1
|
Ashtaputrey SD, Agrawal PS. Fenton and photo-assisted advanced oxidative degradation of ionic liquids: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103576-103601. [PMID: 37715035 DOI: 10.1007/s11356-023-29777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Ionic liquids (ILs) are the class of materials which are purely ionic in nature and liquid at room temperature. Their remarkable properties like very low vapour pressure, non-inflammable and high heat resistance are responsible for their use as a very appealing solvent in a variety of industrial applications in place of regular organic solvents. Because ILs are water soluble to a certain extent, the industrial wastewater effluents are found to contaminate with their traces. The non-biodegradability of ILs attracts the attention of the researchers for their removal or degradation from wastewater. Numbers of methods are available for the treatment of wastewater. However, it is very crucial to use the most efficient method for the degradation of ILs. Advanced oxidation process (AOP) is one of the most important techniques for the treatment of ILs in wastewater which have been investigated during last decades. This review paper covers the cost-effective Fenton, photochemical and photocatalytic AOPs and their combination that could be applied for the degradation of ILs from the wastewater. Theoretical explanations of these AOPs along with experimental conditions and kinetics of degradation or removal of ILs from water and wastewater have been reported and compared. Finally, future perspectives of IL degradation are presented.
Collapse
Affiliation(s)
| | - Pratibha S Agrawal
- Department of Applied Chemistry, Laxminarayan Institute of Technology, RTM Nagpur University, Nagpur, MS, India, 440010
| |
Collapse
|
2
|
Asadi Z, Dobaradaran S, Arfaeinia H, Omidvar M, Farjadfard S, Foroutan R, Ramavandi B, Luque R. Photodegradation of ibuprofen laden-wastewater using sea-mud catalyst/H 2O 2 system: evaluation of sonication modes and energy consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16707-16718. [PMID: 36184705 DOI: 10.1007/s11356-022-23253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The main goal of the current investigation was to decontaminate ibuprofen (IBP) from hospital wastewater using sea mud as an H2O2 activator. Sea sludge was converted into catalysts at different temperatures and residence times in furnaces, and then tested in the removal of IBP, and the most efficient ones were reported for the production of catalysts. The catalyst was optimized at 400 °C and 3 h. SEM-mapping, FTIR, EDX, BET, and BJH experiments were used to characterize the catalyst. Experiments were done at two pulsed and continuous ultrasonication modes in a photoreactor, and their efficiencies were statistically compared. The designed variables included IBP concentration (10-100 mg/L), the catalyst concentration (0-3 g/L), pH (4-9), and time (10-90 min). The oxidation process had the maximum efficiency at pH 4, treatment time of 60 min, catalyst quantity of 5 g/L, and IBP content of 50 mg/L. The catalyst was recycled, and in the fifth stage, the removal efficiency of IBP was reduced to 50%. The amount of energy consumed for treating IBP laden-wastewater using the evaluated catalyst in two modes of continuous and pulsed ultrasonic was calculated as 102 kW h/m3 and 10 kW h/m3, respectively. IBP oxidation process was fitted with the first-order kinetic model. The system can be proposed for purifying hospital and pharmaceutical wastewaters.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Omidvar
- Department of Occupational Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A,Km 396, 14014, Cordoba, Spain
| |
Collapse
|
3
|
Patidar R, Srivastava VC. Ultrasound-assisted electrochemical treatment of cosmetic industry wastewater: Mechanistic and detoxification analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126842. [PMID: 34416687 DOI: 10.1016/j.jhazmat.2021.126842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to investigate the mineralization of cosmetics producing industrial wastewater (CW) using sono-electrochemical (US-EC) treatments. The influence of operating parameters such as current density (j), electrolyte (Na2SO4) concentration (m), initial pH (pHo), and ultrasonic power was investigated using Ti/RuO2 dimensionally stable electrodes. The results demonstrated 80.9% chemical oxygen demand (COD) removal efficiency, 433.5 kWh (kg COD removed)-1 of specific energy consumption at the optimum conditions of P = 100 W, j = 213 A m-2, pHo= 7.6 (natural pH), and m = 1.5 g L-1. With the application of ultrasound, COD removal efficiency increases from 60.2% to 80.9%, with a synergistic effect of 1.1. Kinetics study analysis confirms that mineralization follows the nth order kinetics model. In the presence of ultrasound, the performance of electrochemical treatment gets enhanced due to higher electron transfer, the enhanced production of •OH radicals, and sulfate radicals (SO4•-). The pathway for the degradation of the compound was suggested by quadrupole time of flight mass spectroscopy (QToF-MS). The operating cost of the process was also evaluated to establish the applicability of the US-EC process at the industrial scale.
Collapse
Affiliation(s)
- Ritesh Patidar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Chauhan R, Dinesh GK, Alawa B, Chakma S. A critical analysis of sono-hybrid advanced oxidation process of ferrioxalate system for degradation of recalcitrant pollutants. CHEMOSPHERE 2021; 277:130324. [PMID: 33789218 DOI: 10.1016/j.chemosphere.2021.130324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The emerging contaminants in wastewater discharged from numerous chemical process industries, pharmaceutical industries, textile, and wineries have attracted the attention of the scientific community due to their toxicity and persistence in the environment. The conventional techniques are incompetent to treat many of such recalcitrant toxic pollutants. To achieve high mineralization, advanced oxidation processes (AOPs) are found to be more efficient for the degradation of these organic pollutants without producing secondary pollutants with no/less amount of sludge. The primary oxidation agents for AOPs are in-situ generated free radicals, which are highly reactive and effective oxidants for degrading any type of organic molecules present in the wastewater. In the past decades, the combination of AOPs or simultaneous application of more than one AOP has been investigated extensively for wastewater treatment and these hybrid-AOPs have been reported to be beneficial for high-level mineralization of organic pollutants. This paper presented the characteristics, properties and influence of parameters in sono-photo-ferrioxalate system. The primary operating parameters in sono-photo-ferrioxalate system that affect the kinetics are defined as the solution pH, temperature, molar ratio of Fe3+/C2O42-, H2O2 concentration, source of light, ultrasound intensity, dissolved gases, and size of cavitation bubble. In this process, several oxidizing radicals are generated such as HO•, HO2•, C2O4•-, CO2•- and O2•- which are also responsible for degradation. In this review, we have mainly addressed the degradation of recalcitrant pollutants using the sono-photo-ferrioxalate system and a critical analysis of process parameters that influence mineralization efficiency.
Collapse
Affiliation(s)
- Rohit Chauhan
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India
| | - G Kumaravel Dinesh
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India; School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Bablu Alawa
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Chu JH, Kang JK, Park SJ, Lee CG. Bisphenol A degradation using waste antivirus copper film with enhanced sono-Fenton-like catalytic oxidation. CHEMOSPHERE 2021; 276:130218. [PMID: 33744646 DOI: 10.1016/j.chemosphere.2021.130218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the applicability of waste antivirus copper film (CF) as a Fenton-like catalyst. The reaction activity of H2O2 and CF in combination was significantly enhanced by ultrasound (US) irradiation, and the synergy factor calculated from bisphenol A (BPA) degradation using CF-H2O2-US was 9.64 compare to that of dual factors. Photoluminescence analyses were conducted to compare the generation of hydroxyl radicals during both processes. In this sono-Fenton-like process, BPA degradation was affected by solution pH, temperature, ultrasound power, CF size, H2O2 dose, and initial BPA concentration. The BPA degradation curves showed an induction period (first stage) and a rapid degradation period (second stage). Process efficiency was totally and partially enhanced in the presence of chloride and carbonate ions, respectively. Chemical scavenger tests showed that both free and surface-bound hydroxyl radicals participate in BPA degradation under the sono-Fenton-like process using CF. The functional groups and copper crystals on the CF surface remained unchanged after five consecutive reuses, and the BPA degradation efficiency of CF was maintained over 80% during the reuse processes as a sono-Fenton-like catalyst.
Collapse
Affiliation(s)
- Jae-Hun Chu
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Chakrabarty S, Upadhyay P, Chakma S. Experimental and theoretical study of deep oxidative desulfurization of Dibenzothiophene using Oxalate-Based catalyst. ULTRASONICS SONOCHEMISTRY 2021; 75:105580. [PMID: 33991773 PMCID: PMC8135043 DOI: 10.1016/j.ultsonch.2021.105580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
The present study reports the experimental and theoretical investigation for production of ultra-low sulfur liquid fuels through estimation of various reactive species formed during the reaction with the help of simulation. All the experiments were performed using an ultrasound bath which operates at a frequency of 37 kHz and a theoretical power of 95 W. The presented oxalate-based technique is found to be more efficient with > 93% DBT oxidation within 15 min of reaction time at 25 °C due to formation of reactive species like FeIIC2O4 and [Formula: see text] which accelerate the reaction kinetics. Moreover, we have also investigated the influence of process parameters such as molar ratio of C2O42-/Fe2 +, oxidant concentration, volume ratio of organic to aqueous phase, sulfur concentration, and activation methods of oxidant. The results revealed that catalyst can be reused for several runs without decrease in catalytic activity. The experimental and simulation of cavitation bubble dynamics results revealed that sonochemical effect assists to accelerate the reaction kinetics through formation of free radicals (•O, •H, •OH and HO2∙) and other reactive species like O3 and H2O2 generated during transient cavitation. The sono-physical effects of cavitation help to create a fine emulsion in the liquid-liquid heterogeneous system leading to enhanced mass transfer rate by providing more interfacial surface area for occurring chemical reaction.
Collapse
Affiliation(s)
- Satadru Chakrabarty
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Prachi Upadhyay
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
7
|
Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. CHEMOSPHERE 2021; 275:130104. [PMID: 33984911 DOI: 10.1016/j.chemosphere.2021.130104] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.
Collapse
Affiliation(s)
- Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
8
|
Hunge Y, Yadav A, Khan S, Takagi K, Suzuki N, Teshima K, Terashima C, Fujishima A. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J Colloid Interface Sci 2021; 582:1058-1066. [DOI: 10.1016/j.jcis.2020.08.102] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
9
|
Dinesh GK, Pramod M, Chakma S. Sonochemical synthesis of amphoteric Cu 0-Nanoparticles using Hibiscus rosa-sinensis extract and their applications for degradation of 5-fluorouracil and lovastatin drugs. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123035. [PMID: 32512280 DOI: 10.1016/j.jhazmat.2020.123035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Recent studies reported the detection of numerous emerging and active pharmaceutical constituents in the ground and surface water. To address these issues, the present study reported the ultrasound-assisted synthesis of zero-valent copper (Cu0) nanoparticles using Hibiscus rosa-sinensis extract as reducing and stabilizing agent. The catalyst was characterized using XRD, SEM, EDX, PSA, BET, etc., and the results revealed that sonochemical synthesis technique influenced the crystallinity with controlled growth of Cu0. While the hard ligand hydroxyl group (-OH) reduces the Cu2+ to Cu0 and soft ligand carbonyl group (CO) present in the oxidized polyphenols helps in capping and stabilizing the Cu0-nanoparticles. During the ultrasound application, continuous release of Cu+ from Cu0 promoted the degradation by producing OH and O2•- radicals. Approx. 91.3 % and 93.2 % degradation efficiencies were achieved for 5-fluorouracil and lovastatin. The results showed that Cu0 nanoparticles were amphoteric in nature and the synergy calculation revealed that ultrasound has a direct influence on degradation of drugs which are difficult to degrade/mineralize using conventional techniques. Based on the results, a possible degradation mechanism of drug molecules in the presence of oxidants, zero-valent copper and ultrasound has been proposed.
Collapse
Affiliation(s)
- G Kumaravel Dinesh
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Malavika Pramod
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, 462 066 Madhya Pradesh, India.
| |
Collapse
|
10
|
Patidar R, Srivastava VC. Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: Multi-response optimization and cost analysis. CHEMOSPHERE 2020; 257:127121. [PMID: 32512327 DOI: 10.1016/j.chemosphere.2020.127121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a hybrid advanced oxidation process of sonoelectrochemical, in which ultrasound and electrochemical are applied simultaneously, has been used for the degradation of ofloxacin (bio-recalcitrant pharmaceutical pollutant). Response surface methodology based central composite design was applied to understand the parametric effects of ultrasonic power, current density, initial pH, and electrolyte dose. Enhanced ofloxacin degradation was obtained using sonoelectrochemical (≈95%) process in comparison to the electrochemical (≈60.6%) and sonolysis alone (≈7.2%) after 120 min treatment time. Multi-response optimization was used so as to maximize COD removal (70.12%) and minimize specific energy consumption (11.92 kWh (g COD removed)-1)at the optimized parametric condition of pH = 6.3 (natural pH), ultrasonic power = 54 W, current density = 213 A m-2, and Na2SO4 electrolyte dose = 2.0 g L-1. It was revealed that •OH radicals contribute major to the ofloxacin degradation reaction among the other oxidizing agents. Degradation of the ofloxacin followed pseudo-first-order kinetics with a higher reaction rate, which confirmed the synergistic effect of 34% between ultrasound and electrochemical approaches. The degradation pathway of ofloxacin removal was elucidated at optimum condition by the temporal evolution of the intermediate compounds and final products using gas chromatography coupled with mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), high-resolution mass spectroscopy (HR-MS), and Fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) and field emission scanning electron microscope (FE-SEM) coupled with energy dispersed X-ray (EDX) were used to determine the morphology of electrodes. Operational cost analysis was done based on the reactor employed in the present study.
Collapse
Affiliation(s)
- Ritesh Patidar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
11
|
da Silveira Salla J, da Boit Martinello K, Dotto GL, García-Díaz E, Javed H, Alvarez PJ, Foletto EL. Synthesis of citrate–modified CuFeS2 catalyst with significant effect on the photo–Fenton degradation efficiency of bisphenol a under visible light and near–neutral pH. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Huang LZ, Zhou C, Shen M, Gao E, Zhang C, Hu XM, Chen Y, Xue Y, Liu Z. Persulfate activation by two-dimensional MoS 2 confining single Fe atoms: Performance, mechanism and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122137. [PMID: 32004841 DOI: 10.1016/j.jhazmat.2020.122137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Developing efficient catalysts for persulfate (PS) activation is important for the potential application of sulfate-radical-based advanced oxidation process. Herein, we demonstrate single iron atoms confined in MoS2 nanosheets with dual catalytic sites and synergistic catalysis as highly reactive and stable catalysts for efficient catalytic oxidation of recalcitrant organic pollutants via activation of PS. The dual reaction sites and the interaction between Fe and Mo greatly enhance the catalytic performance for PS activation. The radical scavenger experiments and electron paramagnetic resonance results confirm and SO4- rather than HO is responsible for aniline degradation. The high catalytic performance of Fe0.36Mo0.64S2 was interpreted by density functional theory (DFT) calculations via strong metal-support interactions and the low formal oxidation state of Fe in FexMo1-xS2. FexMo1-xS2/PS system can effectively remove various persistent organic pollutants and works well in a real water environment. Also, FexMo1-xS2 can efficiently activate peroxymonosulfate, sulfite and H2O2, suggesting its potential practical applications under various circumstances.
Collapse
Affiliation(s)
- Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Miaolong Shen
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Enlai Gao
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Chunbo Zhang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Xin-Ming Hu
- Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China.
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China
| | - Zizheng Liu
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China.
| |
Collapse
|
13
|
Chakma S, Dikshit PK, Galodiya MN, Giri AS, Moholkar VS. The role of ultrasound in enzymatic degradation mechanism. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2019.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Measurement, Analysis, and Remediation of Bisphenol-A from Environmental Matrices. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-0540-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Barman S, Chakraborty R. Kinetics of combined noncatalytic and catalytic hydrolysis of jute fiber under ultrasonic–far infrared energy synergy. AIChE J 2019. [DOI: 10.1002/aic.16677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sourav Barman
- Chemical Engineering DepartmentJadavpur University Kolkata India
| | | |
Collapse
|
16
|
Zargazi M, Entezari MH. Sonochemical versus hydrothermal synthesis of bismuth tungstate nanostructures: Photocatalytic, sonocatalytic and sonophotocatalytic activities. ULTRASONICS SONOCHEMISTRY 2019; 51:1-11. [PMID: 30514478 DOI: 10.1016/j.ultsonch.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 05/24/2023]
Abstract
In the present work, an ultrasound-assisted hydrothermal method was applied as a new approach for the synthesis of Bi2WO6 nanostructures. In sonication, a cup horn system as an indirect high intensity sonicator was used. To determine the influence of ultrasonic waves on the morphology, Bi2WO6 was also synthesized using the hydrothermal method. The conventional and sonochemical products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared (FTIR), Raman, photoluminescence (PL), and UV-Vis (UV-Vis) spectroscopies. The XRD patterns confirmed that the sonosynthesized sample has higher crystallinity than the conventional one. The results also showed that ultrasound decreased the particle size and improved the size distribution. In comparison with the hydrothermal sample, the flower like structures formed under sonication have many hollow sites, resulting in higher harvesting and scattering of visible light. The efficiency of resulting nanoparticles in degradation of a binary mixture (RhB/MB) as pollutant was evaluated by photocatalytic, sonocatalytic, and sonophotocatalytic processes. The sono-synthesized sample removed the pollutants four times faster than the hydrothermal sample in sonophocatalytic process. Besides, determining factors including pH, pollutant concentration, temperature, and ultrasound amplitude were optimized in the sonophotocatalytic process.
Collapse
Affiliation(s)
- Mahboobeh Zargazi
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad H Entezari
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
17
|
Degradation of methylene blue and congo-red dyes using Fenton, photo-Fenton, sono-Fenton, and sonophoto-Fenton methods in the presence of iron(II,III) oxide/zinc oxide/graphene (Fe3O4/ZnO/graphene) composites. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
González Labrada K, Alcorta Cuello DR, Saborit Sánchez I, García Batle M, Manero MH, Barthe L, Jáuregui-Haza UJ. Optimization of ciprofloxacin degradation in wastewater by homogeneous sono-Fenton process at high frequency. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 53:1139-1148. [PMID: 30623707 DOI: 10.1080/10934529.2018.1530177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/22/2018] [Accepted: 04/30/2018] [Indexed: 06/09/2023]
Abstract
Emerging pollutants such as pharmaceuticals have been focusing international attention for a few decades. Ciprofloxacin (CIP) is a common drug that is widely found in hospital and wastewater treatment plants effluents, as well as in rivers. In this work, the feasibility of CIP degradation by ultrasound process at high frequency is discussed and sonolysis, sonolysis with hydrogen peroxide and sono-Fenton are evaluated. The amounts of hydrogen peroxide and ferrous ions (Fe2+) needed were optimized using response surface methodology. Best results were obtained with the sono-Fenton process resulting in a total pharmaceutical degradation within 15 min and a mineralization greater than 60% after 1 h. Optimal conditions were tested on a real matrix from a municipal wastewater treatment plant. Even if the degradation of the pollutants by sono-Fenton was hampered, the removal efficiency of both CIP and total organic carbon (TOC) is interesting as an increase in the biodegradability of the wastewater is found. These results show that sono-Fenton oxidation can be a promising pretreatment process for pharmaceutical-containing wastewaters.
Collapse
Affiliation(s)
- Katia González Labrada
- a Universidad Tecnológica de la Habana "José Antonio Echeverría" CUJAE , Marianao, La Habana , Cuba
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | | | - Israel Saborit Sánchez
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| | - Marise García Batle
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| | - Marie-Hélène Manero
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | - Laurie Barthe
- b Laboratoire de Génie Chimique, Université de Toulouse, CNRS , Toulouse , France
| | - Ulises Javier Jáuregui-Haza
- c Instituto Superior de Tecnologías y Ciencias Aplicadas , Universidad de La Habana , Quinta de los Molinos , La Habana , Cuba
| |
Collapse
|
19
|
Bal DK, Bhasarkar JB. Mechanistic investigation of Sono–Phosphotungstic acid/phase transfer agent assisted oxidative desulfurization of liquid fuel. ASIA-PAC J CHEM ENG 2018. [DOI: 10.1002/apj.2271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Al-Amri AH, Elroby SA, Hilal RH. Theoretical insight into the structure and bonding characteristics of Bisphenol-A. QTAIM and NBO analyses. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bisphenol-A (BPA) is considered as one of the most suspicious disruptors. Exposure to BPA may bring about possible human toxicities. BPA is an emerging contaminant widely used in manufacturing of epoxy, unsaturated polyester-styreneand polycarbonate resins. BPA is released into the environment through industrial and municipal wastewater discharges; its degradation products are probably more dangerous than BPA itself. The present study aims at a better insight into its ground state electronic and acid–base properties, and the mechanism of its thermal decomposition. Density functional theory (DFT) is utilized to study the geometry, electronic structure and electrostatic potential (ESP) for BPA. The molecule is noncoplanar with one of the phenolate moieties forced out of the plane by 57[Formula: see text]. This might very well determine the dissociation reaction pathway and in the meantime facilitates strong conjugation and considerable delocalization along the rest of the molecule. Proton affinities and deprotonation enthalpies are computed and discussed. Bonding characteristics are investigated within the natural bond-orbital (NBO) and quantum theory of atom in molecule (QTAIM) frameworks.
Collapse
Affiliation(s)
- Aeshah H. Al-Amri
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 76971, Dammam, Saudi Arabia
| | - Shaaban A. Elroby
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rifaat H. Hilal
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Dikshit PK, Kharmawlong GJ, Moholkar VS. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2018; 256:302-311. [PMID: 29455098 DOI: 10.1016/j.biortech.2018.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
This study reports crude glycerol fermentation by G. oxydans for dihydroxyacetone (DHA) production, and intensification of fermentation with sonication. Fermentation was carried out using both free and immobilized cells (on polyurethane foam support) for initial glycerol concentrations of 20, 30 and 50 g/L. Sonication at 20% duty cycle enhanced glycerol consumption by 60-84% with no significant change in cell morphology. Lesser DHA yield in crude glycerol fermentation was attributed to possible formation of inhibitory products. Slight reduction in DHA yield for initial glycerol concentration of 50 g/L was attributed to substrate inhibition. Higher DHA productivity was obtained for immobilized cells. Circular dichroism analysis of intracellular proteins obtained from ultrasound-treated G. oxydans revealed significant reduction in α-helix and β-sheet content. These conformational changes in protein structure could augment activity of intracellular glycerol dehydrogenase, which is manifested in terms of enhanced metabolism of glycerol by G. oxydans.
Collapse
Affiliation(s)
- Pritam Kumar Dikshit
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Gracel Joe Kharmawlong
- Department of Chemical Engineering, National Institute of Technology (NIT), Tiruchirapalli 620 015, Tamil Nadu, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
22
|
Savun-Hekimoğlu B, Ince NH. Reprint of: Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: A case study with salicylic acid. ULTRASONICS SONOCHEMISTRY 2018; 40:46-52. [PMID: 29032170 DOI: 10.1016/j.ultsonch.2017.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study is about the degradation of a widely used pharmaceutical and personal care product-salicylic acid by sonocatalysis, and the experimental design of the reaction system. The first part of the study consists of sonication (572kHz) in the presence of zero-valent iron (ZVI) with or without H2O2 to select and optimize the operational parameters as frequency, time, initial solute concentration, dose of reagents and pH. The second part consists of the use of response surface methodology and multiple regression to develop an experimental design modeland to assess the individual and interactive effects of pH, power (Po), ZVI dose and H2O2. The results showed that the optimal conditions predicted by the model without defining any restrictions are: pH=2.0, Po=120W, ZVI=24mgL-1, which provide total salicyclic acid and 48% TOC decay. However, the prediction implies intensive consumption of energy and reagents, and must therefore be modified by restricting the value of TOC decay to a lower value and that of pH to a higher one. Cross-validation tests showed that the prediction accuracy of the model was considerably high with 5.0-9.4% deviation from the experimental data.
Collapse
Affiliation(s)
| | - Nilsun H Ince
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
23
|
Savun-Hekimoğlu B, Ince NH. Decomposition of PPCPs by ultrasound-assisted advanced Fenton reaction: A case study with salicylic acid. ULTRASONICS SONOCHEMISTRY 2017; 39:243-249. [PMID: 28732942 DOI: 10.1016/j.ultsonch.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 05/09/2023]
Abstract
The study is about the degradation of a widely used pharmaceutical and personal care product-salicylic acid by sonocatalysis, and the experimental design of the reaction system. The first part of the study consists of sonication (572kHz) in the presence of zero-valent iron (ZVI) with or without H2O2 to select and optimize the operational parameters as frequency, time, initial solute concentration, dose of reagents and pH. The second part consists of the use of response surface methodology and multiple regression to develop an experimental design modeland to assess the individual and interactive effects of pH, power (Po), ZVI dose and H2O2. The results showed that the optimal conditions predicted by the model without defining any restrictions are: pH=2.0, Po=120W, ZVI=24mgL-1, which provide total salicyclic acid and 48% TOC decay. However, the prediction implies intensive consumption of energy and reagents, and must therefore be modified by restricting the value of TOC decay to a lower value and that of pH to a higher one. Cross-validation tests showed that the prediction accuracy of the model was considerably high with 5.0-9.4% deviation from the experimental data.
Collapse
Affiliation(s)
| | - Nilsun H Ince
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
24
|
Adityosulindro S, Barthe L, González-Labrada K, Jáuregui Haza UJ, Delmas H, Julcour C. Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water. ULTRASONICS SONOCHEMISTRY 2017; 39:889-896. [PMID: 28733020 DOI: 10.1016/j.ultsonch.2017.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 05/09/2023]
Abstract
Two sonochemical processes were compared for the removal of ibuprofen in different water matrixes (distilled water and effluent from wastewater treatment plant). The effect of various operating parameters, such as pH (2.6-8.0), ultrasound power density (25-100W/L), sonication frequency (12-862kHz), addition of radical promoters (H2O2 and Fenton's reagent) or scavengers (n-butanol and acetic acid), was evaluated. Sono-degradation of ibuprofen followed a first-order kinetic trend, whose rate constant increased with ultrasound density and frequency. For this hydrophobic and low volatile molecule, a free-radical mechanism at the bubble interface was established. Coupling ultrasound with Fenton reaction showed a positive synergy, especially in terms of mineralization yield, while adding H2O2 alone had no significant beneficial effect. Dedicated experiments proved this synergy to be due to the enhanced regeneration of ferrous ions by ultrasound. Efficacy of the sonolysis process was hampered in wastewater matrix, mainly as the consequence of higher pH increasing the molecule solubility. However, after convenient acidification, sono-Fenton oxidation results remained almost unchanged, indicating no significant radical scavenging effects from the effluent compounds.
Collapse
Affiliation(s)
| | - Laurie Barthe
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Katia González-Labrada
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Universidad de La Habana, Cuba
| | | | - Henri Delmas
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Carine Julcour
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
25
|
Villota N, Lomas JM, Camarero LM. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes. ULTRASONICS SONOCHEMISTRY 2017; 39:439-445. [PMID: 28732966 DOI: 10.1016/j.ultsonch.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe2+/kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe2+/kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions.
Collapse
Affiliation(s)
- Natalia Villota
- Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Jose M Lomas
- Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luis M Camarero
- Department of Chemical and Environmental Engineering, Escuela Universitaria de Ingeniería Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| |
Collapse
|
26
|
Chakma S, Praneeth S, Moholkar VS. Mechanistic investigations in sono-hybrid (ultrasound/Fe 2+/UVC) techniques of persulfate activation for degradation of Azorubine. ULTRASONICS SONOCHEMISTRY 2017; 38:652-663. [PMID: 27553195 DOI: 10.1016/j.ultsonch.2016.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/17/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Persulfate-based oxidation of recalcitrant pollutants has been investigated as an alternative to OH radical based advanced oxidation processes due to distinct merits such as greater stability and non-selective persistent reactivity of SO4- oxidant species. The present study has attempted to highlight mechanistic features of persulfate-based decolorization of textile dye (Azorubine) using sono-hybrid techniques of activation. Three activation techniques, viz. sonolysis, Fe2+ ions and UVC light and combinations thereof, have been examined. UVC is revealed to be the most efficient decolorization technique. The mechanism of sonolysis (i.e. thermal activation of persulfate in the bubble-bulk interfacial region) is revealed to be almost independent of the mechanism of UVC. Fe2+ activation is revealed to have an adverse interaction with UVC due to scavenging of sulfate radicals by Fe2+ ions. The best hybrid activation technique for persulfate-based degradation and mineralization of Azorubine is UVC+ultrasound. Due to independent mechanisms, degradation and mineralization of the dye obtained with simultaneous application of UVC and ultrasound is nearly equal to the sum of degradation and mineralization obtained using individual techniques.
Collapse
Affiliation(s)
- Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | - Sai Praneeth
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781 039, Assam, India.
| |
Collapse
|
27
|
Salimi M, Esrafili A, Gholami M, Jonidi Jafari A, Rezaei Kalantary R, Farzadkia M, Kermani M, Sobhi HR. Contaminants of emerging concern: a review of new approach in AOP technologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:414. [PMID: 28741247 DOI: 10.1007/s10661-017-6097-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/23/2017] [Indexed: 05/06/2023]
Abstract
The presence of contaminants of emerging concern (CECs) such as pharmaceuticals and personal care products (PPCPs), endocrine-disrupting compounds (EDCs), flame retardants (FRs), pesticides, and artificial sweeteners (ASWs) in the aquatic environments remains a major challenge to the environment and human health. In this review, the classification and occurrence of emerging contaminants in aquatic environments were discussed in detail. It is well documented that CECs are susceptible to poor removal during the conventional wastewater treatment plants, which introduce them back to the environment ranging from nanogram per liter (e.g., carbamazepine) up to milligram per liter (e.g., acesulfame) concentration level. Meanwhile, a deep insight into the application of advanced oxidation processes (AOPs) on mitigation of the CECs from aquatic environment was presented. In this regard, the utilization of various treatment technologies based on AOPs including ozonation, Fenton processes, sonochemical, and TiO2 heterogeneous photocatalysis was reviewed. Additionally, some innovations (e.g., visible light heterogeneous photocatalysis, electro-Fenton) concerning the AOPs and the combined utilization of AOPs (e.g., sono-Fenton) were documented.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Juhola R, Heponiemi A, Tuomikoski S, Hu T, Vielma T, Lassi U. Preparation of Novel Fe Catalysts from Industrial By-Products: Catalytic Wet Peroxide Oxidation of Bisphenol A. Top Catal 2017. [DOI: 10.1007/s11244-017-0829-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Abdi P, Farzi A, Karimi A. Application of a hybrid enzymatic and photo-fenton process for investigation of azo dye decolorization on TiO 2 /metal-foam catalyst. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5168-5178. [PMID: 27221586 DOI: 10.1007/s11356-016-6909-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm2), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm2, electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
Collapse
Affiliation(s)
- P Asaithambi
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Abdul Raman Abdul Aziz
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Baharak Sajjadi
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Mohd Ashri Bin Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Sharfalddin A, Alzahrani E, Alamoudi M. Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2781-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Boutamine Z, Hamdaoui O, Merouani S. Enhanced sonolytic mineralization of basic red 29 in water by integrated ultrasound/Fe2+/TiO2 treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2724-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Dai F, Fan X, Stratton GR, Bellona CL, Holsen TM, Crimmins BS, Xia X, Mededovic Thagard S. Experimental and density functional theoretical study of the effects of Fenton's reaction on the degradation of Bisphenol A in a high voltage plasma reactor. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:419-429. [PMID: 26874105 DOI: 10.1016/j.jhazmat.2016.01.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
A novel electrical discharge plasma reactor configuration with and without iron ions was evaluated for the degradation of 0.02 mM Bisphenol A (BPA). The pseudo-first-order reaction rate constant calculated for the plasma treatment of BPA with a stainless steel electrode in the presence of dissolved ferrous ion (Fe(2+)) salts (termed plasma/Fenton treatment) was higher than in the plasma treatment in the absence of iron salts. At the optimal ferrous ion concentration, longer plasma treatment times resulted in higher BPA degradation rates, likely due to increased hydroxyl (OH) radical concentration formed through the decomposition of H2O2. Replacing the stainless steel with a carbon steel grounded electrode resulted in the release of iron ions from the carbon steel thereby increasing the rate of BPA removal and eliminating the need for iron salts. After the plasma/Fenton treatment, >97% of the residual iron salts were removed by coagulation/flocculation/sedimentation. Byproduct identification coupled with density functional theory (DFT) calculations confirmed that OH radical attack on BPA's hydroxyl group is the primary pathway for byproduct formation.
Collapse
Affiliation(s)
- Fei Dai
- Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Xiangru Fan
- Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Gunnar R Stratton
- Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Christopher L Bellona
- Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA; Department of Civil and Environmental Engineering, 1500 Illinois St., Colorado School of Mines, Golden, 80401 CO, USA.
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Bernard S Crimmins
- Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Xiaoyan Xia
- Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| | - Selma Mededovic Thagard
- Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY, USA.
| |
Collapse
|
34
|
Chakma S, Moholkar VS. Synthesis of bi-metallic oxides nanotubes for fast removal of dye using adsorption and sonocatalysis process. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Chakma S, Moholkar VS. Mechanistic analysis of hybrid sono-photo-ferrioxalate system for decolorization of azo dye. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Chakma S, Moholkar VS. Investigations in sono-enzymatic degradation of ibuprofen. ULTRASONICS SONOCHEMISTRY 2016; 29:485-94. [PMID: 26552749 DOI: 10.1016/j.ultsonch.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/28/2015] [Accepted: 11/01/2015] [Indexed: 05/25/2023]
Abstract
The drug ibuprofen (IBP) appears frequently in the wastewater discharge from pharmaceutical industries. This paper reports studies in degradation of IBP employing hybrid technique of sono-enzymatic treatment. This paper also establishes synergy between individual mechanisms of enzyme and sonolysis for IBP degradation by identification of degradation intermediates, and Arrhenius & thermodynamic analysis of the experimental data. Positive synergy between sonolysis and enzyme treatment is attributed to formation of hydrophilic intermediates during degradation. These intermediates form due to hydroxylation and oxidation reactions induced by radicals formed during transient cavitation. Activation energy and enthalpy change in sono-enzymatic treatment are lower as compared to enzyme treatment, while frequency factor and entropy change are higher as compared to sonolysis. Degradation of IBP in sono-enzymatic treatment is revealed to be comparable with other hybrid techniques like photo-Fenton, sono-photocatalysis, and sono-Fenton.
Collapse
Affiliation(s)
- Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
37
|
|
38
|
Buthiyappan A, Abdul Raman AA, Daud WMAW. Development of an advanced chemical oxidation wastewater treatment system for the batik industry in Malaysia. RSC Adv 2016. [DOI: 10.1039/c5ra26775g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Symmetric representation of the Fenton oxidation batch system for the treatment of highly recalcitrant batik wastewater.
Collapse
Affiliation(s)
- Archina Buthiyappan
- Department of Chemical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering
- Faculty of Engineering
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| |
Collapse
|
39
|
Chakma S, Das L, Moholkar VS. Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems: A mechanistic investigation. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Bhasarkar J, Borah AJ, Goswami P, Moholkar VS. Mechanistic analysis of ultrasound assisted enzymatic desulfurization of liquid fuels using horseradish peroxidase. BIORESOURCE TECHNOLOGY 2015; 196:88-98. [PMID: 26231128 DOI: 10.1016/j.biortech.2015.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
This study has attempted to gain physical insight into ultrasound-assisted enzymatic desulfurization using system comprising horseradish peroxidase enzyme and dibenzothiophene (DBT). Desulfurization pathway (comprising DBT-sulfoxide and DBT-sulfone as intermediates and 4-methoxy benzoic acid as final product) has been established with GC-MS analysis. Intrinsic fluorescence and circular dichroism spectra of ultrasound-treated enzyme reveal conformational changes in secondary structure (reduction in α-helix and β-conformations and increase in random coil content) leading to enhancement in activity. Concurrent analysis of desulfurization profiles, Arrhenius and thermodynamic parameters, and simulations of cavitation bubble dynamics reveal that strong micro-convection generated by sonication enhances enzyme activity and desulfurization kinetics. Parallel oxidation of DBT by radicals generated from transient cavitation gives further boost to desulfurization kinetics. However, random motion of enzyme molecules induced by shock waves reduces frequency factor and limits the ultrasonic enhancement of enzymatic desulfurization.
Collapse
Affiliation(s)
- Jaykumar Bhasarkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Arup Jyoti Borah
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Pranab Goswami
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India; Center for Energy, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
41
|
Bhasarkar JB, Chakma S, Moholkar VS. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound. ULTRASONICS SONOCHEMISTRY 2015; 24:98-106. [PMID: 25465876 DOI: 10.1016/j.ultsonch.2014.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/10/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization.
Collapse
Affiliation(s)
- Jaykumar B Bhasarkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
42
|
Chakma S, Moholkar VS. Intensification of Wastewater Treatment using Sono-hybrid Processes: An Overview of Mechanistic Synergism. INDIAN CHEMICAL ENGINEER 2015. [DOI: 10.1080/00194506.2015.1026948] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Bhasarkar JB, Singh M, Moholkar VS. Mechanistic insight into phase transfer agent assisted ultrasonic desulfurization. RSC Adv 2015. [DOI: 10.1039/c5ra12178g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper attempts to gain physical insight into the phase transfer agent (PTA) assisted ultrasonic oxidative desulfurization process.
Collapse
Affiliation(s)
- Jaykumar B. Bhasarkar
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Mohit Singh
- Department of Chemical Engineering
- National Institute of Technology Tiruchirapalli
- Tiruchirapalli – 620015
- India
| | - Vijayanand S. Moholkar
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| |
Collapse
|
44
|
Synthesis and Application of Magnetic Photocatalyst of Ni-Zn Ferrite/TiO2from IC Lead Frame Scraps. JOURNAL OF NANOTECHNOLOGY 2015. [DOI: 10.1155/2015/727210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IC lead frame scraps with about 18.01% tin, 34.33% nickel, and 47.66% iron in composition are industrial wastes of IC lead frame production. The amount of thousand tons of frame scraps in Taiwan each year is treated as scrap irons. Ni-Zn ferrites used in high frequent inductors and filters are produced from Ni-Zn ferrite powders by pressing and sintering. The amount of several ten thousand tons of ferrites ofNi1-XZnXFe2O4in compositions is consumed annually in the whole world. Therefore, these IC lead frame scraps will be used in this research as raw materials to fabricate magnetic ferrite powders and combined subsequently with titanium sulfate and urea to produce magnetic photocatalysts by coprecipitation for effective waste utilization. The prepared Ni-Zn ferrite powder and magnetic photocatalyst (Ni-Zn ferrite/TiO2) were characterized by ICP, XRF, XRD, EDX, SEM, SQUID, and BET. The photocatalytic activity of synthesized magnetic photocatalysts was tested by FBL dye wastewater degradation. TOC and ADMI measurement for degradation studies were carried out, respectively. Langmuir-Hinshelwood kinetic model of the prepared magnetic TiO2proved available for the treatments. Wastes are transformed to valuable magnetic photocatalysts in this research to solve the separation problem of wastewater and TiO2photocatalysts by magnetic field.
Collapse
|
45
|
Chakma S, Moholkar VS. Sonochemical synthesis of mesoporous ZrFe2O5 and its application for degradation of recalcitrant pollutants. RSC Adv 2015. [DOI: 10.1039/c5ra06148b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, we have reported the sonochemical synthesis and characterization of zirconium ferrite (ZrFe2O5), and its use as a catalyst in advanced oxidation processes (AOPs) using decolorization/degradation of textile dyes as model processes.
Collapse
Affiliation(s)
- Sankar Chakma
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| | - Vijayanand S. Moholkar
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| |
Collapse
|
46
|
Chakma S, Moholkar VS. Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. ULTRASONICS SONOCHEMISTRY 2015; 22:287-99. [PMID: 24986798 DOI: 10.1016/j.ultsonch.2014.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 05/25/2023]
Abstract
This paper attempts to investigate the mechanistic issues of two hybrid advanced oxidation processes (HAOPs), viz. sonocatalysis and sonophotocatalysis, in which the two individual AOPs, viz. sonolysis and photocatalysis, are combined. Three photocatalysts, viz. pure ZnO and Fe-doped ZnO (with two protocols) have been employed. Fe-doped ZnO catalyst has been characterized using standard techniques. Decolorization of two textile dyes has been used as the model reaction. With experiments that alter the characteristics of ultrasound and cavitation phenomena in the medium, the exact synergy between the two AOPs has been determined using a quantitative yard stick. The results revealed a negative synergy between the two AOPs, which is an almost consistent result for decolorization of both dyes using all three photocatalysts. Fe-doping of ZnO catalyst helps in generation of more OH radicals that could augment decolorization. However, these radical mainly react with dye molecules adsorbed on catalyst surface. Intense shock waves generated by cavitation bubbles cause desorption of dye molecules from catalyst surface and reduce the probability of dye-radical interaction, thus reducing the net utility of photochemically generated OH radicals towards dye decolorization. This is rationale underlying the negative synergy between sonolysis and photocatalysis. Fe-doped ZnO catalyst increases the extent of decolorization, but the synergy between the two individual AOPs remains unaltered with doping.
Collapse
Affiliation(s)
- Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|