1
|
Paderina A, Sizova A, Grachova E. Cationic or Neutral: Dependence of Photophysical Properties of Bis-Alkynylphosphonium Pt(II) Complexes on Ancillary Ligand. Chemistry 2024; 30:e202402242. [PMID: 39133568 DOI: 10.1002/chem.202402242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
A series of D-π-A alkynylphosphonium salts with different linker between donor and acceptor groups was used to synthesize two series of trans-bis-alkynylphosphonium Pt(II) complexes with different ancillary ligands (triphenylphosphine, P series, and cyanide, CN series). The nature of the ancillary ligand manages the overall charge and emission properties of the complexes obtained. In addition, the variation of the linker in alkynylphosphonium ligands allows fine-tuning the luminescence wavelength. Dicationic series P is unstable in solution under UV excitation, whereas in the solid state, these complexes are the first example of phosphorescent trans-phosphine-bis-alkynyl Pt(II) compounds. Neutral series CN demonstrates bright emission in solution, including dual emission for 2CN complex with biphenyl linker in alkynylphosphonium ligand. However, in the solid state for the CN series drastic decrease in the emission quantum yield compared to the P series was observed. DFT calculations reveal the complicated emission nature for the both P and CN series with various contributions of 3ILCT, 3LLCT and 3MLCT states. However, in the naphthyl-containing derivatives 3P and 3CN, the dominating 3LC character with some admixture of CT states is postulated.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Anastasia Sizova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| | - Elena Grachova
- Institute of Chemistry, St. Petersburg University, Universitetskii pr. 26, 198504, St. Petersburg, Russian Federation
| |
Collapse
|
2
|
Sun M, Zhou P, Meng S, Zhang P, Sun Y, Zhou C, Su S, He CS, Liu Y, Zhang H, Xiong Z, Lai B. New Insights into Photo-Fenton Chemistry: The Overlooked Role of Excited Iron III Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10817-10827. [PMID: 38832598 DOI: 10.1021/acs.est.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Direct photoreduction of FeIII is a widely recognized route for accelerating FeIII/FeII cycle in photo-Fenton chemistry. However, most of the wavelengths covering the full spectral range are insufficient to supply enough photon energy for the direct reduction process. Herein, the hitherto neglected mechanism of FeIII reduction that the FeIII indirect reduction pathway initiated by light energy-dependent reactivity variation and reactive excited state (ES) was explored. Evolution of excited-state FeIII species (*FeIII) resulting from metal-centered charge excitation (MCCE) of FeIII is experimentally verified using pulsed laser femtosecond transient absorption spectroscopy with UV-vis detection and theoretically verified by quantum chemical calculation. Intense photoinduced intravalence charge transition was observed at λ = 380 and 466 nm, revealing quartet 4MCCE and doublet 2MCCE and their exponential processes. Light energy-dependent variation of *FeIII reactivity was kinetically certified by fitting the apparent rate constant of the radical-chain sequence of photo-Fenton reactions. Covalency is found to compensate for the intravalence charge separation following photoexcitation of the metal center in the MCCE state of Fenton photosensitizer. The *FeIII is established as a model, demonstrating the intravalence hole delocalization in the ES can be leveraged for photo-Fenton reaction or other photocatalytic schemes based on electron transfer chemistry.
Collapse
Affiliation(s)
- Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shuang Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yiming Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Paderina A, Slavova S, Petrovskii S, Grachova E. Alkynylphosphonium Pt(II) Complexes: Synthesis, Characterization, and Features of Photophysical Properties in Solution and in the Solid State. Inorg Chem 2023; 62:18056-18068. [PMID: 37886882 DOI: 10.1021/acs.inorgchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A series of heteroleptic bis-alkynyl-diimine mononuclear Pt(II) complexes with alkynylphosphonium and di-tert-butyl-2,2'-bipyridine (dtbpy) ligands have been prepared and characterized by spectroscopic methods and single-crystal XRD. The Pt(II) complexes obtained in the present study demonstrate triplet emission in solution, which originates from 3MLCT/3LC states where the nature of the π-conjugated linker in the alkynylphosphonium ligand manages the contributions of each transition, and this conclusion is supported by DFT calculations. Additionally, the presence of the phosphonium group connected to alkynyl through the π-conjugated linker enhances nonlinear optical properties of the Pt(II) complexes increasing two-photon absorption cross section up to 400 GM. In the solid state, the Pt(II) complexes demonstrate emission that is attributed to 3MMLCT transitions due to the presence of Pt-Pt metallophilic interactions, and the reversible assembly and disassembly of these interactions by grinding and solvent treatment are responsible for the mechanochromic luminescence. It has been experimentally shown that stimuli-responsive emission of the Pt(II) complexes is the result of a "monomer/dimer" transformation; this conclusion is confirmed by DFT calculations for discrete complexes and different dimers with or without Pt-Pt interactions.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislav Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| |
Collapse
|
4
|
Zhao S, Song J, Wong KMC. Multifunctional bisalkynylplatinum(II) bipyridine complexes with rhodamine-like ligands featuring near-infrared phosphorescence and delayed fluorescence. Chem Commun (Camb) 2023; 59:11272-11275. [PMID: 37664951 DOI: 10.1039/d3cc03775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A series of platinum(II) bipyridine complexes with two rhodamine-like alkynyl (Rhodyne) ligands were developed to show chemo-induced "ON-OFF" switching capabilities with exceptional near-infrared phosphorescence and delayed fluorescence. This study contributes to the design of versatile photosensitizers with multiple functionalities, including metal ion and biomolecule sensing, photodynamic therapy, and optoelectronics.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15001, China
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Jianfeng Song
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| |
Collapse
|
5
|
McCarthy JS, McCormick MJ, Zimmerman JH, Hambrick HR, Thomas WM, McMillen CD, Wagenknecht PS. Role of the Trifluoropropynyl Ligand in Blue-Shifting Charge-Transfer States in Emissive Pt Diimine Complexes and an Investigation into the PMMA-Imposed Rigidoluminescence and Rigidochromism. Inorg Chem 2022; 61:11366-11376. [PMID: 35820113 DOI: 10.1021/acs.inorgchem.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.
Collapse
Affiliation(s)
- Jackson S McCarthy
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Mary Jo McCormick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - John H Zimmerman
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - H Rhodes Hambrick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Wilson M Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
6
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
7
|
Horiuchi S, Hiroiwa H, Sakuda E, Arikawa Y, Umakoshi K. An asymmetric Pt diimine acetylide complex providing unique luminescent multinuclear sandwich complexes with Cu salts. Chem Commun (Camb) 2022; 58:3489-3492. [PMID: 35191432 DOI: 10.1039/d1cc07108d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation and photophysical properties of two types of sandwich complexes supported by asymmetric Pt complex units having two different acetylide moieties are reported. The asymmetric Pt complex unit was obtained via acetylide metathesis reaction between two types of symmetric Pt complexes. The reversible acetylide exchange reaction was effectively suppressed by the incorporation of Cu ions to give unique chiral Pt4Cu3 and achiral Pt2Cu4Br4 sandwich complexes. The sandwich complexes exhibited moderate photoluminescence in the solid state, and their photophysical properties depended on the sandwich structures. These results suggest that asymmetric Pt complex units can give remarkable assembled structures by the concerted effect of labile coordination bonds and weak noncovalent interactions.
Collapse
Affiliation(s)
- Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Hirotaka Hiroiwa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
8
|
Malmberg R, Suter D, Blacque O, Venkatesan K. Monocyclometalated (C N) Gold(III) Metallacycles: Tunable Emission and Singlet Oxygen ( 1 O 2 ) Generation Properties. Chemistry 2021; 27:14410-14417. [PMID: 34406672 DOI: 10.1002/chem.202102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/10/2022]
Abstract
The synthesis, characterization and photoluminescent properties of four cyclometalated (C N)-type gold(III) complexes bearing a bidentate diacetylide ligand, tolan-2,2'-diacetylide (tda), are reported. The complexes exhibit highly tunable excited state properties and show photoluminescence (PL) across the entire visible spectrum from sky-blue (λPL =493 nm) to red (λPL =675 nm) with absolute PL quantum yields (PLQY) of up to 75 % in solution, the highest PLQY found for any monocyclometalated Au(III) complex in solution. As a consequence of the use of the strongly rigidifying diacetylide bidentate ligand, a significant increase in the excited state lifetimes (τ0 =16-258 μs) was found in solution and in thin films. The complexes showed remarkable singlet oxygen generation in aerated solution with absolute singlet oxygen quantum yield (ϕ1Δ ) values reaching up to 7.5×10-5 and singlet oxygen lifetimes (τ0 1Δ ) in the range of 66-95 μs. Furthermore, the radiative and non-radiative rates of singlet oxygen were determined using the ϕ1Δ and τ0 1Δ values and correlations are drawn between the formation of singlet oxygen and its interaction with cyclometalated (C N) gold(III) complexes.
Collapse
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dominik Suter
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.,Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
9
|
Luo Z, Liu Y, Tong KC, Chang XY, To WP, Che CM. Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chem Asian J 2021; 16:2978-2992. [PMID: 34374225 DOI: 10.1002/asia.202100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Indexed: 01/19/2023]
Abstract
A series of platinum(II) complexes supported by terphenyl diacetylide as well as diimine or bis-N-heterocyclic carbene (NHC) ligands have been prepared. The diacetylide ligands adopt a cis coordination mode featuring non-planar terphenyl moieties as revealed by X-ray crystallographic analyses. The electrochemical, photophysical and photochemical properties of these platinum(II) complexes have been investigated. These platinum(II) diimine complexes show broad emission with peak maxima from 566 nm to 706 nm, with two of them having emission quantum yields >60% and lifetimes <2 μs in solutions at room temperature, whereas the platinum(II) diacetylide complexes having bis-N-heterocyclic carbene instead of diimine ligand display photoluminescence with quantum yields of up to 28% in solutions and excited state lifetimes of up to 62 μs at room temperature. Application studies revealed that one of the complexes can catalyze photoinduced aerobic dehydrogenation of alcohols and alkenes, and a relatively non-toxic water-soluble Pt(II) complex displays anti-angiogenic activity.
Collapse
Affiliation(s)
- Zaoli Luo
- Department Key Laboratory of Pesticide & Chemical Biology Ministry of Education and Chemical Biology Center College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.,State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
10
|
Wu YH, Han DM, Sun T, Jing JC. Theoretical exploration on phosphorescent Pt(II) complexes with 2,2′-bipyridine ligand: Influence of isotope effect and ligand modification on OLED quantum yield. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Kazama A, Imai Y, Okayasu Y, Yamada Y, Yuasa J, Aoki S. Design and Synthesis of Cyclometalated Iridium(III) Complexes-Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg Chem 2020; 59:6905-6922. [PMID: 32352765 DOI: 10.1021/acs.inorgchem.0c00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the design and synthesis of triscyclometalated iridium (Ir) complexes that contain aryloxy groups at the end of diamino linkers, which exhibit an extraordinarily long-emission lifetime, and were prepared by regioselective substitution reactions of fac-tris-homoleptic cyclometalated Ir complexes, fac-Ir(tpy)3 (tpy = 2-(4'-tolyl)pyridine). It was found that the Ir(tpy)3 complex, equipped with approximately one to six 6-N,N-dimethylamino-2-naphthoic acid (DMANA) groups through the appropriate alkyl linkers, exhibited remarkably long-emission lifetimes of up to 216 μs in DMSO/H2O at room temperature through a reversible electronic energy transfer effect between the Ir complex core and the organic chromophore moieties; however, under the same conditions, the lifetime of fac-Ir(tpy)3 was 1.4 μs. Regarding the mechanistic aspects, the relationship between the emission lifetimes of the Ir complexes and the structures and numbers of the conjugated chromophores, linker lengths, solvents, positions of the chromophores on the Ir(tpy)3 core, and related items are discussed.
Collapse
Affiliation(s)
- Ayami Kazama
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuki Imai
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Junpei Yuasa
- Department of Applied Chemisty, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
12
|
Yang W, Zhao J, Tang G, Li X, Gurzadyan GG. Direct Observation of Long-Lived Upper Excited Triplet States and Intersystem Crossing in Anthracene-Containing Pt II Complexes. J Phys Chem Lett 2019; 10:7767-7773. [PMID: 31765165 DOI: 10.1021/acs.jpclett.9b03088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exceptionally long-lived T2 states (7 ns) were observed with the N^N PtII bisacetylide complex (Pt-1) and trans-bis(phosphine) PtII bisacetylide complexes (Pt-2, Pt-3) containing anthryl acetylide ligands. For Pt-1, fluorescence of the anthryl moiety (An) was quenched and phosphorescence was observed. Under 350 nm excitation, the upper long-lived triplet state T2 (3An) was populated via ultrafast intersystem crossing (ISC) of S1 (1An) → T2 (3An) (within 0.2 ps). Interestingly, Pt-3, after population of the S1 state, emits strong fluorescence (ΦF = 89%); the poor ISC is due to the high-lying T2 (3An, 3.36 eV) versus S1 (1An, 2.55 eV) state and the large energy gap between S1 (1An, 2.55 eV) and T1 (3An, 1.32 eV) states. The population of the upper excited state S2 (1LLCT, 3.49 eV) turns to an efficient S2 → T2 → T1, and ISC yield increases by 55% compared with S0 → S1 excitation. These results present new in-depth insights into fundamental photochemistry of upper excited states.
Collapse
Affiliation(s)
- Wenbo Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , People's Republic of China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , People's Republic of China
| | - Geliang Tang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , People's Republic of China
| | - Xiaoxin Li
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals , Dalian University of Technology , F-209 West Campus, 2 Ling Gong Road , Dalian 116024 , People's Republic of China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals , Dalian University of Technology , F-209 West Campus, 2 Ling Gong Road , Dalian 116024 , People's Republic of China
| |
Collapse
|
13
|
Favale JM, Danilov EO, Yarnell JE, Castellano FN. Photophysical Processes in Rhenium(I) Diiminetricarbonyl Arylisocyanides Featuring Three Interacting Triplet Excited States. Inorg Chem 2019; 58:8750-8762. [DOI: 10.1021/acs.inorgchem.9b01155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joseph M. Favale
- Department of Chemistry, North Carolina State University (NCSU), Raleigh, North Carolina 27695-8204, United States
| | - Evgeny O. Danilov
- Department of Chemistry, North Carolina State University (NCSU), Raleigh, North Carolina 27695-8204, United States
| | - James E. Yarnell
- Department of Chemistry, North Carolina State University (NCSU), Raleigh, North Carolina 27695-8204, United States
| | - Felix N. Castellano
- Department of Chemistry, North Carolina State University (NCSU), Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
14
|
Zhong F, Zhao J, Hayvali M, Elmali A, Karatay A. Effect of Molecular Conformation Restriction on the Photophysical Properties of N^N Platinum(II) Bis(ethynylnaphthalimide) Complexes Showing Close-Lying 3MLCT and 3LE Excited States. Inorg Chem 2019; 58:1850-1861. [PMID: 30672269 DOI: 10.1021/acs.inorgchem.8b02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using naphthalimide (NI), complexes (Pt-PhNI and Pt-PhMeNI) based on the N^N platinum(II) bis(phenylacetylide) coordination framework were prepared, in which there are two close-lying triplet states, i.e., the metal-to-ligand-charge-transfer (3MLCT) and the NI localized emissive state (3LE). Pt-PhNI has better electronic communication between the Pt coordination center and the NI moiety, whereas in Pt-PhMeNI, they are more isolated by orthogonal geometry. For Pt-PhMeNI, the S0 → 1MLCT and S0 → 1LE absorption bands are separated by 5655 cm-1, while they are more overlapped in Pt-PhNI. The 3MLCT → S0 and 3LE → S0 dual phosphorescence emissions were observed for both Pt-PhNI (in toluene) and Pt-PhMeNI (in benzonitrile). The molecular conformation tunes the 3MLCT/3LE state population ratio, and the orthogonal geometry makes the 3LE state in Pt-PhMeNI basically a dark state (in toluene). Switching of the relative energy levels of the 3MLCT/3LE states by variation of the solvent polarity and temperature was achieved. For Pt-PhMeNI, the energy level of 3MLCT state is higher in a polar solvent; thus, the 3MLCT emission decreases, while the phosphorescence lifetime is prolonged from 9.5 μs (in toluene) to 58 μs (in benzonitrile) because of the different equilibria with the nonemissive 3LE state. Conversely, increasing the temperature enhances the upward transition from the nonemissive 3LE state to the emissive 3MLCT state; as such, the phosphorescence of Pt-PhMeNI was intensified at higher temperature (which is unusual), and the phosphorescence lifetime decreased from 58 μs (298 K) to ca. 5 μs (348 K). The ultrafast intersystem crossing (ca. 0.5 ps) and intramolecular triplet-triplet energy transfer (3-11 ps) were studied by femtosecond transient absorption spectroscopy. These results are useful for an in-depth understanding of the photophysics of multichromophore transition-metal complexes and for the design of external stimuli-responsive sensing materials, for instance, temperature or microenvironment sensing materials.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | | | | | | |
Collapse
|
15
|
Yarnell JE, Chakraborty A, Myahkostupov M, Wright KM, Castellano FN. Long-lived triplet excited state in a platinum(ii) perylene monoimide complex. Dalton Trans 2018; 47:15071-15081. [PMID: 30303214 DOI: 10.1039/c8dt02496k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the synthesis and solution based photophysical properties of a new Pt(ii)-terpyridine complex coupled to a perylene monoimide (PMI) chromophoric unit through an acetylene linkage. This structural arrangement resulted in quantitative quenching of the highly fluorescent PMI chromophore by introducing metal character into the lowest energy singlet state, thereby leading to the formation of a long-lived PMI-ligand localized triplet excited state (τ = 8.4 μs). Even though the phosphorescence from this triplet state was not observed, highly efficient quenching of this excited state by dissolved oxygen and the observation of singlet oxygen photoluminescence in the near-IR at 1270 nm initially pointed towards triplet excited state character. Additionally, the coincidence of the excited state absorbance difference spectra from the sensitized PMI ligand using a triplet donor and the Pt-PMI complex provided strong evidence for this triplet state assignment, which was further supported by TD-DFT calculations.
Collapse
Affiliation(s)
- James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | | | | | | |
Collapse
|
16
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
17
|
Ai Y, Ng M, Hong EY, Chan AK, Wei Z, Li Y, Yam VW. Solvent‐Induced and Temperature‐Promoted Aggregation of Bipyridine Platinum(II) Triangular Metallacycles and Their Near‐Infrared Emissive Behaviors. Chemistry 2018; 24:11611-11618. [DOI: 10.1002/chem.201802499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Maggie Ng
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Eugene Yau‐Hin Hong
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Alan Kwun‐Wa Chan
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| | - Zhang‐Wen Wei
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yongguang Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
- Institute of Molecular Functional Materials, Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong Hong Kong
| |
Collapse
|
18
|
Archer SA, Keane T, Delor M, Bevon E, Auty AJ, Chekulaev D, Sazanovich IV, Towrie M, Meijer AJHM, Weinstein JA. Directly Coupled Versus Spectator Linkers on Diimine Pt II Acetylides-Change the Structure, Keep the Function? Chemistry 2017; 23:18239-18251. [PMID: 29029366 DOI: 10.1002/chem.201703989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/09/2022]
Abstract
Modification of light-harvesting units with anchoring groups for surface attachment often compromises light-harnessing properties. Herein, a series of [donor-acceptor-anchor] platinum(II) diimine (bis-)acetylides was developed in order to systematically compare the effect of conjugated versus electronically decoupled modes of attachment of protected anchoring groups on the photophysical properties of light-harvesting units. The first examples of "decoupled" phosphonate diimine PtII complexes are reported, and their properties are compared and contrasted to those of carboxylate analogues studied by a diversity of methods. Ultrafast time-resolved IR and transient absorption spectroscopy revealed that all complexes have a charge-transfer (CT) lowest excited state with lifetimes between 2 and 14 ns. Vibrational signatures and dynamics of CT states were identified; the assignment of electronic states and their vibrational origin was aided by TDDFT calculations. Ultrafast energy redistribution accompanied by structural changes was directly captured in the CT states. A significant difference between the structures of the electronic ground and CT excited states, as well as differences in the structural reorganisation in the complexes bearing directly attached or electronically decoupled anchoring groups, was discovered. This work demonstrates that decoupling of the anchoring group from the light-harvesting core by a saturated spacer is an easy approach to combine surface attachment with high reduction potential and ten times longer lifetime of the CT excited state of the light-absorbing unit, and retain electron-transfer photoreactivity essential for light-harvesting applications.
Collapse
Affiliation(s)
- Stuart A Archer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Theo Keane
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Milan Delor
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.,University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elizabeth Bevon
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Alexander J Auty
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Igor V Sazanovich
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.,Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
| | - Anthony J H M Meijer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK.,Department of Chemistry, Moscow Lomonosov State University, Russia
| |
Collapse
|
19
|
Hebenbrock M, Stegemann L, Kösters J, Doltsinis NL, Müller J, Strassert CA. Phosphorescent Pt(ii) complexes bearing a monoanionic C^N^N luminophore and tunable ancillary ligands. Dalton Trans 2017; 46:3160-3169. [DOI: 10.1039/c7dt00393e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new monoanionic pincer luminophore is presented, yielding phosphorescent Pt(ii) complexes bearing a neutral 1,2,3-triazole ring introduced via click chemistry. The overall charge, intermolecular interactions and excited state properties can be manipulated and controlled.
Collapse
Affiliation(s)
- Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Linda Stegemann
- Physikalisches Institut and Center for Nanotechnology
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Cristian A. Strassert
- Physikalisches Institut and Center for Nanotechnology
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|
20
|
Yang W, Zhao J. Photophysical Properties of Visible-Light-Harvesting PtIIBis(acetylide) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenbo Yang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| |
Collapse
|
21
|
Cao Y, Wolf MO, Patrick BO. Dual-Emissive Platinum(II) Metallacycles with Thiophene-Containing Bisacetylide Ligands. Inorg Chem 2016; 55:8985-93. [DOI: 10.1021/acs.inorgchem.6b01464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Cao
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O. Patrick
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
22
|
Na H, Maity A, Teets TS. Postsynthetic Systematic Electronic Tuning of Organoplatinum Photosensitizers via Secondary Coordination Sphere Interactions. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hanah Na
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Ayan Maity
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
23
|
Synthesis, photophysical characterization and DFT studies on fluorine-free deep-blue emitting Pt(II) complexes. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2016. [DOI: 10.1515/znb-2015-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Herein we show that cyclometalated, square planar Pt(II) complexes can be tuned to achieve deep-blue phosphorescent emitters. For this purpose, the introduction of an electron-donating moiety on two different bidentate NˆN and NˆO fluorine-free luminophores, namely 2-(1H-tetrazol-5-yl)pyridine and picolinic acid, was carried out. The remaining two coordination sites of the Pt(II) metal center were filled by a sterically demanding cyclometallating unit, namely a tertiary phosphite CˆP ligand. This ancillary ligand avoids aggregation and provides high solubility in organic solvents. Based on this approach, we were able to blue-shift the emission of the complexes down to 411 nm, and to achieve a maximal photoluminescence quantum yield of 56% in the solid state.
Collapse
|
24
|
Biswas S, Sarkar D, Kundu S, Roy P, Mondal TK. Rhodium(III)-triphenylphosphine complex with NNS donor thioether containing Schiff base ligand: Synthesis, spectra, electrochemistry and catalytic activity. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Zhong F, Karatay A, Zhao L, Zhao J, He C, Zhang C, Yaglioglu HG, Elmali A, Küçüköz B, Hayvali M. Broad-Band N∧N Pt(II) Bisacetylide Visible Light Harvesting Complex with Heteroleptic Bodipy Acetylide Ligands. Inorg Chem 2015; 54:7803-17. [PMID: 26230144 DOI: 10.1021/acs.inorgchem.5b00822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangfang Zhong
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | - Liang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Cheng He
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Caishun Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | | | | | | |
Collapse
|
26
|
Stengel I, Götz G, Weil M, Bäuerle P. A Dinuclear (bpy)PtII-Decorated Crownophane. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Fan Y, Zhao D. Triangular platinum(II) metallacycles: syntheses, photophysics, and nonlinear optics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:6162-6171. [PMID: 25738555 DOI: 10.1021/am509074m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three triangular platinum(II) diimine metallacycles incorporating large cyclic oligo(phenylene-ethynylene) (OPE) bisacetylide ligands are synthesized, and their photophysical properties are studied. Two types of triplet excited states with ligand/metal-to-ligand charge-transfer and acetylide-ligand-centered characteristics respectively, are exhibited by these complexes depending on the size (conjugation length) and electronic features of the cyclic OPE ligands. When the energy levels of the two excited states are close to each other, the lowest triplet state is found to switch between the two in varied solvents, resulting from their relative energy inversion induced by solvent polarity change. Density functional theory and time-dependent density functional theory calculations provide corroborative evidence for such experimental conclusions. More importantly, the designed metallacycles show impressive two-photon absorption (2PA) and two-photon excitation phosphorescing abilities, and the 2PA cross section reaches 1020 GM at 680 nm and 670 GM at 1040 nm by two different metallacycles. Additionally, pronounced reverse saturable absorptions are observed with these metallacycles by virtue of their strong transient triplet-state absorptions.
Collapse
Affiliation(s)
- Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, Center for Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, Center for Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Sanning J, Ewen PR, Stegemann L, Schmidt J, Daniliuc CG, Koch T, Doltsinis NL, Wegner D, Strassert CA. Rastertunnelspektroskopisch gesteuertes Design maßgeschneiderter tiefblauer Triplettemitter. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201407439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Sanning J, Ewen PR, Stegemann L, Schmidt J, Daniliuc CG, Koch T, Doltsinis NL, Wegner D, Strassert CA. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. Angew Chem Int Ed Engl 2014; 54:786-91. [DOI: 10.1002/anie.201407439] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 01/16/2023]
|
30
|
Howarth AJ, Davies DL, Lelj F, Wolf MO, Patrick BO. Tuning the emission lifetime in bis-cyclometalated iridium(III) complexes bearing iminopyrene ligands. Inorg Chem 2014; 53:11882-9. [PMID: 25347609 DOI: 10.1021/ic501032t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bis-cyclometalated Ir(III) complexes with the general formula Ir(ppz)2(X^NPyrene), where ppz = 1-phenylpyrazole and X^NPyrene is a bidentate chelate with X = N or O, are reported. Modifications on the ancillary ligand containing pyrene drastically affect the emission lifetimes observed (0.329 to 104 μs). Extended emission lifetimes in these complexes compared to model complexes result from reversible electronic energy transfer or the observation of dual emission containing along-lived pyrene ligand-centered triplet ((3)LC) component. A combination of steady-state and time-resolved spectroscopic techniques are used to observe reversible electronic energy transfer in solution between the iridium core and pyrene moiety in the complex [Ir(ppz)2(NMe^NCH2Pyr)][PF6] (2), where NMe^NCH2Pyr = N-(pyren-1-ylmethyl)-1-(pyridin-2-yl)ethaneimine. Studies on [Ir(ppz)2(NMe^NCH2Pyr)][PF6] in a poly(methyl methacrylate) (PMMA) film reveal that reversible energy transfer is no longer effective, and instead, dual emission with a long-lived (3)LC component from pyrene is observed. Dual emission is observed in additional cyclometalated iridium complexes bearing pyrene-containing ancillary ligands N^NPyrene and O^NPyrene when the complexes are dispersed in a PMMA film.
Collapse
Affiliation(s)
- Ashlee J Howarth
- Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | |
Collapse
|
31
|
Stengel I, Strassert CA, De Cola L, Bäuerle P. Tracking Intramolecular Interactions in Flexibly Linked Binuclear Platinum(II) Complexes. Organometallics 2014. [DOI: 10.1021/om4004237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ilona Stengel
- Institute of Organic Chemistry II and Advanced
Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Cristian A. Strassert
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Center for Nanotechnology and Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse
11, 48149 Münster, Germany
| | - Luisa De Cola
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Center for Nanotechnology and Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse
11, 48149 Münster, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced
Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
32
|
Suneesh CV, Balan B, Ozawa H, Nakamura Y, Katayama T, Muramatsu M, Nagasawa Y, Miyasaka H, Sakai K. Mechanistic studies of photoinduced intramolecular and intermolecular electron transfer processes in RuPt-centred photo-hydrogen-evolving molecular devices. Phys Chem Chem Phys 2014; 16:1607-16. [DOI: 10.1039/c3cp54630f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Chirdon DN, McCusker CE, Castellano FN, Bernhard S. Tracking of Tuning Effects in Bis-Cyclometalated Iridium Complexes: A Combined Time Resolved Infrared Spectroscopy, Electrochemical, and Computational Study. Inorg Chem 2013; 52:8795-804. [DOI: 10.1021/ic401009q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Danielle N. Chirdon
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Catherine E. McCusker
- Department of Chemistry and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Felix N. Castellano
- Department of Chemistry and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
34
|
Zhao SS, Shi LL, Su ZM, Geng Y, Zhao L. TD-DFT studies on electronic and spectral properties of platinum(II) complexes with phenol and pyridine groups. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2138-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Baker GA, Rachford AA, Castellano FN, Baker SN. Ranking Solvent Interactions and Dielectric Constants with [Pt(mesBIAN)(tda)]: A Cautionary Tale for Polarity Determinations in Ionic Liquids. Chemphyschem 2013; 14:1025-30. [DOI: 10.1002/cphc.201200981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Indexed: 11/06/2022]
|
36
|
Vacher A, Barrière F, Camerel F, Bergamini JF, Roisnel T, Lorcy D. Cis and trans-bis(tetrathiafulvalene-acetylide) platinum(ii) complexes: syntheses, crystal structures, and influence of the ancillary ligands on their electronic properties. Dalton Trans 2013; 42:383-94. [DOI: 10.1039/c2dt31686b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Electrode-assisted catalytic water oxidation by a flavin derivative. Nat Chem 2012; 4:794-801. [DOI: 10.1038/nchem.1439] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 07/17/2012] [Indexed: 01/30/2023]
|
38
|
Room temperature long-lived triplet excited state of fluorescein in N^N Pt(II) bisacetylide complex and its applications for triplet–triplet annihilation based upconversions. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Prusakova V, McCusker CE, Castellano FN. Ligand-Localized Triplet-State Photophysics in a Platinum(II) Terpyridyl Perylenediimideacetylide. Inorg Chem 2012; 51:8589-98. [DOI: 10.1021/ic301169t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Valentina Prusakova
- Department of Chemistry
and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Catherine E. McCusker
- Department of Chemistry
and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Felix N. Castellano
- Department of Chemistry
and Center for Photochemical
Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
40
|
Stengel I, Strassert CA, Plummer EA, Chien CH, De Cola L, Bäuerle P. Postfunctionalization of Luminescent Bipyridine PtII Bisacetylides by Click Chemistry. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Huang L, Zeng L, Guo H, Wu W, Wu W, Ji S, Zhao J. Room-Temperature Long-Lived 3IL Excited State of Rhodamine in an NN PtII Bis(acetylide) Complex with Intense Visible-Light Absorption. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100777] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Qu L, Dong X, Zhong C, Liu Z, Qin J. Synthesis and photophysical properties of two Platinum(II) diimine diacetylides – A new approach for fluorescent two-photon absorption materials from organometallics. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.07.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Li Y, Tam AYY, Wong KMC, Li W, Wu L, Yam VWW. Synthesis, Characterization, and the Photochromic, Luminescence, Metallogelation and Liquid-Crystalline Properties of Multifunctional Platinum(II) Bipyridine Complexes. Chemistry 2011; 17:8048-59. [DOI: 10.1002/chem.201003738] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/02/2011] [Indexed: 11/12/2022]
|
44
|
Wu SH, Burkhardt SE, Yao J, Zhong YW, Abruña HD. Near-Infrared Absorbing and Emitting RuII−PtII Heterodimetallic Complexes of Dpdpz (Dpdpz = 2,3-Di(2-pyridyl)-5,6-diphenylpyrazine). Inorg Chem 2011; 50:3959-69. [DOI: 10.1021/ic1023696] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Si-Hai Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Stephen E. Burkhardt
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Héctor D. Abruña
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
45
|
Sun H, Guo H, Wu W, Liu X, Zhao J. Coumarin phosphorescence observed with N⁁N Pt(ii) bisacetylide complex and its applications for luminescent oxygen sensing and triplet–triplet-annihilation based upconversion. Dalton Trans 2011; 40:7834-41. [DOI: 10.1039/c1dt10490j] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Liu Y, Wu W, Zhao J, Zhang X, Guo H. Accessing the long-lived near-IR-emissive triplet excited state in naphthalenediimide with light-harvesting diimine platinum(ii) bisacetylide complex and its application for upconversion. Dalton Trans 2011; 40:9085-9. [DOI: 10.1039/c1dt10679a] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Canty AJ, Sharma M. η1-Alkynyl Chemistry for the Higher Oxidation States of Palladium and Platinum. TOP ORGANOMETAL CHEM 2011. [DOI: 10.1007/978-3-642-17429-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Sichula V, Hu Y, Mirzakulova E, Manzer SF, Vyas S, Hadad CM, Glusac KD. Mechanism of N(5)-Ethyl-flavinium Cation Formation Upon Electrochemical Oxidation of N(5)-Ethyl-4a-hydroxyflavin Pseudobase. J Phys Chem B 2010; 114:9452-61. [PMID: 20597524 DOI: 10.1021/jp104443y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincent Sichula
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Ying Hu
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Ekaterina Mirzakulova
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Samuel F. Manzer
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Shubham Vyas
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Christopher M. Hadad
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Ksenija D. Glusac
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, and Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
49
|
Wang X, Goeb S, Ji Z, Castellano FN. Excited State Absorption Properties of Pt(II) Terpyridyl Complexes Bearing π-Conjugated Arylacetylides. J Phys Chem B 2010; 114:14440-9. [DOI: 10.1021/jp101528z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xianghuai Wang
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Sébastien Goeb
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Zhiqiang Ji
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Felix N. Castellano
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| |
Collapse
|
50
|
Muro ML, Diring S, Wang X, Ziessel R, Castellano FN. Photophysics in Platinum(II) Bipyridylacetylides. Inorg Chem 2009; 48:11533-42. [DOI: 10.1021/ic901036a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maria L. Muro
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Stéphane Diring
- Laboratoire de Chimie Organique et Spectroscopies Avancées, associé au Centre National de la Recherche Scientifique (LCM-CNRS), Ecole de Chimie, Polymères, Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Xianghuai Wang
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| | - Raymond Ziessel
- Laboratoire de Chimie Organique et Spectroscopies Avancées, associé au Centre National de la Recherche Scientifique (LCM-CNRS), Ecole de Chimie, Polymères, Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Felix N. Castellano
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403
| |
Collapse
|