1
|
Krömer M, Poštová Slavětínská L, Hocek M. Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove. Chemistry 2024; 30:e202402318. [PMID: 38896019 DOI: 10.1002/chem.202402318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
2
|
Manabe Y, Tsutsui M, Hirao K, Kobayashi R, Inaba H, Matsuura K, Yoshidome D, Kabayama K, Fukase K. Mechanistic Studies for the Rational Design of Multivalent Glycodendrimers. Chemistry 2022; 28:e202201848. [DOI: 10.1002/chem.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Masato Tsutsui
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kohtaro Hirao
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Risako Kobayashi
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
- Centre for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
- Centre for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Daisuke Yoshidome
- Schrödinger K.K. 17F Marunouchi Trust Tower North, 1-8-1 Marunouchi Chiyoda-ku Tokyo 100-0005 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
3
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed Engl 2022; 61:e202206456. [DOI: 10.1002/anie.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Saito
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Ryutaro Honda
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Masanori Nagao
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Applied Chemistry Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
4
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Saito
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Ryutaro Honda
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Sotaro Akashi
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Hinata Takimoto
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Masanori Nagao
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Yoshiko Miura
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering 744 MotookaNishi-kuFukuoka 8190001 JAPAN
| | - Yu Hoshino
- Kyushu University Department of Chemical Engineering 744 Motooka 819-0395 Fukuoka JAPAN
| |
Collapse
|
5
|
|
6
|
Yeldell SB, Seitz O. Nucleic acid constructs for the interrogation of multivalent protein interactions. Chem Soc Rev 2020; 49:6848-6865. [DOI: 10.1039/d0cs00518e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-programmed self-assembly provides multivalent nucleic acid–ligand constructs used as tailor-made probes for unravelling and exploiting the mechanisms of multivalency-enhanced interactions on protein receptors.
Collapse
Affiliation(s)
- Sean B. Yeldell
- Department of Chemistry
- Humboldt-Universität zu Berlin
- Brook-Taylor-Str. 2
- 12489 Berlin
- Germany
| | - Oliver Seitz
- Department of Chemistry
- Humboldt-Universität zu Berlin
- Brook-Taylor-Str. 2
- 12489 Berlin
- Germany
| |
Collapse
|
7
|
Oh T, Jono K, Kimoto Y, Hoshino Y, Miura Y. Preparation of multifunctional glycopolymers using double orthogonal reactions and the effect of electrostatic groups on the glycopolymer–lectin interaction. Polym J 2019. [DOI: 10.1038/s41428-019-0244-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
LaCasse Z, Briscoe JR, Nesterov EE, Nesterova IV. Multidimensional Tunability of Nucleic Acids Enables Sensing over Unknown Backgrounds. Anal Chem 2019; 91:14275-14280. [PMID: 31651140 DOI: 10.1021/acs.analchem.9b02420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A longstanding challenge in quantitative analysis is the relationship between a sensor's dynamic range and a background: the response range must align with the target's background value. If this condition is not met, a reliable measurement is impossible. The requirement is especially critical for sensing systems displaying sharp responses. In this work, we have solved the problem of response range/background misalignment via design of sensing systems that adjust their response to actual unknown backgrounds. The sensing systems are based on nucleic acid scaffolds: due to an intrinsic trait of multidimensional tunability, the sensors can assess the actual background and adjust response range accordingly. We established a general methodology and demonstrated, as a proof-of-concept, a practically meaningful example of detecting very small changes in proton concentrations over unknown aqueous backgrounds using a DNA i-motif sensor. Owing to multidimensional tunability of a DNA i-motif, this sensor could reliably measure changes in proton concentration that are 3 orders of magnitude below currently available methodologies.
Collapse
Affiliation(s)
- Zane LaCasse
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - James R Briscoe
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States.,Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| |
Collapse
|
9
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
10
|
Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus 2019; 9:20180080. [PMID: 30842878 PMCID: PMC6388016 DOI: 10.1098/rsfs.2018.0080] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The glycocalyx is an information-dense network of biomacromolecules extensively modified through glycosylation that populates the cellular boundary. The glycocalyx regulates biological events ranging from cellular protection and adhesion to signalling and differentiation. Owing to the characteristically weak interactions between individual glycans and their protein binding partners, multivalency of glycan presentation is required for the high-avidity interactions needed to trigger cellular responses. As such, biological recognition at the glycocalyx interface is determined by both the structure of glycans that are present as well as their spatial distribution. While genetic and biochemical approaches have proven powerful in controlling glycan composition, modulating the three-dimensional complexity of the cell-surface 'glycoscape' at the sub-micrometre scale remains a considerable challenge in the field. This focused review highlights recent advances in glycocalyx engineering using synthetic nanoscale glycomaterials, which allows for controlled de novo assembly of complexity with precision not accessible with traditional molecular biology tools. We discuss several exciting new studies in the field that demonstrate the power of precision glycocalyx editing in living cells in revealing and controlling the complex mechanisms by which the glycocalyx regulates biological processes.
Collapse
Affiliation(s)
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0358, USA
| |
Collapse
|
11
|
Nagao M, Matsubara T, Hoshino Y, Sato T, Miura Y. Topological Design of Star Glycopolymers for Controlling the Interaction with the Influenza Virus. Bioconjug Chem 2019; 30:1192-1198. [DOI: 10.1021/acs.bioconjchem.9b00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Probst N, Lartia R, Théry O, Alami M, Defrancq E, Messaoudi S. Efficient Buchwald-Hartwig-Migita Cross-Coupling for DNA Thioglycoconjugation. Chemistry 2018; 24:1795-1800. [PMID: 29205564 DOI: 10.1002/chem.201705371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/11/2022]
Abstract
An efficient method for the thioglycoconjugation of iodinated oligonucleotides by Buchwald-Hartwig-Migita cross-coupling under mild conditions is reported. The method enables divergent synthesis of many different functionalized thioglycosylated ODNs in good yields, without affecting the integrity of the other A, C, and G nucleobases.
Collapse
Affiliation(s)
- Nicolas Probst
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Rémy Lartia
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Océane Théry
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Mouâd Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Eric Defrancq
- University Grenoble-Alpes, DCM, CS 40700, 38058, Grenoble, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290, Châtenay-Malabry, France
| |
Collapse
|
13
|
Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y. Controlling the lectin recognition of glycopolymersviadistance arrangement of sugar blocks. Chem Commun (Camb) 2018; 54:82-85. [DOI: 10.1039/c7cc07107h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Control of molecular recognitionvialiving radical polymerization.
Collapse
Affiliation(s)
- K. Jono
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - M. Nagao
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - T. Oh
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - S. Sonoda
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Y. Hoshino
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Y. Miura
- Department of Chemical Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
14
|
Bandlow V, Liese S, Lauster D, Ludwig K, Netz RR, Herrmann A, Seitz O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. J Am Chem Soc 2017; 139:16389-16397. [DOI: 10.1021/jacs.7b09967] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Victor Bandlow
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Susanne Liese
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Daniel Lauster
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Kai Ludwig
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Netz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Andreas Herrmann
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Oliver Seitz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
15
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
16
|
Matsuura K. Construction of Functional Biomaterials by Biomolecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170133] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552
| |
Collapse
|
17
|
Toraskar S, Gade M, Sangabathuni S, Thulasiram HV, Kikkeri R. Exploring the Influence of Shapes and Heterogeneity of Glyco-Gold Nanoparticles on Bacterial Binding for Preventing Infections. ChemMedChem 2017; 12:1116-1124. [DOI: 10.1002/cmdc.201700218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Suraj Toraskar
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Madhuri Gade
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Sivakoti Sangabathuni
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| | - Hirekodathakallu V. Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road Pune 411008 India
| | - Raghavendra Kikkeri
- Department of Chemistry; Indian Institute of Science Education and Research, Dr. Homi Bhabha Road; Pune 411008 India
| |
Collapse
|
18
|
Katagiri K, Takasu A, Higuchi M. Synthesis of Glycopolymer Containing Cell-Penetrating Peptides as Inducers of Recombinant Protein Expression under the Control of Lactose Operator/Repressor Systems. Biomacromolecules 2016; 17:1902-8. [PMID: 27057925 DOI: 10.1021/acs.biomac.6b00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently reported on newly synthesized S-galactosyl oligo(Arg) conjugates to overcome the serious problem of the passage through the E. coli cell membrane. Following in vivo expression of green fluorescent protein (GFP) induced by each of the S-galactosyl (Arg)n constructs (n = 5, 6, 8) at the T5 promoter in E. coli for 18 h, we visually observed that the cultures fluoresced green light when excited with UV light. The fluorescence intensities for these cultures were greater than that found for a control culture, indicating that the peptides had induced GFP expression. In order to accomplish higher expression efficiency, we investigated the cluster effect and structural fine-tuning of new poly(2-oxazoline) containing CysArgArg as the cell-penetrating peptide (CPP) and S-galactosides when acting as inducers of recombinant protein expression under the control of lac operator/repressor systems in this article. Quantitative fluorescence intensities (calculated per molecule) also supported the observations that the cell-penetrating glyco poly(2-oxazoline)s were better inducers of GFP expression than glyco poly(2-oxazoline) containing no CPP or isopropyl β-d-thiogalactoside. Because the level of GFP expression was directly related to the number of sugar residues in each glyco poly(2-oxazoline), we propose that a cluster effect of the S-galactosides attached to the cell-penetrating poly(2-oxazoline) is responsible for how well the galactosides inhibited the lac repressor to activate the protein expression under the control of the lac operator/repressor system. A similar tendency was observed when the T7 promoter was placed upstream of the gene for an artificial extracellular matrix protein and glyco poly(2-oxazoline)s-CPP conjugates were used as inducers. To assess how the glyco poly(2-oxazoline) penetrate the cell membrane, we labeled the glyco poly(2-oxazoline) using 1-amino pyrene and directly observed the penetration process. Furthermore, we could visualize protein expression under the control of a lac promoter/operator/repressor system using transmission electron microscopy combined with energy dispersive X-ray analysis mapping.
Collapse
Affiliation(s)
- Kei Katagiri
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-Cho , Showa-Ku, Nagoya 466-8555, Japan
| | - Akinori Takasu
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-Cho , Showa-Ku, Nagoya 466-8555, Japan
| | - Masahiro Higuchi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso-Cho , Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Zhang S, Xiao Q, Sherman SE, Muncan A, Ramos Vicente ADM, Wang Z, Hammer DA, Williams D, Chen Y, Pochan DJ, Vértesy S, André S, Klein ML, Gabius HJ, Percec V. Glycodendrimersomes from Sequence-Defined Janus Glycodendrimers Reveal High Activity and Sensor Capacity for the Agglutination by Natural Variants of Human Lectins. J Am Chem Soc 2015; 137:13334-44. [DOI: 10.1021/jacs.5b08844] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaodong Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Adam Muncan
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrea D. M. Ramos Vicente
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhichun Wang
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Daniel A. Hammer
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6391, United States
| | - Dewight Williams
- Electron
Microscopy Resource Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, United States
| | - Yingchao Chen
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J. Pochan
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sabine Vértesy
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sabine André
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Michael L. Klein
- Institute
of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstrasse 13, 80539 Munich, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Nesterova IV, Briscoe JR, Nesterov EE. Rational Control of Folding Cooperativity in DNA Quadruplexes. J Am Chem Soc 2015; 137:11234-7. [PMID: 26305404 DOI: 10.1021/jacs.5b06645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Availability of basic tools for engineering molecular systems with precisely defined properties is crucial toward progress in development of new responsive materials. Among such materials are systems capable of generating an ultrasensitive response (i.e., large relative changes in output in response to small changes in input). Herein, we focus on a rational design of DNA quadruplex based structures as ultrasensitive response elements. In particular, we demonstrate how addition of allosteric guiding elements can be engineered into H(+)-responsive i-motif structure to yield maximized response sensitivity.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - James R Briscoe
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Evgueni E Nesterov
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Peri-Naor R, Ilani T, Motiei L, Margulies D. Protein-Protein Communication and Enzyme Activation Mediated by a Synthetic Chemical Transducer. J Am Chem Soc 2015; 137:9507-10. [PMID: 25955617 DOI: 10.1021/jacs.5b01123] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The design and function of a synthetic "chemical transducer" that can generate an unnatural communication channel between two proteins is described. Specifically, we show how this transducer enables platelet-derived growth factor to trigger (in vitro) the catalytic activity of glutathione-s-transferase (GST), which is not its natural enzyme partner. GST activity can be further controlled by adding specific oligonucleotides that switch the enzymatic reaction on and off. We also demonstrate that a molecular machine, which can regulate the function of an enzyme, could be used to change the way a prodrug is activated in a "programmable" manner.
Collapse
Affiliation(s)
- Ronny Peri-Naor
- †Departments of Organic Chemistry and ‡Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Ilani
- †Departments of Organic Chemistry and ‡Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Leila Motiei
- †Departments of Organic Chemistry and ‡Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Margulies
- †Departments of Organic Chemistry and ‡Structural Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Barluenga S, Winssinger N. PNA as a Biosupramolecular Tag for Programmable Assemblies and Reactions. Acc Chem Res 2015; 48:1319-31. [PMID: 25947113 DOI: 10.1021/acs.accounts.5b00109] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The programmability of oligonucleotide hybridization offers an attractive platform for the design of assemblies with emergent properties or functions. Developments in DNA nanotechnologies have transformed our thinking about the applications of nucleic acids. Progress from designed assemblies to functional outputs will continue to benefit from functionalities added to the nucleic acids that can participate in reactions or interactions beyond hybridization. In that respect, peptide nucleic acids (PNAs) are interesting because they combine the hybridization properties of DNA with the modularity of peptides. In fact, PNAs form more stable duplexes with DNA or RNA than the corresponding natural homoduplexes. The high stability achieved with shorter oligomers (an 8-mer is sufficient for a stable duplex at room temperature) typically results in very high sequence fidelity in the hybridization with negligible impact of the ionic strength of the buffer due to the lack of electrostatic repulsion between the duplex strands. The simple peptidic backbone of PNA has been shown to be tolerant of modifications with substitutions that further enhance the duplex stability while providing opportunities for functionalization. Moreover, the metabolic stability of PNAs facilitates their integration into systems that interface with biology. Over the past decade, there has been a growing interest in using PNAs as biosupramolecular tags to program assemblies and reactions. A series of robust templated reactions have been developed with functionalized PNA. These reactions can be used to translate DNA templates into functional polymers of unprecedented complexity, fluorescent outputs, or bioactive small molecules. Furthermore, cellular nucleic acids (mRNA or miRNA) have been harnessed to promote assemblies and reactions in live cells. The tolerance of PNA synthesis also lends itself to the encoding of small molecules that can be further assembled on the basis of their nucleic acid sequences. It is now well-established that hybridization-based assemblies displaying two or more ligands can interact synergistically with a target biomolecule. These assemblies have now been shown to be functional in vivo. Similarly, PNA-tagged macromolecules have been used to prepare bioactive assemblies and three-dimensional nanostructures. Several technologies based on DNA-templated synthesis of sequence-defined polymers or DNA-templated display of ligands have been shown to be compatible with reiterative cycles of selection/amplification starting with large libraries of DNA templates, bringing the power of in vitro evolution to synthetic molecules and offering the possibility of exploring uncharted molecular diversity space with unprecedented scope and speed.
Collapse
Affiliation(s)
- Sofia Barluenga
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
24
|
Novoa A, Winssinger N. DNA display of glycoconjugates to emulate oligomeric interactions of glycans. Beilstein J Org Chem 2015; 11:707-19. [PMID: 26113879 PMCID: PMC4462854 DOI: 10.3762/bjoc.11.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed.
Collapse
Affiliation(s)
- Alexandre Novoa
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30, quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva 30, quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
25
|
Zambaldo C, Barluenga S, Winssinger N. PNA-encoded chemical libraries. Curr Opin Chem Biol 2015; 26:8-15. [PMID: 25621730 DOI: 10.1016/j.cbpa.2015.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/08/2015] [Indexed: 01/04/2023]
Abstract
Peptide nucleic acid (PNA)-encoded chemical libraries along with DNA-encoded libraries have provided a powerful new paradigm for library synthesis and ligand discovery. PNA-encoding stands out for its compatibility with standard solid phase synthesis and the technology has been used to prepare libraries of peptides, heterocycles and glycoconjugates. Different screening formats have now been reported including selection-based and microarray-based methods that have yielded specific ligands against diverse target classes including membrane receptors, lectins and challenging targets such as Hsp70.
Collapse
Affiliation(s)
- Claudio Zambaldo
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Sofia Barluenga
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, Geneva, Switzerland.
| |
Collapse
|
26
|
Novoa A, Machida T, Barluenga S, Imberty A, Winssinger N. PNA-encoded synthesis (PES) of a 10 000-member hetero-glycoconjugate library and microarray analysis of diverse lectins. Chembiochem 2014; 15:2058-65. [PMID: 25158314 DOI: 10.1002/cbic.201402280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/07/2022]
Abstract
Identification of selective and synthetically tractable ligands to glycan-binding proteins is important in glycoscience. Carbohydrate arrays have had a tremendous impact on profiling glycan-binding proteins and as analytical tools. We report a highly miniaturized synthetic format to access nucleic-acid-encoded hetero-glycoconjugate libraries with an unprecedented diversity in the combinations of glycans, linkers, and capping groups. Novel information about plant and bacterial lectin specificity was obtained by microarray profiling, and we show that a ligand identified on the array can be converted to a high-affinity soluble ligand by straightforward chemistry.
Collapse
Affiliation(s)
- Alexandre Novoa
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4 (Switzerland)
| | | | | | | | | |
Collapse
|
27
|
Winssinger N, Gorska K, Ciobanu M, Daguer JP, Barluenga S. Assembly of PNA-tagged small molecules, peptides, and carbohydrates onto DNA templates: programming the combinatorial pairing and inter-ligand distance. Methods Mol Biol 2014; 1050:95-110. [PMID: 24297353 DOI: 10.1007/978-1-62703-553-8_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biochemical stability and desirable hybridization properties of peptide nucleic acids (PNA) coupled to the robustness of the peptidic chemistry involved in their oligomerization make them an attractive nucleic acid tag to encode molecules and program their assembly into higher order oligomers. The ability to program the dimerization of ligands with controlled distance between the ligands has important applications in emulating multimeric interactions. Additionally, the ability to program different permutations of ligand assemblies in a combinatorial fashion provides access to a broad diversity and offers a rapid screening method for fragment based approaches to drug discovery. Herein, we describe protocols to covalently link diverse carbohydrates, peptides, or small molecules to PNA and combinatorially assemble them in solution onto libraries of DNA templates or onto DNA microarrays using a commercial platform without recourse to specialized equipment or heavy upfront investment.
Collapse
Affiliation(s)
- Nicolas Winssinger
- Laboratoire de Chemie Organique et Bioorganique, Institut de Science et d'Ingénierie Supramoléculaires, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
28
|
Temme JS, Drzyzga MG, MacPherson IS, Krauss IJ. Directed evolution of 2G12-targeted nonamannose glycoclusters by SELMA. Chemistry 2013; 19:17291-5. [PMID: 24227340 DOI: 10.1002/chem.201303848] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- J Sebastian Temme
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454 (USA)
| | | | | | | |
Collapse
|
29
|
Battle C, Chu X, Jayawickramarajah J. Oligonucleotide-Based Systems for Input-Controlled and Non-Covalently Regulated Protein-Binding. Supramol Chem 2013; 25. [PMID: 24187478 DOI: 10.1080/10610278.2013.810337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supramolecular chemists continuously take inspiration from complex biological systems to develop functional molecules involved in molecular recognition and self-assembly. In this regard, "smart" synthetic molecules that emulate allosteric proteins are both exciting and challenging, since many allosteric proteins can be considered as molecular switches that bind to other protein targets in a non-covalent fashion, and importantly, are capable of having their output activity controlled by prior binding to input molecules. This review discusses the foundations and passage toward the development of non-covalently operated oligonucleotide-based systems with protein-binding capacity that can be precisely regulated in an input-controlled manner.
Collapse
Affiliation(s)
- Cooper Battle
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | | | | |
Collapse
|
30
|
Li G, Liu Y, Liu Y, Chen L, Wu S, Liu Y, Li X. Photoaffinity Labeling of Small-Molecule-Binding Proteins by DNA-Templated Chemistry. Angew Chem Int Ed Engl 2013; 52:9544-9. [DOI: 10.1002/anie.201302161] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/14/2013] [Indexed: 01/07/2023]
|
31
|
Li G, Liu Y, Liu Y, Chen L, Wu S, Liu Y, Li X. Photoaffinity Labeling of Small-Molecule-Binding Proteins by DNA-Templated Chemistry. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Mizuta Y, Takasu A, Higuchi M. Synthesis of Cell-PenetratingS-Galactosyl-Oligoarginine Peptides as Inducers of Recombinant Protein Expression under the Control oflacOperator/Repressor Systems. Chempluschem 2013; 78:677-683. [DOI: 10.1002/cplu.201300130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 11/07/2022]
|
33
|
Sadhu KK, Röthlingshöfer M, Winssinger N. DNA as a Platform to Program Assemblies with Emerging Functions in Chemical Biology. Isr J Chem 2013. [DOI: 10.1002/ijch.201200100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kalyan K. Sadhu
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
| | - Manuel Röthlingshöfer
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
| | - Nicolas Winssinger
- Institut de Science et Ingénierie Supramoléculaires (ISIS – UMR 7006), Université de Strasbourg – CNRS, 8 allée Gaspard Monge, F67000 Strasbourg (France)
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH‐1211 Geneva 4 (Switzerland) phone: +41‐22‐379‐61‐05 fax: +41‐22‐379‐32‐15
| |
Collapse
|
34
|
Li Y, Zhang M, Zhang C, Li X. Detection of bond formations by DNA-programmed chemical reactions and PCR amplification. Chem Commun (Camb) 2013; 48:9513-5. [PMID: 22899375 DOI: 10.1039/c2cc35230c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A system capable of performing both DNA-templated chemical reactions and detection of bond formations is reported. Photocleavable DNA templates direct reactions. Products from bond-forming events re-ligate original templates, amplifiable by PCR, therefore distinguishing bond formation from background. This system provides a novel approach for discovering potential new chemical reactions.
Collapse
Affiliation(s)
- Yizhou Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 202 Chengfu Rd., Beijing, 100871, China
| | | | | | | |
Collapse
|
35
|
Scheibe C, Wedepohl S, Riese SB, Dernedde J, Seitz O. Carbohydrate-PNA and aptamer-PNA conjugates for the spatial screening of lectins and lectin assemblies. Chembiochem 2013; 14:236-50. [PMID: 23292704 DOI: 10.1002/cbic.201200618] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 11/06/2022]
Abstract
Nucleic acid architectures offer intriguing opportunities for the interrogation of structural properties of protein receptors. In this study, we performed a DNA-programmed spatial screening to characterize two functionally distinct receptor systems: 1) structurally well-defined Ricinus communis agglutinin (RCA(120)), and 2) rather ill-defined assemblies of L-selectin on nanoparticles and leukocytes. A robust synthesis route that allowed the attachment both of carbohydrate ligands-such as N-acetyllactosamine (LacNAc), sialyl-Lewis-X (sLe(X)), and mannose-and of a DNA aptamer to PNAs was developed. A systematically assembled series of different PNA-DNA complexes served as multivalent scaffolds to control the spatial alignments of appended lectin ligands. The spatial screening of the binding sites of RCA(120) was in agreement with the crystal structure analysis. The study revealed that two appropriately presented LacNAc ligands suffice to provide unprecedented RCA(120) affinity (K(D) = 4 μM). In addition, a potential secondary binding site was identified. Less dramatic binding enhancements were obtained when the more flexible L-selectin assemblies were probed. This study involved the bivalent display both of the weak-affinity sLe(X) ligand and of a high-affinity DNA aptamer. Bivalent presentation led to rather modest (sixfold or less) enhancements of binding when the self-assemblies were targeted against L-selectin on gold nanoparticles. Spatial screening of L-selectin on the surfaces of leukocytes showed higher affinity enhancements (25-fold). This and the distance-activity relationships indicated that leukocytes permit dense clustering of L-selectin.
Collapse
Affiliation(s)
- Christian Scheibe
- Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | | | | | |
Collapse
|
36
|
Spinelli N, Defrancq E, Morvan F. Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. Chem Soc Rev 2012; 42:4557-73. [PMID: 23254681 DOI: 10.1039/c2cs35406c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjugation of oligonucleotides (ONs) to a variety of reporter groups has been the subject of intensive research during the last decade. Conjugation is indeed of great interest because it can be used not only to improve the existing ONs properties but also to impart new ones. In this context tremendous efforts have been made to conjugate carbohydrate moieties to ONs. Indeed carbohydrates play an important role in biological processes such as signal transduction and cell adhesion through the recognition with sugar-binding proteins (i.e. lectins) located on the surface of cells. For this reason, carbohydrate-oligonucleotide conjugates (COCs) have been first developed for improving the poor cellular uptake or tissue specific delivery of ONs through receptor-mediated endocytosis. Besides the targeted ONs delivery, carbohydrate-oligonucleotide conjugates (COCs) are also evaluated in the context of carbohydrate biochips in which surface coating with carbohydrates is achieved by using the DNA-directed immobilization strategy (DDI). Peptide nucleic acids (PNAs) have also been extensively investigated as a surrogate of DNA for diverse applications. Therefore attachment of carbohydrate moieties to this class of molecules has been studied. The aforementioned applications of COCs require mimicking of the natural processes, in which the weak individual protein-carbohydrate binding is overcome by using multivalent interactions. This tutorial review focuses on the recent advances in carbohydrate-oligonucleotide conjugates and describes the major synthetic approaches available. In addition, an overview of applications that have been developed using various scaffolds allowing multivalent interactions is provided. Finally recent results on the use of peptide nucleic acids as oligonucleotides surrogate are described.
Collapse
Affiliation(s)
- Nicolas Spinelli
- Département de Chimie Moléculaire UMR 5250, CNRS Université Joseph Fourier, BP 53-38041, Grenoble cedex 9, France
| | | | | |
Collapse
|
37
|
Enhanced binding of trigonal DNA–carbohydrate conjugates to lectin. Bioorg Med Chem Lett 2012; 22:6139-43. [DOI: 10.1016/j.bmcl.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/26/2012] [Accepted: 08/07/2012] [Indexed: 11/16/2022]
|
38
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalenz als chemisches Organisations- und Wirkprinzip. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201114] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp EW, Haag R. Multivalency as a Chemical Organization and Action Principle. Angew Chem Int Ed Engl 2012; 51:10472-98. [DOI: 10.1002/anie.201201114] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 12/26/2022]
|
40
|
Morvan F, Vidal S, Souteyrand E, Chevolot Y, Vasseur JJ. DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Adv 2012. [DOI: 10.1039/c2ra21550k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
41
|
Schlegel MK, Hütter J, Eriksson M, Lepenies B, Seeberger PH. Defined presentation of carbohydrates on a duplex DNA scaffold. Chembiochem 2011; 12:2791-800. [PMID: 22052782 DOI: 10.1002/cbic.201100511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 01/15/2023]
Abstract
A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.
Collapse
Affiliation(s)
- Mark K Schlegel
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
42
|
Pourceau G, Meyer A, Vasseur JJ, Morvan F. Synthesis of a glycomimetic oligonucleotide conjugate by 1,3-dipolar cycloaddition. Methods Mol Biol 2011; 751:167-93. [PMID: 21674331 DOI: 10.1007/978-1-61779-151-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A glycomimetic oligonucleotide conjugate bearing four galactose residues on a mannose core is -synthesized using oligonucleotide solid-phase synthesis and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, or "click" chemistry). To achieve this purpose, new building blocks (including the solid support and phosphoramidites) are synthesized and used on a DNA synthesizer to generate a tetraalkyne oligonucleotide, which is then conjugated with a galactose azide derivative by click chemistry to afford the desired 3'-tetragalactosyl-mannose oligonucleotide conjugate. The procedures described in this chapter provide a general approach for the synthesis of novel glycoconjugates that can be immobilized to a DNA chip via DNA-directed immobilization to study, for example, their multivalent interactions with lectins in cellular targeting/uptake, etc.
Collapse
|
43
|
Eberhard H, Diezmann F, Seitz O. DNA as a molecular ruler: interrogation of a tandem SH2 domain with self-assembled, bivalent DNA-peptide complexes. Angew Chem Int Ed Engl 2011; 50:4146-50. [PMID: 21455916 DOI: 10.1002/anie.201007593] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/18/2011] [Indexed: 01/01/2023]
Affiliation(s)
- Hendrik Eberhard
- Department of Chemistry, Humboldt University Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
44
|
Eberhard H, Diezmann F, Seitz O. DNA as a Molecular Ruler: Interrogation of a Tandem SH2 Domain with Self-Assembled, Bivalent DNA-Peptide Complexes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007593] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Kiviniemi A, Virta P, Lönnberg H. Solid-supported synthesis and click conjugation of 4'-C-alkyne functionalized oligodeoxyribonucleotides. Bioconjug Chem 2011; 21:1890-901. [PMID: 20828203 DOI: 10.1021/bc100268w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
4'-C-[N,N-Di(4-pentyn-1-yl)aminomethyl]thymidine and 4'-C-[N-methyl-N-(4-pentyn-1-yl)aminomethyl]thymidine 3'-(2-cyanoethyl-N,N-diisopropyl)phosphoramidites (1, 2) were synthesized, and one or two such monomers were incorporated into a 15-mer oligodeoxyribonucleotide. After chain assembly, azido-functionalized ligands, including appropriate derivatives of 1,4-phenylenedimethaneamine, mannose, paromamine, and neomycin, were conjugated to the alkynyl groups by the click chemistry on a solid support. The influence of the 4'-modifications on the melting temperature with DNA and 2'-O-methyl RNA targets was studied. Oligonucleotides containing one to four mannose ligands in the central part of the chain (up to two 4'-C-[N,N-di(4-pentyn-1-yl)aminomethyl]thymidine units) form equally stable duplexes with complementary 2'-OMe RNA as the corresponding unmodified DNA sequence. At high salt content, the mannose conjugation is even stabilizing. On using a DNA target, a modest destabilization occurs. All the amino group bearing conjugates stabilized the duplexes, the DNA·DNA duplexes more than the DNA·2'-O-methyl RNA duplexes.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, Turku, Finland
| | | | | |
Collapse
|
46
|
Bossu I, Šulc M, Křenek K, Dufour E, Garcia J, Berthet N, Dumy P, Křen V, Renaudet O. Dendri-RAFTs: a second generation of cyclopeptide-based glycoclusters. Org Biomol Chem 2011; 9:1948-59. [PMID: 21221455 DOI: 10.1039/c0ob00772b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic glycoclusters and their related biological applications have stimulated increasing interest over the last decade. As a prerequisite to discovering active and selective therapeuticals, the development of multivalent glycoconjugates with diverse topologies is faced with inherent synthetic and structural characterisation difficulties. Here we describe a new series of molecularly-defined glycoclusters that were synthesized in a controlled manner using a robust and versatile divergent protocol. Starting from a Regioselectively Addressable Functionalized Template (RAFT) carrier, either a polylysine dendritic framework or a second RAFT, then 16 copies of βGal, αMan, βLac or cancer-related Thomsen-Freidenreich (αTF) antigen were successively conjugated within the same molecule using oxime chemistry. We thus obtained a new generation of dendri-RAFTs glycoclusters with high glycosidic density and variable spatial organizations. These compounds displaying 16 endgroups were unambiguously characterized by NMR spectroscopy and mass spectrometry. Further biological assays between a model lectin from Canavalia ensiformis (ConA) and mannosylated glycoclusters revealed a higher inhibition potency than the tetravalent counterpart, in particular for the hexadecavalent polylysine skeleton. Together with the efficiency of the synthetic and characterisation processes, this preliminary biological study provided clear evidence of promising properties that make the second generation of cyclopeptide-based glycoclusters attractive for biomedical applications.
Collapse
Affiliation(s)
- Isabelle Bossu
- Département de Chimie Moléculaire, UMR CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pourceau G, Meyer A, Chevolot Y, Souteyrand E, Vasseur JJ, Morvan F. Oligonucleotide carbohydrate-centered galactosyl cluster conjugates synthesized by click and phosphoramidite chemistries. Bioconjug Chem 2011; 21:1520-9. [PMID: 20715856 DOI: 10.1021/bc1001888] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oligonucleotide glycoconjugates with a mannose or galactose core bearing four galactose residues introduced by phosphoramidite chemistry and copper catalyzed azide alkyne 1,3-dipolar cycloaddition (click chemistry) have been synthesized. A first click reaction allowed the introduction on a solid support of a mannose core on which four pentynyl linkers were introduced using a phosphoramidite derivative. After the elongation of the oligonucleotide, a second click reaction performed either on solid support or in solution allowed the introduction of four galactose azide derivatives. Repeating the phosphoramidite and click chemistries afforded an oligonucleotide glycoconjugate dendrimer bearing 16 galactoses on its periphery.
Collapse
Affiliation(s)
- Gwladys Pourceau
- Institut des Biomolecules Max Mousseron, UMR 5247 CNRS, Universite Montpellier 1, Place Eugene Bataillon, Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
48
|
Scheibe C, Bujotzek A, Dernedde J, Weber M, Seitz O. DNA-programmed spatial screening of carbohydrate–lectin interactions. Chem Sci 2011. [DOI: 10.1039/c0sc00565g] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Diezmann F, Seitz O. DNA-guided display of proteins and protein ligands for the interrogation of biology. Chem Soc Rev 2011; 40:5789-801. [DOI: 10.1039/c1cs15054e] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Takasu A, Kojima H. Synthesis and ring-opening polymerizations of novel S-glycooxazolines. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|