1
|
Prakash D, Xiong J, Chauhan SS, Walters KA, Kruse H, Yennawar N, Golbeck JH, Guo Y, Ferry JG. Catalytic Activity of the Archetype from Group 4 of the FTR-like Ferredoxin:Thioredoxin Reductase Family Is Regulated by Unique S = 7/2 and S = 1/2 [4Fe-4S] Clusters. Biochemistry 2024; 63:1588-1598. [PMID: 38817151 PMCID: PMC11234629 DOI: 10.1021/acs.biochem.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain Archaea (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6. Herein, the group 4 archetype (AFTR) from Methanosarcina acetivorans was characterized to advance understanding of the family and TrxR/Trx systems in methanogens. The modeled structure of AFTR, together with EPR and Mössbauer spectroscopies, supports a catalytic mechanism similar to plant-type FTR and FDR, albeit with important exceptions. EPR spectroscopy of reduced AFTR identified a transient [4Fe-4S]1+ cluster exhibiting a mixture of S = 7/2 and typical S = 1/2 signals, although rare for proteins containing [4Fe-4S] clusters, it is most likely the on-pathway intermediate in the disulfide reduction. Furthermore, an active site histidine equivalent to residues essential for the activity of plant-type FTR and FDR was found dispensable for AFTR. Finally, a unique thioredoxin system was reconstituted from AFTR, ferredoxin, and Trx2 from M. acetivorans, for which specialized target proteins were identified that are essential for growth and other diverse metabolisms.
Collapse
Affiliation(s)
- Divya Prakash
- School of Chemical and Biomolecular Sciences, Southern Illinois University-Carbondale, Carbondale, IL-62901, USA
| | - Jin Xiong
- Department of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Shikha S. Chauhan
- School of Chemical and Biomolecular Sciences, Southern Illinois University-Carbondale, Carbondale, IL-62901, USA
| | - Karim A. Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hannah Kruse
- School of Chemical and Biomolecular Sciences, Southern Illinois University-Carbondale, Carbondale, IL-62901, USA
| | - Neela Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - John H. Golbeck
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yisong Guo
- Department of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Brown AC, Suess DLM. An Iron-Sulfur Cluster with a Highly Pyramidalized Three-Coordinate Iron Center and a Negligible Affinity for Dinitrogen. J Am Chem Soc 2023; 145:20088-20096. [PMID: 37656961 PMCID: PMC10824254 DOI: 10.1021/jacs.3c07677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Attempts to generate open coordination sites for N2 binding at synthetic Fe-S clusters often instead result in cluster oligomerization. Recently, it was shown for Mo-Fe-S clusters that such oligomerization reactions can be prevented through the use of sterically protective supporting ligands, thereby enabling N2 complex formation. Here, this strategy is extended to Fe-only Fe-S clusters. One-electron reduction of (IMes)3Fe4S4Cl (IMes = 1,3-dimesitylimidazol-2-ylidene) forms the transiently stable edge-bridged double cubane (IMes)6Fe8S8, which loses two IMes ligands to form the face-bridged double-cubane, (IMes)4Fe8S8. The finding that the three supporting IMes ligands do not confer sufficient protection to curtail cluster oligomerization prompted the design of a new N-heterocyclic carbene, SIArMe,iPr (1,3-bis(3,5-diisopropyl-2,6-dimethylphenyl)-2-imidazolidinylidene; abbreviated as SIAr), that features bulky groups strategically placed in remote positions. When the reduction of (SIAr)3Fe4S4Cl or [(SIAr)3Fe4S4(THF)]+ is conducted in the presence of SIAr, the formation of (SIAr)4Fe8S8 is indeed suppressed, permitting characterization of the reduced [Fe4S4]0 product. Surprisingly, rather than being an N2 complex, the product is simply (SIAr)3Fe4S4: a cluster with a three-coordinate Fe site that adopts an unusually pyramidalized geometry. Although (SIAr)3Fe4S4 does not coordinate N2 to any appreciable extent under the surveyed conditions, it does bind CO to form (SIAr)3Fe4S4(CO). This finding demonstates that the binding pocket at the unique Fe is not too small for N2; instead, the exceptionally weak affinity for N2 can be attributed to weak Fe-N2 bonding. The differences in the N2 coordination chemistry between sterically protected Mo-Fe-S clusters and Fe-only Fe-S clusters are discussed.
Collapse
Affiliation(s)
- Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
4
|
Abstract
Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.
Collapse
|
5
|
Ye M, Brown AC, Suess DLM. Reversible Alkyl-Group Migration between Iron and Sulfur in [Fe 4S 4] Clusters. J Am Chem Soc 2022; 144:13184-13195. [PMID: 35830717 PMCID: PMC9526375 DOI: 10.1021/jacs.2c03195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic [Fe4S4] clusters with Fe-R groups (R = alkyl/benzyl) are shown to release organic radicals on an [Fe4S4]3+-R/[Fe4S4]2+ redox couple, the same that has been proposed for a radical-generating intermediate in the superfamily of radical S-adenosyl-l-methionine (SAM) enzymes. In attempts to trap the immediate precursor to radical generation, a species in which the alkyl group has migrated from Fe to S is instead isolated. This S-alkylated cluster is a structurally faithful model of intermediates proposed in a variety of functionally diverse S transferase enzymes and features an "[Fe4S4]+-like" core that exists as a physical mixture of S = 1/2 and 7/2 states. The latter corresponds to an unusual, valence-localized electronic structure as indicated by distortions in its geometric structure and supported by computational analysis. Fe-to-S alkyl group migration is (electro)chemically reversible, and the preference for Fe vs S alkylation is dictated by the redox state of the cluster. These findings link the organoiron and organosulfur chemistry of Fe-S clusters and are discussed in the context of metalloenzymes that are proposed to make and break Fe-S and/or C-S bonds during catalysis.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra C. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L. M. Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Brown AC, Thompson NB, Suess DLM. Evidence for Low-Valent Electronic Configurations in Iron-Sulfur Clusters. J Am Chem Soc 2022; 144:9066-9073. [PMID: 35575703 DOI: 10.1021/jacs.2c01872] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although biological iron-sulfur (Fe-S) clusters perform some of the most difficult redox reactions in nature, they are thought to be composed exclusively of Fe2+ and Fe3+ ions, as well as mixed-valent pairs with average oxidation states of Fe2.5+. We herein show that Fe-S clusters formally composed of these valences can access a wider range of electronic configurations─in particular, those featuring low-valent Fe1+ centers. We demonstrate that CO binding to a synthetic [Fe4S4]0 cluster supported by N-heterocyclic carbene ligands induces the generation of Fe1+ centers via intracluster electron transfer, wherein a neighboring pair of Fe2+ sites reduces the CO-bound site to a low-valent Fe1+ state. Similarly, CO binding to an [Fe4S4]+ cluster induces electron delocalization with a neighboring Fe site to form a mixed-valent Fe1.5+Fe2.5+ pair in which the CO-bound site adopts partial low-valent character. These low-valent configurations engender remarkable C-O bond activation without having to traverse highly negative and physiologically inaccessible [Fe4S4]0/[Fe4S4]- redox couples.
Collapse
Affiliation(s)
- Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niklas B Thompson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Balch A, Everett G, Power PP, Armstrong WH, Kovacs J, Stack TDP, Donahue JP, Gray TG, Groysman S, Deng L. Richard Hadley Holm: A Remembrance and A Tribute. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1971203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alan Balch
- Department of Chemistry, University of California, Davis, California, USA
| | - Grover Everett
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Philip P. Power
- Department of Chemistry, University of California, Davis, California, USA
| | | | - Julie Kovacs
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - T. D. P. Stack
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - James P. Donahue
- Department of Chemistry, Tulane University, New Orleans, Louisiana, USA
| | - Thomas G. Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Li Manni G, Dobrautz W, Bogdanov NA, Guther K, Alavi A. Resolution of Low-Energy States in Spin-Exchange Transition-Metal Clusters: Case Study of Singlet States in [Fe(III) 4S 4] Cubanes. J Phys Chem A 2021; 125:4727-4740. [PMID: 34048648 PMCID: PMC8201447 DOI: 10.1021/acs.jpca.1c00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Polynuclear transition-metal
(PNTM) clusters owe their catalytic
activity to numerous energetically low-lying spin states and stable
oxidation states. The characterization of their electronic structure
represents one of the greatest challenges of modern chemistry. We
propose a theoretical framework that enables the resolution of targeted
electronic states with ease and apply it to two [Fe(III)4S4] cubanes. Through direct access to their many-body
wave functions, we identify important correlation mechanisms and their
interplay with the geometrical distortions observed in these clusters,
which are core properties in understanding their catalytic activity.
The simulated magnetic coupling constants predicted by our strategy
allow us to make qualitative connections between spin interactions
and geometrical distortions, demonstrating its predictive power. Moreover,
despite its simplicity, the strategy provides magnetic coupling constants
in good agreement with the available experimental ones. The complexes
are intrinsically frustrated anti-ferromagnets, and the obtained spin
structures together with the geometrical distortions represent two
possible ways to release spin frustration (spin-driven Jahn–Teller
distortion). Our paradigm provides a simple, yet rigorous, route to
uncover the electronic structure of PNTM clusters and may be applied
to a wide variety of such clusters.
Collapse
Affiliation(s)
- Giovanni Li Manni
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Werner Dobrautz
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Nikolay A Bogdanov
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Kai Guther
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ali Alavi
- Department of Electronic Structure Theory, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
10
|
Abstract
Nitrogenase is the only enzyme capable of reducing N2 to NH3. This challenging reaction requires the coordinated transfer of multiple electrons from the reductase, Fe-protein, to the catalytic component, MoFe-protein, in an ATP-dependent fashion. In the last two decades, there have been significant advances in our understanding of how nitrogenase orchestrates electron transfer (ET) from the Fe-protein to the catalytic site of MoFe-protein and how energy from ATP hydrolysis transduces the ET processes. In this review, we summarize these advances, with focus on the structural and thermodynamic redox properties of nitrogenase component proteins and their complexes, as well as on new insights regarding the mechanism of ET reactions during catalysis and how they are coupled to ATP hydrolysis. We also discuss recently developed chemical, photochemical, and electrochemical methods for uncoupling substrate reduction from ATP hydrolysis, which may provide new avenues for studying the catalytic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Hannah L Rutledge
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
11
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
12
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Arnett CH, Kaiser JT, Agapie T. Remote Ligand Modifications Tune Electronic Distribution and Reactivity in Site-Differentiated, High-Spin Iron Clusters: Flipping Scaling Relationships. Inorg Chem 2019; 58:15971-15982. [PMID: 31738534 DOI: 10.1021/acs.inorgchem.9b02470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, characterization, and reactivity of [LFe3O(RArIm)3Fe][OTf]2, the first Hammett series of a site-differentiated cluster. The cluster reduction potentials and CO stretching frequencies shift as expected on the basis of the electronic properties of the ligand: electron-donating substituents result in more reducing clusters and weaker C-O bonds. However, unusual trends in the energetics of their two sequential CO binding events with the substituent σp parameters are observed. Specifically, introduction of electron-donating substituents suppresses the first CO binding event (ΔΔH by as much as 7.9 kcal mol-1) but enhances the second (ΔΔH by as much as 1.9 kcal mol-1). X-ray crystallography, including multiple-wavelength anomalous diffraction, Mössbauer spectroscopy, and SQUID magnetometry, reveal that these substituent effects result from changes in the energetic penalty associated with electronic redistribution within the cluster, which occurs during the CO binding event.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jens T Kaiser
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
14
|
Smith CA, Narouz MR, Lummis PA, Singh I, Nazemi A, Li CH, Crudden CM. N-Heterocyclic Carbenes in Materials Chemistry. Chem Rev 2019; 119:4986-5056. [PMID: 30938514 DOI: 10.1021/acs.chemrev.8b00514] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have become one of the most widely studied class of ligands in molecular chemistry and have found applications in fields as varied as catalysis, the stabilization of reactive molecular fragments, and biochemistry. More recently, NHCs have found applications in materials chemistry and have allowed for the functionalization of surfaces, polymers, nanoparticles, and discrete, well-defined clusters. In this review, we provide an in-depth look at recent advances in the use of NHCs for the development of functional materials.
Collapse
Affiliation(s)
- Christene A Smith
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Mina R Narouz
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Paul A Lummis
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ishwar Singh
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Ali Nazemi
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Chien-Hung Li
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6
| | - Cathleen M Crudden
- Department of Chemistry , Queen's University , 90 Bader Lane , Kingston , Ontario , Canada , K7L 3N6.,Institute of Transformative Bio-Molecules, ITbM-WPI , Nagoya University , Nagoya , Chikusa 464-8601 , Japan
| |
Collapse
|
15
|
Abstract
Although the nitrogen-fixing enzyme nitrogenase critically requires both a reductase component (Fe protein) and a catalytic component, considerably more work has focused on the latter species. Properties of the catalytic component, which contains two highly complex metallocofactors and catalyzes the reduction of N2 into ammonia, understandably making it the “star” of nitrogenase. However, as its obligate redox partner, the Fe protein is a workhorse with multiple supporting roles in both cofactor maturation and catalysis. In particular, the nitrogenase Fe protein utilizes nucleotide binding and hydrolysis in concert with electron transfer to accomplish several tasks of critical importance. Aside from the ATP-coupled transfer of electrons to the catalytic component during substrate reduction, the Fe protein also functions in a maturase and insertase capacity to facilitate the biosynthesis of the two-catalytic component metallocofactors: fusion of the [Fe8S7] P-cluster and insertion of Mo and homocitrate to form the matured [(homocitrate)MoFe7S9C] M-cluster. These and key structural-functional relationships of the indispensable Fe protein and its complex with the catalytic component will be covered in this review.
Collapse
|
16
|
Stoian SA, Peng YR, Beedle CC, Chung YJ, Lee GH, Yang EC, Hill S. Structural, Spectroscopic, and Theoretical Investigation of a T-Shaped [Fe 3(μ 3-O)] Cluster. Inorg Chem 2017; 56:10861-10874. [PMID: 28845975 DOI: 10.1021/acs.inorgchem.7b00455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, X-ray crystal and electronic structures of [Fe3(μ3-O)(mpmae)2(OAc)2 Cl3], 1, where mpmae-H = 2-(N-methyl-N-((pyridine-2-yl)methyl)amino)ethanol, are described. This cluster comprises three high-spin ferric ions and exhibits a T-shaped site topology. Variable-frequency electron paramagnetic resonance measurements performed on single crystals of 1 demonstrate a total spin ST = 5/2 ground state, characterized by a small, negative, and nearly axial zero-field splitting tensor D = -0.49 cm-1, E/D ≈ 0.055. Analysis of magnetic susceptibility, magnetization, and magneto-structural correlations further corroborate the presence of a sextet ground-spin state. The observed ground state originates from the strong anti-ferromagnetic interaction of two iron(III) spins, with J = 115(5) cm-1, that, in turn, are only weakly coupled to the spin of the third site, with j = 7(1) cm-1. These exchange interactions lead to a ground state with magnetic properties that are essentially entirely determined by the weakly coupled site. The contributions of the individual spins to the total ground state of the cluster were monitored using variable-field 57Fe Mössbauer spectroscopy. Field-dependent spectra reveal that, while one of the iron sites exhibits a large negative internal field, typical of ferric ions, the other two sites exhibit small, but not null, negative and positive internal fields. A theoretical analysis reveals that these small internal fields originate from the mixing of the lowest ST = 5/2 excited state into the ground state which, in turn, is induced by a minute structural distortion.
Collapse
Affiliation(s)
| | - Yi-Ru Peng
- Department of Chemistry, Fu Jen Catholic University , Hsinchuang, New Taipei City, 24205 Taiwan, Republic of China
| | | | - Yi-Jung Chung
- Department of Chemistry, Fu Jen Catholic University , Hsinchuang, New Taipei City, 24205 Taiwan, Republic of China
| | - Gene-Hsiang Lee
- Instrumentation Centre, College of Science, National Taiwan University , Taipei, 106 Taiwan, Republic of China
| | - En-Che Yang
- Department of Chemistry, Fu Jen Catholic University , Hsinchuang, New Taipei City, 24205 Taiwan, Republic of China
| | | |
Collapse
|
17
|
Lichtenberg C, Garcia Rubio I, Viciu L, Adelhardt M, Meyer K, Jeschke G, Grützmacher H. A Low-Valent Iron Imido Heterocubane Cluster: Reversible Electron Transfer and Catalysis of Selective C-C Couplings. Angew Chem Int Ed Engl 2015; 54:13012-7. [PMID: 26480334 DOI: 10.1002/anie.201505668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/20/2015] [Indexed: 11/11/2022]
Abstract
Enzymes and cofactors with iron-sulfur heterocubane core structures, [Fe4 S4 ], are often found in nature as electron transfer reagents in fundamental catalytic transformations. An artificial heterocubane with a [Fe4 N4 ] core is reported that can reversibly store up to four electrons at very negative potentials. The neutral [Fe4 N4 ] and the singly reduced low-valent [Fe4 N4 ](-) heterocubanes were isolated and fully characterized. The low-valent species bears one unpaired electron, which is localized predominantly at one iron center in the electronic ground state but fluctuates with increasing temperatures. The electrons stored or released by the [Fe4 N4 ]/[Fe4 N4 ](-) redox couple can be used in reductive or oxidative CC couplings and even allow catalytic one-pot reactions, which show a remarkably enhanced selectivity in the presence of the [Fe4 N4 ] heterocubanes.
Collapse
Affiliation(s)
- Crispin Lichtenberg
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich (Switzerland)
| | - Inés Garcia Rubio
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich (Switzerland).,Current address: Centro Universitario de la Defensa, Academia General Militar, Crta. de Huesca s/n, Zaragoza, 50090 (Spain)
| | - Liliana Viciu
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich (Switzerland)
| | - Mario Adelhardt
- Department of Chemistry & Pharmacy, Friedrich-Alexander University, Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen (Germany)
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander University, Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen (Germany)
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich (Switzerland)
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich (Switzerland).
| |
Collapse
|
18
|
Lichtenberg C, Garcia Rubio I, Viciu L, Adelhardt M, Meyer K, Jeschke G, Grützmacher H. A Low-Valent Iron Imido Heterocubane Cluster: Reversible Electron Transfer and Catalysis of Selective C-C Couplings. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Tan ML, Perrin BS, Niu S, Huang Q, Ichiye T. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein. Protein Sci 2015; 25:12-8. [PMID: 26271353 PMCID: PMC4815322 DOI: 10.1002/pro.2772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023]
Abstract
In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum–FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4S4]1+ cluster, evidence also exists for an all‐ferrous [Fe4S4]0 cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all‐ferrous [Fe4S4]0 cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, “density functional theory plus Poisson Boltzmann” calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all‐ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Shuqiang Niu
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - Qi Huang
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, District of Columbia, 20057.,Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
20
|
Shim Y, Young RM, Douvalis AP, Dyar SM, Yuhas BD, Bakas T, Wasielewski MR, Kanatzidis MG. Enhanced Photochemical Hydrogen Evolution from Fe4S4-Based Biomimetic Chalcogels Containing M2+ (M = Pt, Zn, Co, Ni, Sn) Centers. J Am Chem Soc 2014; 136:13371-80. [DOI: 10.1021/ja507297p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yurina Shim
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan M. Young
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | | | - Scott M. Dyar
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin D. Yuhas
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas Bakas
- Department
of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Michael R. Wasielewski
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G. Kanatzidis
- Department
of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER)
Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Shoji M, Yoshioka Y, Yamaguchi K. An efficient initial guess formation of broken-symmetry solutions by using localized natural orbitals. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Zhang H, Ouyang Z, Liu Y, Zhang Q, Wang L, Deng L. (Aminocarbene)(Divinyltetramethyldisiloxane)Iron(0) Compounds: A Class of Low-Coordinate Iron(0) Reagents. Angew Chem Int Ed Engl 2014; 53:8432-6. [DOI: 10.1002/anie.201404677] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/08/2022]
|
23
|
Zhang H, Ouyang Z, Liu Y, Zhang Q, Wang L, Deng L. (Aminocarbene)(Divinyltetramethyldisiloxane)Iron(0) Compounds: A Class of Low-Coordinate Iron(0) Reagents. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Anderson JS, Peters JC. Low-spin pseudotetrahedral iron(I) sites in Fe₂(μ-S) complexes. Angew Chem Int Ed Engl 2014; 53:5978-81. [PMID: 24753364 DOI: 10.1002/anie.201401018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 11/06/2022]
Abstract
Fe(I) centers in iron-sulfide complexes have little precedent in synthetic chemistry despite a growing interest in the possible role of unusually low valent iron in metalloenzymes that feature iron-sulfur clusters. A series of three diiron [(L3Fe)2(μ-S)] complexes that were isolated and characterized in the low-valent oxidation states Fe(II)-S-Fe(II), Fe(II)-S-Fe(I), and Fe(I)-S-Fe(I) is described. This family of iron sulfides constitutes a unique redox series comprising three nearly isostructural but electronically distinct Fe2(μ-S) species. Combined structural, magnetic, and spectroscopic studies provided strong evidence that the pseudotetrahedral iron centers undergo a transition to low-spin S=1/2 states upon reduction from Fe(II) to Fe(I). The possibility of accessing low-spin, pseudotetrahedral Fe(I) sites compatible with S(2-) as a ligand was previously unknown.
Collapse
Affiliation(s)
- John S Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (USA)
| | | |
Collapse
|
25
|
Anderson JS, Peters JC. Low-Spin Pseudotetrahedral Iron(I) Sites in Fe2(μ-S) Complexes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Lee SC, Lo W, Holm RH. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. Chem Rev 2014; 114:3579-600. [PMID: 24410527 PMCID: PMC3982595 DOI: 10.1021/cr4004067] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Wayne Lo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada and the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Corresponding Authors: S. C. Lee: . R. H. Holm:
| |
Collapse
|
27
|
Mitra D, George SJ, Guo Y, Kamali S, Keable S, Peters JW, Pelmenschikov V, Case DA, Cramer SP. Characterization of [4Fe-4S] cluster vibrations and structure in nitrogenase Fe protein at three oxidation levels via combined NRVS, EXAFS, and DFT analyses. J Am Chem Soc 2013; 135:2530-43. [PMID: 23282058 DOI: 10.1021/ja307027n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques as each generates highly complementary information and their analytical methodologies are interdependent. Importantly, the spectroscopic samples contained no glassing agents. NRVS and DFT reveal a systematic 10-30 cm(-1) decrease in Fe-S stretching frequencies with each added electron. The "oxidized" [4Fe-4S](2+) state spectrum is consistent with and extends previous resonance Raman spectra. For the "reduced" [4Fe-4S](1+) state in Fe protein, and for any "all-ferrous" [4Fe-4S](0) cluster, these NRVS spectra are the first available vibrational data. NRVS simulations also allow estimation of the vibrational disorder for Fe-S and Fe-Fe distances, constraining the EXAFS analysis and allowing structural disorder to be estimated. For oxidized Av2, EXAFS and DFT indicate nearly equal Fe-Fe distances, while addition of one electron decreases the cluster symmetry. However, addition of the second electron to form the all-ferrous state induces significant structural change. EXAFS data recorded to k = 21 Å(-1) indicates a 1:1 ratio of Fe-Fe interactions at 2.56 Å and 2.75 Å, a result consistent with DFT. Broken symmetry (BS) DFT rationalizes the interplay between redox state and the Fe-S and Fe-Fe distances as predominantly spin-dependent behavior inherent to the [4Fe-4S] cluster and perturbed by the Av2 protein environment.
Collapse
Affiliation(s)
- Devrani Mitra
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Albers A, Demeshko S, Pröpper K, Dechert S, Bill E, Meyer F. A Super-Reduced Diferrous [2Fe–2S] Cluster. J Am Chem Soc 2013; 135:1704-7. [DOI: 10.1021/ja311563y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Kevin Pröpper
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| | - Eckhard Bill
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34 −
36, D-45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstrasse
4, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Fout AR, Xiao DJ, Zhao Q, Harris TD, King ER, Eames EV, Zheng SL, Betley TA. Trigonal Mn3 and Co3 clusters supported by weak-field ligands: a structural, spectroscopic, magnetic, and computational investigation into the correlation of molecular and electronic structure. Inorg Chem 2012; 51:10290-9. [PMID: 22991939 PMCID: PMC3479444 DOI: 10.1021/ic301278m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transamination of divalent transition metal starting materials (M(2)(N(SiMe(3))(2))(4), M = Mn, Co) with hexadentate ligand platforms (R)LH(6) ((R)LH(6) = MeC(CH(2)NPh-o-NR)(3) where R = H, Ph, Mes (Mes = Mesityl)) or (H,Cy)LH(6) = 1,3,5-C(6)H(9)(NHPh-o-NH(2))(3) with added pyridine or tertiary phosphine coligands afforded trinuclear complexes of the type ((R)L)Mn(3)(py)(3) and ((R)L)Co(3)(PMe(2)R')(3) (R' = Me, Ph). While the sterically less encumbered ligand varieties, (H)L or (Ph)L, give rise to local square-pyramidal geometries at each of the bound metal atoms, with four anilides forming an equatorial plane and an exogenous pyridine or phosphine in the apical site, the mesityl-substituted ligand ((Mes)L) engenders local tetrahedral coordination. Both the neutral Mn(3) and Co(3) clusters feature S = (1)/(2) ground states, as determined by direct current (dc) magnetometry, (1)H NMR spectroscopy, and low-temperature electron paramagnetic resonance (EPR) spectroscopy. Within the Mn(3) clusters, the long internuclear Mn-Mn separations suggest minimal direct metal-metal orbital overlap. Accordingly, fits to variable-temperature magnetic susceptibility data reveal the presence of weak antiferromagnetic superexchange interactions through the bridging anilide ligands with exchange couplings ranging from J = -16.8 to -42 cm(-1). Conversely, the short Co-Co interatomic distances suggest a significant degree of direct metal-metal orbital overlap, akin to the related Fe(3) clusters. With the Co(3) series, the S = (1)/(2) ground state can be attributed to population of a single molecular orbital manifold that arises from mixing of the metal- and o-phenylenediamide (OPDA) ligand-based frontier orbitals. Chemical oxidation of the neutral Co(3) clusters affords diamagnetic cationic clusters of the type [((R)L)Co(3)(PMe(2)R)(3)](+). Density functional theory (DFT) calculations on the neutral (S = (1)/(2)) and cationic (S = 0) Co(3) clusters reveal that oxidation occurs at an orbital with contributions from both the Co3 core and OPDA subunits. The predicted bond elongations within the ligand OPDA units are corroborated by the ligand bond perturbations observed by X-ray crystallography.
Collapse
Affiliation(s)
- Alison R. Fout
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Dianne J. Xiao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Qinliang Zhao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - T. David Harris
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Evan R. King
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Emily V. Eames
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street Cambridge, Massachusetts 02138
| |
Collapse
|
30
|
Rodriguez MM, Stubbert BD, Scarborough CC, Brennessel WW, Bill E, Holland PL. Isolation and characterization of stable iron(I) sulfide complexes. Angew Chem Int Ed Engl 2012; 51:8247-50. [PMID: 22821816 PMCID: PMC3970908 DOI: 10.1002/anie.201202211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bryan D. Stubbert
- Department of Chemistry University of Rochester Rochester, NY 14627 (USA)
| | | | | | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie 45470 Mülheim an der Ruhr (Germany)
| | - Patrick L. Holland
- Department of Chemistry University of Rochester Rochester, NY 14627 (USA)
| |
Collapse
|
31
|
Rodriguez MM, Stubbert BD, Scarborough CC, Brennessel WW, Bill E, Holland PL. Isolation and Characterization of Stable Iron(I) Sulfide Complexes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Eames EV, Harris TD, Betley TA. Modulation of magnetic behavior vialigand-field effects in the trigonal clusters (PhL)Fe3L*3(L*= thf, py, PMe2Ph). Chem Sci 2012. [DOI: 10.1039/c1sc00492a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Zhao Q, Harris TD, Betley TA. [(HL)2Fe6(NCMe)m]n+ (m = 0, 2, 4, 6; n = −1, 0, 1, 2, 3, 4, 6): An Electron-Transfer Series Featuring Octahedral Fe6 Clusters Supported by a Hexaamide Ligand Platform. J Am Chem Soc 2011; 133:8293-306. [DOI: 10.1021/ja2015845] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qinliang Zhao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge Massachusetts 02138, United States
| | - T. David Harris
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge Massachusetts 02138, United States
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge Massachusetts 02138, United States
| |
Collapse
|
34
|
Chakrabarti M, Münck E, Bominaar EL. Density functional theory study of an all ferrous 4Fe-4S cluster. Inorg Chem 2011; 50:4322-6. [PMID: 21476577 DOI: 10.1021/ic102287j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The all-ferrous, carbene-capped Fe(4)S(4) cluster, synthesized by Deng and Holm (DH complex), has been studied with density functional theory (DFT). The geometry of the complex was optimized for several electronic configurations. The lowest energy was obtained for the broken-symmetry (BS) configuration derived from the ferromagnetic state by reversing the spin projection of one of the high spin (S(i) = 2) irons. The optimized geometry of the latter configuration contains one unique and three equivalent iron sites, which are both structurally and electronically clearly distinguishable. For example, a distinctive feature of the unique iron site is the diagonal Fe···S distance, which is 0.3 Å longer than for the equivalent irons. The calculated (57)Fe hyperfine parameters show the same 1:3 pattern as observed in the Mössbauer spectra and are in good agreement with experiment. BS analysis of the exchange interactions in the optimized geometry for the 1:3, M(S) = 4, BS configuration confirms the prediction of an earlier study that the unique site is coupled to the three equivalent ones by strong antiferromagnetic exchange (J > 0 in J Σ(j<4)Ŝ(4)·Ŝ(j)) and that the latter are mutually coupled by ferromagnetic exchange (J' < 0 in J' Σ(i<j<4)Ŝ(i)·Ŝ(j)). In combination, these exchange couplings stabilize an S = 4 ground state in which the composite spin of the three equivalent sites (S(123) = 6) is antiparallel to the spin (S(4) = 2) of the unique site. Thus, DFT analysis supports the idea that the unprecedented high value of the spin of the DH complex and, by analogy, of the all-ferrous cluster of the Fe-protein of nitrogenase, results from a remarkably strong dependence of the exchange interactions on cluster core geometry. The structure dependence of the exchange-coupling constants in the Fe(II)-(μ(3)-S)(2)-Fe(II) moieties of the all-ferrous clusters is compared with the magneto-structural correlations observed in the data for dinuclear copper complexes. Finally, we discuss two all-ferric clusters in the light of the results for the all-ferrous cluster.
Collapse
Affiliation(s)
- Mrinmoy Chakrabarti
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
35
|
Chakrabarti M, Deng L, Holm RH, Münck E, Bominaar EL. The modular nature of all-ferrous edge-bridged double cubanes. Inorg Chem 2010; 49:1647-50. [PMID: 20073485 PMCID: PMC2822436 DOI: 10.1021/ic902050k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two all-ferrous, edge-bridged 8Fe-8S clusters, one capped with carbenes (2) and the other with phosphenes (3), have been characterized by (57)Fe Mossbauer spectroscopy. The clusters have diamagnetic ground states that yield spectra consisting of one quadrupole doublet with a large splitting (25% of absorption) and one (3) or two (2) doublets with much smaller splittings (75% of absorption). These patterns closely resemble those observed for all-ferrous 4Fe-4S clusters. Structurally, the 4Fe-4S fragments of 2 and 3 are remarkably similar to all-ferrous 4Fe-4S clusters, sharing with them the characteristic 3:1 pattern of the iron sites, a differentiation that has been shown previously to reflect spontaneous distortions of the cluster core. These spectroscopic and geometric similarities suggest that the diamagnetic ground state of the 8Fe-8S cluster results from antiferromagnetic exchange coupling of two identical 4Fe-4S modules, each carrying spin S(4Fe) = 4. The iron atoms with the largest quadrupole splittings are located at the opposite ends of the body diagonal containing the bridging sulfides.
Collapse
Affiliation(s)
- Mrinmoy Chakrabarti
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Liang Deng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
36
|
Deng L, Bill E, Wieghardt K, Holm RH. Cubane-type Co4S4 clusters: synthesis, redox series, and magnetic ground states. J Am Chem Soc 2009; 131:11213-21. [PMID: 19722678 PMCID: PMC3170832 DOI: 10.1021/ja903847a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent demonstration that the carbene cluster [Fe(4)S(4)(Pr(i)(2)NHCMe(2))(4)] (9) is an accurate structural and electronic analogue of the fully reduced cluster of the iron protein of Azotobacter vinelandii nitrogenase, including a common S = 4 ground state, raises the issue of the existence and magnetism of other [M(4)S(4)L(4)](z) clusters, none of which are known with transition metals other than iron. The system CoCl(2)/Pr(i)(3)P/(Me(3)Si)(2)S/THF assembles [Co(4)S(4)(PPr(i)(3))(4)] (3), which is converted to [Co(4)S(4)(Pr(i)(2)NHCMe(2))(4)] (5) upon reaction with carbene. The clusters support the redox series [3](1-/0/1+) and [5](0/1+/2+); monocations (4, 6) have been isolated by chemical oxidation. Redox potentials and substitution reactions indicate that the carbene is the more effective electron donor to tetrahedral Fe(II) and Co(II) sites. Clusters 3-6 have the same overall cubane-type geometry as 9. Neutral clusters 3 and 5 have an S = 3 ground state. As with the S = 4 state of 9 with local spins S(Fe) = 2, the septet spin state can be described in terms of the coupling of three parallel and one antiparallel spins S(Co) = 3/2. The octanuclear clusters [Co(8)S(8)(PPr(i)(3))(6)](0,1+) were isolated as minor byproducts of the formation and chemical oxidation of 3. The clusters exhibit a rhomb-bridged noncubane (RBNC) structure, whereas clusters with the Fe(8)S(8) core possess edge-bridged double-cubane (EBDC) stereochemistry. There are two structural solutions for the M(8)S(8) core in the form of topological isomers whose stability may depend on valence electron count. A conceptual model for the RBNC <--> EBDC interconversion is presented. (Pr(i)(2)NHCMe(2) = C(11)H(20)N(2) = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene).
Collapse
Affiliation(s)
- Liang Deng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - Karl Wieghardt
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
37
|
Groysman S, Holm RH. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 2009; 48:2310-20. [PMID: 19206188 PMCID: PMC2765533 DOI: 10.1021/bi900044e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few have even been closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
38
|
Raynal M, Liu X, Pattacini R, Vallée C, Olivier-Bourbigou H, Braunstein P. Unprecedented cubane-type silver cluster with a novel phosphinite functionalized N-heterocyclic carbene ligand. Dalton Trans 2009:7288-93. [DOI: 10.1039/b911439d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|