bi(Ph)][SbF6 ]2 (9) and [(CDC)BiBr(THF)3 ][NTf2 ]2 (12), and trication [(CDC)2 Bi][NTf2 ]3 (13) have been synthesized via sequential halide abstractions from (CDC)Bi(Ph)Cl2 (7) and (CDC)BiBr3 (10). Notably, the dications and trication exhibit C ⇉ Bi double dative bonds and thus represent unprecedented bismaalkene cations. The synthesis of these species highlights a unique non-reductive route to C-Bi π-bonding character. The CDC-[Bi] complexes (7-13) were compared with related NHC-[Bi] complexes (1, 3-6) and show substantially different structural properties. Indeed, the CDC ligand has a remarkable influence on the overall stability of the resulting low-coordinate Bi complexes, suggesting that CDC is a superior ligand to NHC in heavy pnictogen chemistry.
Collapse
Affiliation(s)
- Jacob E. Walley
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Levi S. Warring
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Guocang Wang
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Diane A. Dickie
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Sudip Pan
- Fachbereich ChemiePhilipps-Universitt MarburgHans-Meerwein-Straße35043MarburgGermany
| | - Gernot Frenking
- Fachbereich ChemiePhilipps-Universitt MarburgHans-Meerwein-Straße35043MarburgGermany
| | - Robert J. Gilliard
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| |
Collapse
|
36
|
Mangan RJ, Davies AR, Hicks J, Sindlinger CP, Thompson AL, Aldridge S. Synthesis, structure and reactivity of terphenyl-substituted germylium-ylidene cations. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Walley JE, Warring LS, Wang G, Dickie DA, Pan S, Frenking G, Gilliard RJ. Carbodicarbene Bismaalkene Cations: Unravelling the Complexities of Carbene versus Carbone in Heavy Pnictogen Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jacob E. Walley
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Levi S. Warring
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Guocang Wang
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Sudip Pan
- Fachbereich Chemie Philipps-Universitt Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| | - Gernot Frenking
- Fachbereich Chemie Philipps-Universitt Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
38
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
39
|
Valentine AJ, Geer AM, Taylor LJ, Teale AM, Wood KE, Williams HEL, Lewis W, Argent SP, McMaster J, Kays DL. Structural and electronic studies of substituted m-terphenyl lithium complexes. Dalton Trans 2021; 50:722-728. [DOI: 10.1039/d0dt03972a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic and computational investigation of the effects of para-substituted m-terphenyl lithium complexes reveals significant electronic differences at the metal centre.
Collapse
Affiliation(s)
| | - Ana M. Geer
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- CSIC
- Universidad de Zaragoza
- 50009 Zaragoza
| | | | - Andrew M. Teale
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Katherine E. Wood
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Huw E. L. Williams
- Centre for Biomolecular Sciences
- University of Nottingham
- University Park
- Nottingham
- UK
| | - William Lewis
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Stephen P. Argent
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Jonathan McMaster
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| | - Deborah L. Kays
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
40
|
Evans MJ, Anker MD, McMullin CL, Rajabi NA, Coles MP. Double insertion of CO2 into an Al–Te multiple bond. Chem Commun (Camb) 2021; 57:2673-2676. [DOI: 10.1039/d0cc07448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two equivalents of CO2 react with a terminal Al–Te bond to form the tellurodicarbonate ligand.
Collapse
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| | | | | | - Martyn P. Coles
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- P.O. Box 600
- Wellington
- New Zealand
| |
Collapse
|
41
|
Himeno R, Ito S, Tanaka K, Chujo Y. Synthesis, crystal structure, solid-state optical property and C–H activation of sp 3 carbon of highly-stable 1-(2′,6′-dimesitylphenyl)-2,3,4,5-tetraphenylborole. NEW J CHEM 2021. [DOI: 10.1039/d1nj04666g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We synthesized a borole having near-infrared absorption and found transformation to the unexpected fused molecule through C–H activation.
Collapse
Affiliation(s)
- Ryoji Himeno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
42
|
Pan Y, Morisako S, Aoyagi S, Sasamori T. Generation of Bis(ferrocenyl)silylenes from Siliranes. Molecules 2020; 25:molecules25245917. [PMID: 33327589 PMCID: PMC7765056 DOI: 10.3390/molecules25245917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Divalent silicon species, the so-called silylenes, represent attractive organosilicon building blocks. Isolable stable silylenes remain scarce, and in most hitherto reported examples, the silicon center is stabilized by electron-donating substituents (e.g., heteroatoms such as nitrogen), which results in electronic perturbation. In order to avoid such electronic perturbation, we have been interested in the chemistry of reactive silylenes with carbon-based substituents such as ferrocenyl groups. Due to the presence of a divalent silicon center and the redox-active transition metal iron, ferrocenylsilylenes can be expected to exhibit interesting redox behavior. Herein, we report the design and synthesis of a bis(ferrocenyl)silirane as a precursor for a bis(ferrocenyl)silylene, which could potentially be used as a building block for redox-active organosilicon compounds. It was found that the isolated bis(ferrocenyl)siliranes could be a bottleable precursor for the bis(ferrocenyl)silylene under mild conditions.
Collapse
Affiliation(s)
- Yang Pan
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
| | - Shogo Morisako
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan;
| | - Shinobu Aoyagi
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
| | - Takahiro Sasamori
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan; (Y.P.); (S.A.)
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan;
- Correspondence: ; Tel.: +81-29-853-4412
| |
Collapse
|
43
|
Xu J, Zheng HF, Liu W, Ding YH. A motif for heteronuclear C[triple bond, length as m-dash]E (E = Si, Ge, Sn, Pb) bonding: Lewis acid-base pair strategy. Phys Chem Chem Phys 2020; 22:26720-26727. [PMID: 33021271 DOI: 10.1039/d0cp02906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and characterization of the heteronuclear group 14 C[triple bond, length as m-dash]E (E = Si, Ge, Sn, Pb) triple bonds have attracted intensive interest in the past few decades. In the current work, utilizing the advantages of N-heterocyclic carbenes (NHCs) and Lewis acid-base pair strategy, we theoretically designed a new class of compounds III-1, i.e., (NHCAR)C[triple bond, length as m-dash]E(Al(C6F5)3). Quantum chemical calculations showed that these singlet compounds possess very favourable isomerization, fragmentation and dimerization stabilities at the B3LYP/def2-TZVPP//B3LYP/def2-SVP level. The calculated bond lengths of CE in III-1 are 1.63 Å for Si, 1.70 Å for Ge, 1.91 Å for Sn and 2.01 Å for Pb, respectively, which are close to or even shorter than the known C[triple bond, length as m-dash]E bond lengths. In addition, the significant Mayer bond order values, two orthogonal π orbitals and one σ orbital between the C and E atoms also indicate the characteristics of triple bonds. Based on several bonding analyses, strong delocalization is found to exist between the C[triple bond, length as m-dash]E core and NHCAR forming a weak C[double bond, length as m-dash]C double bond. Hence, such obtained C[triple bond, length as m-dash]E species also can be described by their resonace structures as cunmulene analogs. In all, III-1 proposed here not only presents a universal C[triple bond, length as m-dash]E motif for all the heavier group 14 elements, but also provides a new strategy for the design and synthesis of heteronuclear group 14 triple bonds in the future.
Collapse
Affiliation(s)
- Jing Xu
- Department of Optical Engineering, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Han Z, Röhner D, Samedov K, Gates DP. Isolable Phosphaalkenes Bearing 2,4,6-Trimethoxyphenyl and 2,6-Bis(trifluoromethyl)phenyl as P-Substituents. J Org Chem 2020; 85:14643-14652. [DOI: 10.1021/acs.joc.0c01514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zeyu Han
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - David Röhner
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Kerim Samedov
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Derek P. Gates
- Chemistry Department, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|
45
|
Siewert JE, Schumann A, Fischer M, Schmidt C, Taeufer T, Hering-Junghans C. Terphenyl(bisamino)phosphines: electron-rich ligands for gold-catalysis. Dalton Trans 2020; 49:12354-12364. [PMID: 32845265 DOI: 10.1039/d0dt02435j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terphenyl(bisamino)phosphines have been identified as effective ligands in cationic gold(i) complexes for the hydroamination of acetylenes. These systems are related to Buchwald phosphines and their steric properties have been evaluated. Effective hydroamination was noted even at low catalyst loadings and a series of cationic gold(i) complexes has been structurally characterized clearly indicating stabilizing effects through gold-arene interactions.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz-Institut für Katalyse e.V. Rostock Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Helmer J, Hepp A, Lips F. An unsaturated amido-substituted six-vertex germanium cluster and its reactions with alkenes and alkynes. Dalton Trans 2020; 49:11843-11850. [PMID: 32869780 DOI: 10.1039/d0dt01984d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unsaturated metalloid germanium cluster Ge6{N(SiMe3)Dipp}42 with two ligand-free germanium atoms and only four amine substituents was obtained starting from the base-coordinated germylene {N(SiMe3)Dipp}GeCl·DMAP 1 in 50% yield (DMAP = 4-(dimethylamino)-pyridine). This cluster reacts as a masked digermyne in cycloadditions with ethylene, diphenylacetylene and 2,3-dimethyl-1,3-butadiene in toluene at 100 °C to yield 3-5.
Collapse
Affiliation(s)
- Joschua Helmer
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, 48149 Münster, Germany.
| | | | | |
Collapse
|
47
|
Abstract
Thermally-robust bismuthanylstibanes are prepared in a one-step, high yield reaction, providing the first examples of neutral Bi-Sb σ-bonds in the solid state. DFT calculations indicate that the bis(silylamino)naphthalene scaffold is well-suited for supporting otherwise labile bonds. The reaction chemistry of the Bi-Sb bond is debuted by showing fission using NH3BH3 and insertion of a sulfur atom, the latter providing the first example of a Bi-S-Sb motif.
Collapse
Affiliation(s)
- Katherine M Marczenko
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.
| | | |
Collapse
|
48
|
Weetman C, Porzelt A, Bag P, Hanusch F, Inoue S. Dialumenes - aryl vs. silyl stabilisation for small molecule activation and catalysis. Chem Sci 2020; 11:4817-4827. [PMID: 34122939 PMCID: PMC8159210 DOI: 10.1039/d0sc01561j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Main group multiple bonds have proven their ability to act as transition metal mimics in the last few decades. However, catalytic application of these species is still in its infancy. Herein we report the second neutral NHC-stabilised dialumene species by use of a supporting aryl ligand (3). Different to the trans-planar silyl-substituted dialumene (3Si), compound 3 features a trans-bent and twisted geometry. The differences between the two dialumenes are explored computationally (using B3LYP-D3/6-311G(d)) as well as experimentally. A high influence of the ligand's steric demand on the structural motif is revealed, giving rise to enhanced reactivity of 3 enabled by a higher flexibility in addition to different polarisation of the aluminium centres. As such, facile activation of dihydrogen is now achievable. The influence of ligand choice is further implicated in two different catalytic reactions; not only is the aryl-stabilised dialumene more catalytically active but the resulting product distributions also differ, thus indicating the likelihood of alternate mechanisms simply through a change of supporting ligand. Ligand controlled reactivity: a trans-bent and twisted geometry enables dihydrogen activation and enhanced catalytic activity for NHC-stabilised dialumenes.![]()
Collapse
Affiliation(s)
- Catherine Weetman
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München Lichtenbergstra βe 4 85748 Garching bei München Germany
| | - Amelie Porzelt
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München Lichtenbergstra βe 4 85748 Garching bei München Germany
| | - Prasenjit Bag
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München Lichtenbergstra βe 4 85748 Garching bei München Germany
| | - Franziska Hanusch
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München Lichtenbergstra βe 4 85748 Garching bei München Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technische Universität München Lichtenbergstra βe 4 85748 Garching bei München Germany
| |
Collapse
|
49
|
Ma M, Shen L, Wang H, Zhao Y, Wu B, Yang XJ. N,N′-Dipp-o-phenylene-diamido Dianion: A Versatile Ligand for Main Group Metal–Metal-Bonded Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meimei Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Lingyi Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Huanhuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|
50
|
Ge S, Zhao J, Ferguson MJ, Ma G, Cavell RG. Rare Carbon-Bridged Bimetallic Lanthanide (Nd or Sm) and Tl(I) Geminal Carbon Derivatives of a Bis(iminophosphorano)methanediide. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, People’s Republic of China
| | - Jianguo Zhao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, Shanxi Province 037009, People’s Republic of China
| | - Michael J. Ferguson
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guibin Ma
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ronald G. Cavell
- Chemistry Department, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|