1
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
2
|
Xu G, Bai X, Dang Q. Aromatic Heterocycles as Productive Dienophiles in the Inverse Electron-Demand Diels-Alder Reactions of 1,3,5-Triazines. Acc Chem Res 2020; 53:773-781. [PMID: 32227911 DOI: 10.1021/acs.accounts.9b00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterocycles are often found as the structural nucleus in natural products and biological active compounds. Consequently, research toward the discovery and development of novel and efficient synthetic methodologies is of constant interest to organic chemists. Diels-Alder reactions are powerful at forming multiple bonds simultaneously, often with stereoselectivity, and thus are one of the most widely used synthetic methodologies in organic syntheses. Inverse electron-demand Diels-Alder (IEDDA) reactions, a subclass of Diels-Alder reactions, have been developed for the efficient synthesis of various heterocycles, with 1,3,5-triazines used as azadienes. The initial 1,3,5-triazine IEDDA reactions mostly included nonaromatic, electron-rich species such as vinyl ethers, enamines, ynamines, and amidines as dienophiles, producing in high yields pyrimidine derivatives with excellent regioselectivity. We hypothesized that some electron-rich aromatic heterocycles could be studied as potential dienophiles for 1,3,5-triazine IEDDA reactions; 5-aminopyrazoles proved to be productive dienophiles leading to high yields of pyrazolopyrimidines. Subsequently, many studies were reported to investigate the mechanism and scope of this new type of IEDDA reaction. Mechanistically, this new type of IEDDA reaction is quite interesting since it entails two aromatic compounds proceeding through a perceived high energy nonaromatic transition state, leading to a new aromatic compound, a counterintuitive process. Both theoretical and experimental studies provide key insights to this reaction mechanism, with learnings from these studies possibly stimulating unconventional thinking in other areas. Theoretical calculations of these cascade reactions of amino-substituted heterocycles with 1,3,5-triazines indicate that the reactions occur in a stepwise fashion via a highly polar zwitterionic intermediate; elimination of ammonia from IEDDA adducts and subsequent retro Diels-Alder reaction drive the reaction toward the fully aromatized IEDDA products. This amino substituent is critical in determining the regioselectivity and driving the cascade reactions to completion. With regard to reaction scope, many amino-heterocycles such as pyrroles, imidazoles, furans, thiophenes, and indoles all proved to be productive dienophiles for this new IEDDA reaction, leading to various fused-pyrimidines in a single step with moderate to high yields and high regioselectivity. Application of this new IEDDA reaction with 1,3,5-triazines was reported to lead to interesting heterocyclic compounds such as nucleoside natural product nebularine and analogues, as well as fluorine-containing fused pyrimidines with potential for biological activities.Herein, the scope of various aromatic heterocycles as dienophiles in the 1,3,5-triazine IEDDA reaction is reviewed. Moreover, both experimental and theoretical studies of the mechanisms for this interesting cascade IEDDA reaction are discussed. Finally, applications of this new type (aromatic heterocycles as dienophiles with 1,3,5-triazines as azadienes) of IEDDA reaction are also covered.
Collapse
Affiliation(s)
- Guoxing Xu
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P.R. China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P.R. China
| | - Qun Dang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
Zhang J, Shukla V, Boger DL. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-Butadienes, Cyclopropenone Ketals, and Related Systems. A Retrospective. J Org Chem 2019; 84:9397-9445. [PMID: 31062977 DOI: 10.1021/acs.joc.9b00834] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A summary of the investigation and applications of the inverse electron demand Diels-Alder reaction is provided that have been conducted in our laboratory over a period that now spans more than 35 years. The work, which continues to provide solutions to complex synthetic challenges, is presented in the context of more than 70 natural product total syntheses in which the reactions served as a key strategic step in the approach. The studies include the development and use of the cycloaddition reactions of heterocyclic azadienes (1,2,4,5-tetrazines; 1,2,4-, 1,3,5-, and 1,2,3-triazines; 1,2-diazines; and 1,3,4-oxadiazoles), 1-aza-1,3-butadienes, α-pyrones, and cyclopropenone ketals. Their applications illustrate the power of the methodology, often provided concise and nonobvious total syntheses of the targeted natural products, typically were extended to the synthesis of analogues that contain deep-seated structural changes in more comprehensive studies to explore or optimize their biological properties, and highlight a wealth of opportunities not yet tapped.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Vyom Shukla
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
4
|
Murray V, Chen JK, Chung LH. The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci 2018; 19:E1372. [PMID: 29734689 PMCID: PMC5983701 DOI: 10.3390/ijms19051372] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Boger DL. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface. J Org Chem 2017; 82:11961-11980. [PMID: 28945374 PMCID: PMC5712263 DOI: 10.1021/acs.joc.7b02088] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Indexed: 01/24/2023]
Abstract
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.
Collapse
Affiliation(s)
- Dale L. Boger
- Department of Chemistry and
The Skaggs Research Institute, The Scripps
Research Institute, 10550
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Quiñones RE, Glinkerman CM, Zhu K, Boger DL. Direct Synthesis of β-Aminoenals through Reaction of 1,2,3-Triazine with Secondary Amines. Org Lett 2017; 19:3568-3571. [PMID: 28657329 DOI: 10.1021/acs.orglett.7b01543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple and direct nucleophilic addition of secondary amines, including imidazole, to 1,2,3-triazine under mild reaction conditions (THF, 25-65 °C, 12-48 h), requiring no additives, cleanly provides β-aminoenals 4 in good yields (21 examples, 31-79%). The reaction proceeds by amine nucleophilic addition to C4 of the 1,2,3-triazine, in situ loss of N2, and subsequent imine hydrolysis to provide 4.
Collapse
Affiliation(s)
- Ryan E Quiñones
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kaicheng Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Yang K, Dang Q, Bai X. Organocatalytic Inverse-Electron-Demand Diels-Alder Reactions of Ketones with 1,3,5-Triazines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kai Yang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The College of Chemistry and The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Lu 130021 Changchun, Jilin P. R. China
| | - Qun Dang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The College of Chemistry and The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Lu 130021 Changchun, Jilin P. R. China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University; The College of Chemistry and The School of Pharmaceutical Sciences; Jilin University; 1266 Fujin Lu 130021 Changchun, Jilin P. R. China
| |
Collapse
|
8
|
Yang K, Dang Q, Cai PJ, Gao Y, Yu ZX, Bai X. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies. J Org Chem 2017; 82:2336-2344. [PMID: 28112917 DOI: 10.1021/acs.joc.6b02570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.
Collapse
Affiliation(s)
- Kai Yang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The College of Chemistry and The School of Pharmaceutical Sciences, Jilin University , 1266 Fujin Rd., Changchun, Jilin 130021, P. R. China
| | - Qun Dang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The College of Chemistry and The School of Pharmaceutical Sciences, Jilin University , 1266 Fujin Rd., Changchun, Jilin 130021, P. R. China
| | - Pei-Jun Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Yang Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, China
| | - Xu Bai
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The College of Chemistry and The School of Pharmaceutical Sciences, Jilin University , 1266 Fujin Rd., Changchun, Jilin 130021, P. R. China
| |
Collapse
|
9
|
Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem Rev 2016; 116:4441-557. [DOI: 10.1021/acs.chemrev.5b00712] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Artur K. Mailyan
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - John A. Eickhoff
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Anastasiia S. Minakova
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ping Lu
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Armen Zakarian
- Department
of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Lee K, Poudel YB, Glinkerman CM, Boger DL. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs. Tetrahedron 2015; 71:5897-5905. [PMID: 26273113 PMCID: PMC4528678 DOI: 10.1016/j.tet.2015.05.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels-Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N-methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches.
Collapse
Affiliation(s)
- Kiyoun Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yam B. Poudel
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christopher M. Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Glinkerman CM, Boger DL. Cycloadditions of 1,2,3-Triazines Bearing C5-Electron Donating Substituents: Robust Pyrimidine Synthesis. Org Lett 2015; 17:4002-5. [PMID: 26172042 DOI: 10.1021/acs.orglett.5b01870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The examination of the cycloaddition reactions of 1,2,3-triazines 17-19, bearing electron-donating substituents at C5, are described. Despite the noncomplementary 1,2,3-triazine C5 substituents, amidines were found to undergo a powerful cycloaddition to provide 2,5-disubstituted pyrimidines in excellent yields (42-99%; EDG = SMe > OMe > NHAc). Even select ynamines and enamines were capable of cycloadditions with 17, but not 18 or 19, to provide trisubstituted pyridines in modest yields (37-40% and 33% respectively).
Collapse
Affiliation(s)
- Christopher M Glinkerman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Yang K, Yang Z, Dang Q, Bai X. Hydrazones as Productive Dienophiles in the Inverse Electron Demand Diels-Alder Reactions of 1,3,5-Triazines. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Heravi MM, Ahmadi T, Ghavidel M, Heidari B, Hamidi H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Adv 2015. [DOI: 10.1039/c5ra17488k] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The synthetic utility and potential power of the Diels–Alder (D–A) reaction in organic chemistry is evident.
Collapse
Affiliation(s)
| | | | | | | | - Hoda Hamidi
- Department of Chemistry
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
14
|
Schroeder BR, Ghare MI, Bhattacharya C, Paul R, Yu Z, Zaleski PA, Bozeman TC, Rishel MJ, Hecht SM. The disaccharide moiety of bleomycin facilitates uptake by cancer cells. J Am Chem Soc 2014; 136:13641-56. [PMID: 25184545 PMCID: PMC4183664 DOI: 10.1021/ja507255g] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The disaccharide moiety is responsible
for the tumor cell targeting
properties of bleomycin (BLM). While the aglycon (deglycobleomycin)
mediates DNA cleavage in much the same fashion as bleomycin, it exhibits
diminished cytotoxicity in comparison to BLM. These findings suggested
that BLM might be modular in nature, composed of tumor-seeking and
tumoricidal domains. To explore this possibility, BLM analogues were
prepared in which the disaccharide moiety was attached to deglycobleomycin
at novel positions, namely, via the threonine moiety or C-terminal
substituent. The analogues were compared with BLM and deglycoBLM for
DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more
potent than deglycoBLM in supercoiled plasmid DNA relaxation, while
the analogue having the disaccharide on threonine was less active
than deglycoBLM and the analogue containing the C-terminal disaccharide
was slightly more potent. While having unexceptional DNA cleavage
potencies, both glycosylated analogues were more cytotoxic to cultured
DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates
of the cytotoxic BLM aglycons were used in imaging experiments to
determine the extent of cell uptake. The rank order of internalization
efficiencies was the same as their order of cytotoxicities toward
DU145 cells. These findings establish a role for the BLM disaccharide
in tumor targeting/uptake and suggest that the disaccharide moiety
may be capable of delivering other cytotoxins to cancer cells. While
the mechanism responsible for uptake of the BLM disaccharide selectively
by tumor cells has not yet been established, data are presented which
suggest that the metabolic shift to glycolysis in cancer cells may
provide the vehicle for selective internalization.
Collapse
Affiliation(s)
- Benjamin R Schroeder
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anderson ED, Duerfeldt AS, Zhu K, Glinkerman CM, Boger DL. Cycloadditions of noncomplementary substituted 1,2,3-triazines. Org Lett 2014; 16:5084-7. [PMID: 25222918 PMCID: PMC4184932 DOI: 10.1021/ol502436n] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The scope of the [4 + 2] cycloaddition
reactions of substituted
1,2,3-triazines, bearing noncomplementary substitution with electron-withdrawing
groups at C4 and/or C6, is described. The studies define key electronic
and steric effects of substituents impacting the reactivity, mode
(C4/N1 vs C5/N2), and regioselectivity of the cycloaddition reactions
of 1,2,3-triazines with amidines, enamines, and ynamines, providing
access to highly functionalized heterocycles.
Collapse
Affiliation(s)
- Erin D Anderson
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
16
|
Abstract
Total syntheses of (-)-pyrimidoblamic acid and P-3A are disclosed. Central to the convergent approach is a powerful inverse electron demand Diels-Alder reaction between substituted electron-deficient 1,2,3-triazines and a highly functionalized and chiral primary amidine, which forms the pyrimidine cores and introduces all necessary stereochemistry in a single step. Intrinsic in the convergent approach is the potential it provides for the late stage divergent synthesis of modified analogs bearing deep-seated changes in either the pyrimidine cores or the highly functionalized C2 side chain common to both natural products. The examination of the key cycloaddition reaction revealed that the inherent 1,2,3-triazine mode of cycloaddition (C4/N1 vs C5/N2) as well as the amidine regioselectivity were unaffected by introduction of two electron-withdrawing groups (-CO2R) at C4 and C6 of the 1,2,3-triazine even if C5 is unsubstituted (Me or H), highlighting the synthetic potential of the powerful pyrimidine synthesis.
Collapse
Affiliation(s)
- Adam S Duerfeldt
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
17
|
Foster RAA, Willis MC. Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem Soc Rev 2013; 42:63-76. [DOI: 10.1039/c2cs35316d] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Anderson ED, Boger DL. Inverse electron demand Diels-Alder reactions of 1,2,3-triazines: pronounced substituent effects on reactivity and cycloaddition scope. J Am Chem Soc 2011; 133:12285-92. [PMID: 21736324 DOI: 10.1021/ja204856a] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A systematic study of the inverse electron demand Diels-Alder reactions of 1,2,3-triazines is disclosed, including an examination of the impact of a C5 substituent. Such substituents were found to exhibit a remarkable impact on the cycloaddition reactivity of the 1,2,3-triazine without altering, and perhaps even enhancing, the intrinsic cycloaddition regioselectivity. The study revealed not only that the reactivity may be predictably modulated by a C5 substituent (R = CO(2)Me > Ph > H) but also that the impact is of a magnitude to convert 1,2,3-triazine (1) and its modest cycloaddition scope into a heterocyclic azadiene system with a reaction scope that portends extensive synthetic utility, expanding the range of participating dienophiles. Significantly, the studies define a now powerful additional heterocyclic azadiene, complementary to the isomeric 1,2,4-triazines and 1,3,5-triazines, capable of dependable participation in inverse electron demand Diels-Alder reactions, extending the number of complementary heterocyclic ring systems accessible with implementation of the methodology.
Collapse
Affiliation(s)
- Erin D Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
19
|
Abstract
Two complementary concise total syntheses of lycogarubin C (1) and lycogalic acid (2, aka chromopyrrolic acid) are detailed utilizing a 1,2,4,5-tetrazine --> 1,2-diazine --> pyrrole Diels-Alder strategy and enlisting acetylenic dienophiles.
Collapse
Affiliation(s)
- James S Oakdale
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Xu G, Zheng L, Wang S, Dang Q, Bai X. Synthesis of Electron-Deficient 1,3,5-Triazines as Potential Azadienes for Inverse-Electron-Demand Diels–Alder Reactions. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910902978031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Guoxing Xu
- a The Center for Combinatorial Chemistry and Drug Discovery, College of Chemistry and School of Pharmaceutical Sciences, Jilin University , Changchun, China
| | - Lianyou Zheng
- a The Center for Combinatorial Chemistry and Drug Discovery, College of Chemistry and School of Pharmaceutical Sciences, Jilin University , Changchun, China
| | - Shixue Wang
- a The Center for Combinatorial Chemistry and Drug Discovery, College of Chemistry and School of Pharmaceutical Sciences, Jilin University , Changchun, China
| | - Qun Dang
- a The Center for Combinatorial Chemistry and Drug Discovery, College of Chemistry and School of Pharmaceutical Sciences, Jilin University , Changchun, China
| | - Xu Bai
- a The Center for Combinatorial Chemistry and Drug Discovery, College of Chemistry and School of Pharmaceutical Sciences, Jilin University , Changchun, China
| |
Collapse
|
21
|
Dang Q, Carruli E, Tian F, Dang FW, Gibson T, Li W, Bai H, Chung M, Hecker SJ. A tandem decarboxylation and inverse electron-demand Diels–Alder reaction of amino-thiophenecarboxylic acids with 1,3,5-triazines. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Zhang H, Yan J, Kanamarlapudi RC, Wu W, Keyes P. Practical Synthesis of 5-Fluoro-2-(piperidin-4-yloxy)pyrimidin-4-amine, a Key Intermediate in the Preparation of Potent Deoxycytidine Kinase Inhibitors. Org Process Res Dev 2009. [DOI: 10.1021/op900060u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiming Zhang
- Chemical Development, Lexicon Pharmaceuticals, 350 Carter Road, Princeton, New Jersey 08540, U.S.A
| | - Jie Yan
- Chemical Development, Lexicon Pharmaceuticals, 350 Carter Road, Princeton, New Jersey 08540, U.S.A
| | | | - Wenxue Wu
- Chemical Development, Lexicon Pharmaceuticals, 350 Carter Road, Princeton, New Jersey 08540, U.S.A
| | - Philip Keyes
- Chemical Development, Lexicon Pharmaceuticals, 350 Carter Road, Princeton, New Jersey 08540, U.S.A
| |
Collapse
|
23
|
Cagir A, Tao ZF, Sucheck SJ, Hecht SM. Solid-phase synthesis and biochemical evaluation of conformationally constrained analogues of deglycobleomycin A5. Bioorg Med Chem 2003; 11:5179-87. [PMID: 14604681 DOI: 10.1016/j.bmc.2003.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deglycobleomycin binds to and degrades the self-complementary oligonucleotide d(CGCTAGCG)(2) in a sequence selective fashion. A previous modeling study [J. Am. Chem. Soc. 120, (1998), 7450] had shown that, during binding to double stranded DNA, the conformation of the methylvalerate domain of deglycoBLM approximated that of S-proline. In the belief that an analogue of deglycoBLM structurally constrained to mimic the DNA-bound conformation might exhibit facilitated DNA binding and cleavage, an analogue of deglycoBLM was prepared in which the methylvalerate moiety was replaced by S-proline. This deglycoBLM analogue, as well as the related analogue containing R-proline, was synthesized on a TentaGel resin. Both of the analogues were found to be capable of binding Fe(2+) and activating O(2) for transfer to styrene. However, both deglycoBLM analogues exhibited diminished abilities to effect the relaxation of supercoiled plasmid DNA, and neither mediated sequence selective DNA cleavage.
Collapse
Affiliation(s)
- Ali Cagir
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | |
Collapse
|
24
|
Rishel MJ, Thomas CJ, Tao ZF, Vialas C, Leitheiser CJ, Hecht SM. Conformationally constrained analogues of bleomycin A5. J Am Chem Soc 2003; 125:10194-205. [PMID: 12926941 DOI: 10.1021/ja030057w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bleomycin (BLM) group antitumor antibiotics are glycopeptide-derived natural products shown to cause sequence selective lesions in DNA. Prior studies have indicated that the linker region, composed of the methylvalerate and threonine residues, may be responsible for a conformational bend in the agent required for efficient DNA cleavage. We have synthesized a number of conformationally constrained methylvalerate analogues and incorporated them into deglycobleomycin A(5) congeners using our recently reported procedure for the solid phase construction of (deglyco)bleomycin and its analogues. These analogues were designed to probe the effects of conformational constraint of the native valerate moiety. Initial experiments indicated that the constrained molecules, none of which mimic the conformation proposed for the natural valerate linker, possessed DNA cleavage activity, albeit with potencies less than that of (deglyco)BLM and lacking sequence selectivity. Further experiments demonstrated that these analogues failed to produce alkali-labile lesions in DNA or sequence selective oxidative damage in RNA. However, two of the conformationally constrained deglycoBLM analogues were shown to mediate RNA cleavage in the absence of added Fe(2+). The ability of the analogues to mediate the oxygenation of small molecules was also assayed, and it was shown that they were as competent in the transfer of oxygen to low molecular weight substrates as the parent compound.
Collapse
Affiliation(s)
- Michael J Rishel
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | |
Collapse
|
25
|
Thomas CJ, Chizhov AO, Leitheiser CJ, Rishel MJ, Konishi K, Tao ZF, Hecht SM. Solid-phase synthesis of bleomycin A(5) and three monosaccharide analogues: exploring the role of the carbohydrate moiety in RNA cleavage. J Am Chem Soc 2002; 124:12926-7. [PMID: 12405801 DOI: 10.1021/ja0208916] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The solid-phase synthesis of bleomycin A5 (BLM A5) and three monosaccharide analogues is presented. The monosaccharide analogues incorporated alpha-d-mannose, alpha-l-gulose, and alpha-l-rhamnose moieties in lieu of the disaccharide normally present in BLM A5. Also explored were the abilities of each of the monosaccharide congeners to cleave a 53-nt RNA. The elaboration of these carbohydrate-modified bleomycin analogues helps to define the role of the disaccharide moiety during the RNA cleavage event. The relatively facile solid-phase synthesis of bleomycin A5 and each of the carbohydrate analogues constitutes an important advance in the continuing mechanistic studies of bleomycin.
Collapse
Affiliation(s)
- Craig J Thomas
- Department of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Zou Y, Fahmi NE, Vialas C, Miller GM, Hecht SM. Total synthesis of deamido bleomycin a(2), the major catabolite of the antitumor agent bleomycin. J Am Chem Soc 2002; 124:9476-88. [PMID: 12167044 DOI: 10.1021/ja012741l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic inactivation of the antitumor antibiotic bleomycin is believed to be mediated exclusively via the action of bleomycin hydrolase, a cysteine proteinase that is widely distributed in nature. While the spectrum of antitumor activity exhibited by the bleomycins is believed to reflect the anatomical distribution of bleomycin hydrolase within the host, little has been done to characterize the product of the putative inactivation at a chemical or biochemical level. The present report describes the synthesis of deamidobleomycin demethyl A(2) (3) and deamido bleomycin A(2) (4), as well as the respective aglycones. These compounds were all accessible via the key intermediate N(alpha)-Boc-N(beta)-[1-amino-3(S)-(4-amino-6-carboxy-5-methylpyrimidin-2-yl)propion-3-yl]-(S)-beta-aminoalanine tert-butyl ester (16). Synthetic deamido bleomycin A(2) was shown to be identical to the product formed by treatment of bleomycin A(2) with human bleomycin hydrolase, as judged by reversed-phase HPLC analysis and (1)H NMR spectroscopy. Deamido bleomycin A(2) was found to retain significant DNA cleavage activity in DNA plasmid relaxation assays and had the same sequence selectivity of DNA cleavage as bleomycin A(2). The most significant alteration of function noted in this study was a reduction in the ability of deamido bleomycin A(2) to mediate double-strand DNA cleavage, relative to that produced by BLM A(2).
Collapse
Affiliation(s)
- Ying Zou
- Contribution from the Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | | | | | | | |
Collapse
|
27
|
Thomas CJ, McCormick MM, Vialas C, Tao ZF, Leitheiser CJ, Rishel MJ, Wu X, Hecht SM. Alteration of the selectivity of DNA cleavage by a deglycobleomycin analogue containing a trithiazole moiety. J Am Chem Soc 2002; 124:3875-84. [PMID: 11942824 DOI: 10.1021/ja011820u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bleomycin (BLM) group of antitumor antibiotics effects DNA cleavage in a sequence-selective manner. Previous studies have indicated that the metal-binding and bithiazole moieties of BLM are both involved in the binding of BLM to DNA. The metal-binding domain is normally the predominant structural element in determining the sequence selectivity of DNA binding, but it has been shown that replacement of the bithiazole moiety with a strong DNA binder can alter the sequence selectivity of DNA binding and cleavage. To further explore the mechanism by which BLM and DNA interact, a trithiazole-containing deglycoBLM analogue was synthesized and tested for its ability to relax supercoiled DNA and cleave linear duplex DNA in a sequence-selective fashion. Also studied was cleavage of a novel RNA substrate. Solid-phase synthesis of the trithiazole deglycoBLM A(5) analogue was achieved using a TentaGel resin containing a Dde linker and elaborated from five key intermediates. The ability of the resulting BLM analogue to relax supercoiled DNA was largely unaffected by introduction of the additional thiazole moiety. Remarkably, while no new sites of DNA cleavage were observed for this analogue, there was a strong preference for cleavage at two 5'-GT-3' sites when a 5'-(32)P end-labeled DNA duplex was used as a substrate. The alteration of sequence selectivity of cleavage was accompanied by some decrease in the potency of DNA cleavage, albeit without a dramatic diminution. In common with BLM, the trithiazole analogue of deglycoBLM A(5) effected both hydrolytic cleavage of RNA in the absence of added metal ion and oxidative cleavage in the presence of Fe(2+) and O(2). In comparison with BLM A(5), the relative efficiencies of hydrolytic cleavage at individual sites were altered.
Collapse
Affiliation(s)
- Craig J Thomas
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu ZX, Dang Q, Wu YD. Aromatic dienophiles. 1. A theoretical study of an inverse-electron demand Diels-Alder reaction between 2-aminopyrrole and 1,3,5-triazine. J Org Chem 2001; 66:6029-36. [PMID: 11529728 DOI: 10.1021/jo010243p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study is devoted to a detailed theoretical study of an inverse-electron demand Diels-Alder reaction (IDA) with 1,3,5-triazine as the diene and 2-aminopyrrole 1A(alpha) as the dienophile, which is a key step in a cascade reaction for the one-pot synthesis of purine analogues. Geometries were optimized with the B3LYP/6-31G* method and energies were evaluated with the MP2/6-311++G** method. This IDA reaction occurs through a stepwise mechanism, where the first step corresponds to the nucleophilic attack of 2-aminopyrrole to triazine to form a zwitterionic intermediate, which is in equilibrium with a neutral intermediate through a hydrogen transfer process, followed by a rate-determining ring-closure step. It is shown that the B3LYP method significantly overestimates the activation energy, whereas the MP2 method offers a reasonable activation barrier of 27.9 kcal/mol in the gas phase. The solvation effect has been studied by the PCM model. In DMSO, the calculated activation energy of the IDA reaction is decreased to 24.0 kcal/mol with a strong endothermicity of 17.4 kcal/mol due to the energy penalty of transforming two aromatic reactants into a nonaromatic IDA adduct. The possible stepwise [2+2] pathway is ruled out based on its higher activation and reaction energies than those of the [4+2] pathway. By comparing the IDA reactions of triazine to 2-aminopyrrole and pyrrole, we address two crucial roles of the alpha-amino substituent in lowering activation and reaction energies and controlling the reaction regiochemistry.
Collapse
Affiliation(s)
- Z X Yu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Bleomycin Biosynthesis inStreptomyces verticillusATCC15003: A Model of Hybrid Peptide and Polyketide Biosynthesis. Bioorg Chem 1999. [DOI: 10.1006/bioo.1998.1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
|
33
|
Katano K, An H, Aoyagi Y, Overhand M, Sucheck SJ, Stevens WC, Hess CD, Zhou X, Hecht SM. Total Synthesis of Bleomycin Group Antibiotics. Total Syntheses of Bleomycin Demethyl A2, Bleomycin A2, and Decarbamoyl Bleomycin Demethyl A2. J Am Chem Soc 1998. [DOI: 10.1021/ja9819458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kiyoaki Katano
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Haoyun An
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Yoshiaki Aoyagi
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Mark Overhand
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Steven J. Sucheck
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - William C. Stevens
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Cynthia D. Hess
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Xiang Zhou
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Sidney M. Hecht
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
34
|
Boger DL. Heterocyclic and acyclic azadiene diels-alder reactions: Total synthesis of nothapodytine B. J Heterocycl Chem 1998. [DOI: 10.1002/jhet.5570350502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Boger DL, Ramsey TM, Cai H, Hoehn ST, Stubbe J. Definition of the Effect and Role of the Bleomycin A2 Valerate Substituents: Preorganization of a Rigid, Compact Conformation Implicated in Sequence-Selective DNA Cleavage. J Am Chem Soc 1998. [DOI: 10.1021/ja9816640] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dale L. Boger
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Timothy M. Ramsey
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hui Cai
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Silvia T. Hoehn
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
36
|
Boger DL, Ramsey TM, Cai H, Hoehn ST, Stubbe J. A Systematic Evaluation of the Bleomycin A2 l-Threonine Side Chain: Its Role in Preorganization of a Compact Conformation Implicated in Sequence-Selective DNA Cleavage. J Am Chem Soc 1998. [DOI: 10.1021/ja9816638] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dale L. Boger
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Timothy M. Ramsey
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hui Cai
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Silvia T. Hoehn
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
37
|
|
38
|
Boger DL, Ramsey TM, Cai H, Hoehn ST, Kozarich JW, Stubbe J. Assessment of the Role of the Bleomycin A2 Pyrimidoblamic Acid C4 Amino Group. J Am Chem Soc 1998. [DOI: 10.1021/ja971889v] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dale L. Boger
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| | - Timothy M. Ramsey
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| | - Hui Cai
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| | - Silvia T. Hoehn
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| | - John W. Kozarich
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| | - JoAnne Stubbe
- Contribution from the Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Merck Research Laboratory, P.O. Box 2000, Rahway, New Jersey 07065
| |
Collapse
|
39
|
Oshitari T, Shibasaki M, Yoshizawa T, Tomita M, Takao KI, Kobayashi S. Synthesis of : Sugar moiety of antitumor antibiotic bleomycin. Tetrahedron 1997. [DOI: 10.1016/s0040-4020(97)00360-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Boger DL, Teramoto S, Cai H. N-methyl threonine analogues of deglycobleomycin A2: synthesis and evaluation. Bioorg Med Chem 1997; 5:1577-89. [PMID: 9313863 DOI: 10.1016/s0968-0896(97)00107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis of 5 and its D-allo-threonine epimer 6 and the comparison of their DNA cleavage efficiency and selectivity with that of deglycobleomycin A2 (3) are detailed. The studies illustrate that N-methylation of the L-threonine subunit within deglycobleomycin A2 dramatically reduces the DNA cleavage efficiency (10-15-fold), weakens and nearly abolishes the inherent DNA cleavage selectivity, but has little effect on the inherent oxidation capabilities of the activated Fe(III) complexes. The results are consistent with a previously unrecognized prominent role for the threonine NH and the potential importance of a hydrogen bond to the Fe(III) hydroperoxide complex of bleomycin or a subsequent activated complex implicated in recent structural models.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
41
|
|
42
|
Cobo J, Melguizo M, Nogueras M, Sánchez A, Dobado J, Nonella M. A theoretical investigation on the reactivity of 6-amino-3-methylpyrimidin-4(3H)-ones towards DMAD. Tandem Diels-Alder retro Diels-Alder (DA/RDA) reaction. Tetrahedron 1996. [DOI: 10.1016/0040-4020(96)00825-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Boger DL. Azadiene diels-alder reactions: Scope and applications. Total synthesis of natural andEnt-fredericamycin A. J Heterocycl Chem 1996. [DOI: 10.1002/jhet.5570330508] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Boger DL, Teramoto S, Cai H. Synthesis and evaluation of deglycobleomycin A2 analogues containing a tertiary N-methyl amide and simple ester replacement for the L-histidine secondary amide: direct functional characterization of the requirement for secondary amide metal complexation. Bioorg Med Chem 1996; 4:179-93. [PMID: 8814877 DOI: 10.1016/0968-0896(95)00183-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis and comparative examination of 3-5, analogues of deglycobleomycin A2 (2) which address the inferred importance of the L-histidine secondary amide directly, are detailed. The agent 3 lacks only the L-histidine beta-hydroxy group of deglycobleomycin A2 and the corresponding agents 4 and 5 incorporate a tertiary N-methyl amide and simple ester in place of the L-histidine secondary amide. The DNA cleavage properties of 3 proved essentially indistinguishable from those of deglycobleomycin A2 (2) confirming that the distinctions between bleomycin A2 (1) and deglycobleomycin (2) are due to the removal of the disaccharide and not the introduction of the L-histidine free beta-hydroxy group. The agents 4 and 5 containing a tertiary N-methyl amide and ester in place of the L-histidine secondary amide were found to cleave duplex DNA but to do so in a nonsequence selective fashion with a substantially reduced efficiency and a diminished double to single strand cleavage ratio that are only slightly greater than that of free iron itself. These latter observations establish the functional requirement for the L-histidine secondary amide and are consistent with the proposals that the L-histidine deprotonated secondary amide is required for functional metal chelation and activity.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | | | | |
Collapse
|
45
|
Boger DL, Ramsey TM, Cai H. Synthesis and evaluation of potential N pi and N sigma metal chelation sites within the beta-hydroxy-L-histidine subunit of bleomycin A2: functional characterization of imidazole N pi metal complexation. Bioorg Med Chem 1996; 4:195-207. [PMID: 8814878 DOI: 10.1016/0968-0896(95)00184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis and evaluation of 4 and 5, fully functionalized deglycobleomycin A2 (2) analogues incorporating an oxazole and a pyrrole in place of the beta-hydroxy-L-histidine imidazole, are detailed. The oxazole agent is only capable of Npi metal complexation through a form related to the N1-H imidazole tautomer of bleomycin A2 (1) while the pyrrole agent may potentially mimic the Nsigma metal complexation capabilities of the imidazole N3-H tautomer. Metal complexes (Fe-II, Fe-III) of 4 and 5 were found to cleave duplex DNA in the presence of O2 (Fe-II) or H2O2 (Fe-III). The oxazole agent 4 which is incapable of Nsigma metal chelation was found to behave analogous to, albeit slightly less effectively than, deglycobleomycin A2 resulting in the characteristic 5'-GC/5'-GT sequence selective cleavage of duplex DNA directly confirming that imidazole/oxazole Npi metal chelation is sufficient for functional reactivity. Importantly, the effective substitution of the oxazole O-1 for the histidine N-1 further illustrates that this group does not require deprotonation upon metal complexation, oxygen activation, or the ensuing oxidation reactions, that the functional bleomycin A2 tautomer is the imidazole N'-H tautomer, and that the imidazole N'-H functionality is not contributing to the polynucleotide recognition through H-bonding to the phosphate backbone or nucleotide bases. In contrast, the pyrrole agent 5 which is incapable of Npi metal chelation, but possesses the capabilities of functioning as a Nsigma metal donor was also found to cleave duplex DNA, but does so in a nonsequence selective fashion with a significantly reduced efficiency and a diminished double to single strand cleavage ratio both only slightly above that of background iron itself. These observations are analogous to those made with 3 which lacks the imidazole altogether and further support the observations that Nsigma coordination, not Npi coordination, of the imidazole is required for the functional activity of bleomycin A2.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | | | | |
Collapse
|
46
|
Steel PJ. Aromatic Biheterocycles: Syntheses, Structures, and Properties. ADVANCES IN HETEROCYCLIC CHEMISTRY 1996. [DOI: 10.1016/s0065-2725(08)60070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
47
|
Boger DL, Colletti SL, Teramoto S, Ramsey TM, Zhou J. Synthesis of key analogs of bleomycin A2 that permit a systematic evaluation of the linker region: identification of an exceptionally prominent role for the L-threonine substituent. Bioorg Med Chem 1995; 3:1281-95. [PMID: 8564421 DOI: 10.1016/0968-0896(95)00113-u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The synthesis of a full series of analogs 2b-k of deglycobleomycin A2 (2a) containing systematic variations in the linker domain of bleomycin A2 (1) is described. The agents 2b-k, which are not accessible through structural modification of 1 or 2a, constitute key substructure analogs incorporating deep-seated structural modifications in the linker domain capable of delineating the contribution of the individual backbone substituents to the DNA cleavage efficiency, characteristic DNA cleavage selectivity, and double strand to single strand DNA cleavage ratio. The comparative examination of the DNA cleavage properties of the Fe(II) and Fe(III) complexes of 2a-k upon activation by O2-thiol or H2O2, respectively, revealed several characteristic features and trends. First, none of the substituents affect the characteristic 5'-GC, 5'-GT > 5'-GA DNA cleavage selectivity of bleomycin A2. In contrast, an exceptionally prominent role for the L-threonine substituent and an important role for the C4-methyl substituent of the (2S,3S,4R)-4-amino-3-hydroxy-2-methylpentanoic acid subunit were observed on the DNA cleavage efficiency of the agents. Similarly, the L-threonine substituent was found to substantially increase the ratio of double strand to single strand DNA cleavage events (2-3 times). In a w794 DNA cleavage assay, shortening the linker region by two carbons resulted in an exceptionally large reduction in DNA cleavage efficiency (125 times) and provided an agent that was only 1.3 times more effective than Fe(III) indicating that this deep-seated modification essentially destroys the DNA cleavage capabilities of the agent. The L-threonine substituent contributes in an exceptional manner, and its removal resulted in a 25 times reduction in DNA cleavage efficiency. A substantial contribution was observed for the C4-methyl group on the 4-aminobutanoic acid subunit and its removal resulted in a 7 times reduction in DNA cleavage efficiency. Little effect for the C3-hydroxyl and C2-methyl substituents on the 4- aminobutanoic acid subunit was observed (0-2.5 times) and even their inversion of stereochemistry had little impact on DNA cleavage efficiency or selectivity. Notably, the magnitude of the previously unappreciated L-threonine substituent contribution to the DNA cleavage efficiency and on the ratio of double to single strand DNA cleavage events is the largest effect observed to date including the well recognized disaccharide potentiation (6 times) of the DNA cleavage properties. Consequently, the past role and relative importance of the L-threonine subunit and substituent has been underestimated. Moreover, the cumulative effect of the two important linker chain substituents clearly illustrate that the functional role of this domain is much more important than its simply serving as a linker.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Huang L, Quada JC, Lown JW. Design, synthesis and sequence selective DNA cleavage of functional models of bleomycin--II. 1,2-trans-disubstituted cyclopropane units as novel linkers. Bioorg Med Chem 1995; 3:647-57. [PMID: 7582943 DOI: 10.1016/0968-0896(95)00058-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The design and syntheses of functional models for bleomycin in which AMPHIS, a simplified model of the metal-chelating subunit of bleomycin is connected to distamycin analogs with a series of linkers, are described. Kinetic studies and DNA cleavage assay show that 1,2-trans-disubstituted cyclopropane units are the best linkers within this series. Study of selective DNA cleavage on high resolution polyacrylamide sequencing gels indicates that the linker modified hybrids generally cleave selectively at the 5' end of poly T sites and at the 3' end of poly A sites. Cleavage activity is enhanced for most of the compounds related to those with shorter linkers, previously reported, (Huang, L.; Quada, Jr J. C.; Lown, J. W. Bioconjugate Chem. 1995, 6, 21, Ref. 1) probably as a result of the linker allowing the active complex to approach the target deoxyribose more closely and efficiently. Certain of the compounds, ones containing a (S)-methyl in the linker and the (S,S)-cyclopropyl linker, exhibit unique cleavage sites, indicating that these linkers allow the hybrids to locate novel, individual DNA binding sites.
Collapse
Affiliation(s)
- L Huang
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
49
|
Boger DL, Yun W, Cai H, Han N. CBI-CDPBO1 and CBI-CDPBI1: CC-1065 analogs containing deep-seated modifications in the DNA binding subunit. Bioorg Med Chem 1995; 3:761-7. [PMID: 7582954 DOI: 10.1016/0968-0896(95)00066-p] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis and preliminary examination of CBI-CDPBO1 (2) and CBI-CDPBI1 (3), CBI analogs of CC-1065 (1) and the duocarmycins incorporating the 3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]benzoxazole-7-carboxylate (CDPBO) and 3-carbamoyl-1,2-dihydro-3H-pyrrolo[3,2-e]benzimidazole-7-carboxylate (CDPBI) DNA binding subunits, are detailed. The agents contain deep-seated modifications in the DNA binding subunits of the natural products with incorporation of a nitrogen capable of functioning as a hydrogen bond acceptor (CDPBO, CDPBI) or hydrogen bond donor (CDPBI) on their inside concave face which is in intimate contact with the minor groove floor. The CDPBO subunit was prepared through use of a novel and effective MnO2-mediated oxidative coupling of 2-(benzyloxy)ethylamine with 5-hydroxyindole (4) to directly provide 2-[(benzyloxy)methyl]pyrrolo[3,2-e]benzoxazole (6, 48%) in a reaction cascade that initially proceeds with amine regioselective C4 nucleophilic addition to the in situ generated p-quinone monoimine 13. Subsequent conversion of 6 to 8 (debenzylation; MnO2-NaCN, CH3OH) and selective reduction of the fused pyrrole (Et3SiH-CF3CO2H) completed the synthesis of the 1,2-dihydro-3H-pyrrolo[3,2-e]benzoxazole-7-carboxylate ring system. The CDPBI subunit was prepared through selective C4 nitration of 22 followed by reduction of the nitro group and acid-catalyzed closure to the corresponding 2-[(benzyloxy)methyl]pyrrolo[3,2-e]benzimidazole 25. The final conversion of 25 to the 1,2-dihydro-3H-pyrrolo[3,2-e]benzimidazole-7-carboxylate ring system (CDPBI) followed the same protocols introduced for CDPBO. The DNA alkylation efficiencies of 2 and 3 were identical and both were substantially diminished relative to that of CBI-CDPI1 (40). Thus, the introduction of a single nitrogen atom in the DNA binding subunit of 40 has a pronounced and detrimental effect on the relative efficiency (100 x) of DNA alkylation. Consistent with these observations, the in vitro cytotoxic activity of (+)-2 and (+)-3 were comparable (IC50 = 200 pM, L1210) and 40 x less potent than (+)-40 (IC50 = 5 pM, L1210). In contrast to the large impact these small structural changes had on the efficiency of DNA alkylation, the selectivity of DNA alkylation by 2 and 3 was unperturbed and both agents were found to alkylate the same major sites as CBI-CDPI1 (40). The potential origin of these effects is discussed.
Collapse
Affiliation(s)
- D L Boger
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
50
|
Preparation of 2-O-(3-O-carbamoyl-α-d-mannopyranosyl)-l-gulopyranose: Synthetic study on the sugar moiety of antitumor antibiotic bleomycin. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(94)02458-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|