1
|
Arathala P, Musah RA. Atmospheric Chemistry of Chloroprene Initiated by OH Radicals: Combined Ab Initio/DFT Calculations and Kinetics Analysis. J Phys Chem A 2024; 128:8983-8995. [PMID: 39377484 PMCID: PMC11492244 DOI: 10.1021/acs.jpca.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Chloroprene (CP; CH2═C(Cl)-CH═CH2) is a significant toxic airborne pollutant, often originating from anthropogenic activities. However, the environmental fate of CP is incompletely understood. High level CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculations combined with kinetic modeling were employed here to glean new insight into the reaction mechanism, energies, and kinetics of the reaction of CP with OH radical (•OH). We report the energies of four different addition pathways and six different abstraction pathways. The •OH attack on the terminal C1 atom of the =CH2 group (which is directly attached to the =CCl moiety), leading to the formation of HOCH2-•C(Cl)-CH═CH2, was found to be a major path. The barrier height for the formation of the corresponding transition state was found to be -1.9 kcal mol-1 below that of the starting CP + •OH reactants. Rate coefficients were calculated for addition and abstraction pathways involving the CP + •OH reaction under pre-equilibrium approximation conditions, employing a combination of canonical variational transition state theory and small curvature tunneling. The overall rate coefficient for the reaction of CP + •OH at 298 K was found to be 1.4 × 10-10 cm3 molecule-1 s-1. The thermochemistry of the possible channels and atmospheric implications are provided. In addition, the fate of HOCH2-•C(Cl)-CH═CH2 in the presence of 3O2 was investigated. We found the reaction of the CP-derived peroxy radical adduct with HO2 and NO to make contributions to the formation of products such as formaldehyde, HO2 radical, Cl atom, HOCH2C(OOH)(Cl)CH═CH2, HOCH2C(O)Cl, ClC(O)CH═CH2, HOCH2C(O)CH═CH2, and HC(O) radical.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department
of Chemistry, University at Albany—State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, LA 12222, United States
| | - Rabi A. Musah
- Department
of Chemistry, University at Albany—State
University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, LA 12222, United States
| |
Collapse
|
2
|
Hutama AS, Marlina LA, Akram MB, Wijaya K, Sari RM, Saputri WD. Atmospheric Degradation Mechanism of Isoamyl Acetate Initiated by OH Radicals and Cl Atoms Revealed by Quantum Chemical Calculations and Kinetic Modeling. J Phys Chem A 2024; 128:8483-8500. [PMID: 39314143 DOI: 10.1021/acs.jpca.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Isoamyl acetate is one of the volatile organic compound class molecules relevant to agricultural and industrial applications. With the growing interest in isoamyl acetate applications in industry, the atmospheric fate of isoamyl acetate must be considered. Reaction mechanisms, potential energy profiles, and rate constants of isoamyl acetate reaction with atmospheric relevant oxidant OH radicals and Cl atoms have been obtained from the quantum chemical calculations and kinetic modeling. The geometry optimizations were conducted using M06-2X/6-311++G(3df,3pd) followed by single point-energy calculations at the DLPNO-CCSD(T) method with an extrapolated complete basis set. The rate constants were calculated by solving the master equation. A hydrogen-abstraction reaction dominates the first step of isoamyl acetate degradation, while the addition-substitution reaction plays a small role in the degradation products. The kinetic study was conducted to evaluate the rate constants within a temperature range of 200-400 K. The total rate constants for the isoamyl acetate degradation reactions initiated by the OH radical and Cl atom were determined to be 6.96 × 10-12 and 1.27 × 10-10 cm3 molecule-1 s-1, respectively, under standard temperature and pressure conditions. The product degradation mechanism, ozone formation potential, and atmospheric impacts were discussed.
Collapse
Affiliation(s)
- Aulia Sukma Hutama
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Lala Adetia Marlina
- Research Center for Computing, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
| | - Muhammad Bahy Akram
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Reka Mustika Sari
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Wahyu Dita Saputri
- Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| |
Collapse
|
3
|
Xia Y, Long B, Liu A, Truhlar DG. Reactions with Criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:1216-1224. [PMID: 39431129 PMCID: PMC11489503 DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Atmospheric oxidation processes are of central importance in atmospheric climate models. It is often considered that volatile organic molecules are mainly removed by hydroxyl radical; however, the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow. Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates. These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling (DL-MS-CVT/SCT). The treatment contains beyond-CCSD(T) electronic structure calculations for transition state theory, and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory. We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F + CH2OO and HC(O)F + anti-CH3CHOO reactions. We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F + CH2OO/anti-CH3CHOO to the rate constant for HC(O)F + OH. We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride, and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH3CHOO Criegee intermediates.
Collapse
Affiliation(s)
- Yu Xia
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Ai Liu
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, United States
| |
Collapse
|
4
|
Vo QV, Thao LTT, Manh TD, Bay MV, Truong-Le BT, Hoa NT, Mechler A. Reaction of methylene blue with OH radicals in the aqueous environment: mechanism, kinetics, products and risk assessment. RSC Adv 2024; 14:27265-27273. [PMID: 39193277 PMCID: PMC11348493 DOI: 10.1039/d4ra05437g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Methylene Blue (MB) is an industrial chemical used in a broad range of applications, and hence its discharge is a concern. Yet, the environmental effects of its degradation by HO˙ radicals have not been fully studied yet. This study employs quantum chemical calculations to investigate the two-step degradation of MB by HO˙ radicals in aqueous environments. It was found that MB undergoes a rapid reaction with the HO˙ radical, with an overall rate constant of 5.51 × 109 to 2.38 × 1010 M-1 s-1 and has a rather broad lifetime range of 11.66 hours to 5.76 years in water at 273-383 K. The calculated rate constants are in good agreement with the experimental values (k calculation/k experimental = 2.62, pH > 2, 298 K) attesting to the accuracy of the calculation method. The HO˙ + MB reaction in water followed the formal hydrogen transfer and radical adduct formation mechanisms, yielding various intermediates and products. Based on standard tests these intermediates and some of the products can pose a threat to aquatic organisms, including fish, daphnia, and green algae, they have poor biodegradability and have the potential to induce developmental toxicity. Hence MB in the environment is of moderate concern depending on the ratio of safe to harmful breakdown products.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Luu Thi Thu Thao
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Tran Duc Manh
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Mai Van Bay
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Bich-Tram Truong-Le
- Department of Science and International Cooperation, The University of Danang Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
5
|
Arathala P, Musah RA. Theoretical Insights into the Gas-Phase Oxidation of 3-Methyl-2-butene-1-thiol by the OH Radical: Thermochemical and Kinetic Analysis. J Phys Chem A 2024; 128:2136-2149. [PMID: 38466809 PMCID: PMC10961829 DOI: 10.1021/acs.jpca.3c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
3-Methyl-2-butene-1-thiol ((CH3)2C═CH-CH2-SH; MBT) is a recently identified volatile organosulfur compound emitted from Cannabis sativa and is purported to contribute to its skunky odor. To understand its environmental fate, hydroxyl radical (•OH)-mediated oxidation of MBT was conducted using high-level quantum chemical and theoretical kinetic calculations. Three stable conformers were identified for the title molecule. Abstraction and addition pathways are possible for the MBT + OH radical reaction, and thus, potential energy surfaces involving H-abstraction and •OH addition were computed at the CCSD(T)/aug-cc-pV(T+d)Z//M06-2X/aug-cc-pV(T+d)Z level of theory. The barrier height for the addition of the OH radical to a C atom of the alkene moiety, leading to the formation of a C-centered MBT-OH radical, was computed to be -4.1 kcal mol-1 below the energy of the starting MBT + OH radical-separated reactants. This reaction was found to be dominant compared to other site-specific H-abstraction and addition paths. The kinetics of all the site-specific abstraction and addition reactions associated with the most stable MBT + OH radical reaction were assessed using the MESMER kinetic code between 200 and 320 K. Further, we considered the contributions from two other conformers of MBT to the overall reaction of MBT + OH radical. The estimated global rate coefficient for the oxidation of MBT with respect to its reactions with the OH radical was found to be 6.1 × 10-11 cm3 molecule-1 s-1 at 298 K and 1 atm pressure. The thermodynamic parameters and atmospheric implications of the MBT + OH reaction are discussed.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
6
|
Shiroudi A, Czub J, Altarawneh M. Chemical Investigation on the Mechanism and Kinetics of the Atmospheric Degradation Reaction of Trichlorofluoroethene by OH⋅ and Its Subsequent Fate in the Presence of O 2 /NOx. Chemphyschem 2024; 25:e202300665. [PMID: 37983906 DOI: 10.1002/cphc.202300665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The M06-2X/6-311++G(d,p) level of theory was used to examine the degradation of Trichlorofluoroethene (TCFE) initiated by OH⋅ radicals. Additionally, the coupled-cluster single-double with triple perturbative [CCSD(T)] method was employed to refine the single-point energies using the complete basis set extrapolation approach. The results indicated that OH-addition is the dominant pathway. OH⋅ adds to both the C1 and C2 carbons, resulting in the formation of the C(OH)Cl2 -⋅CClF and ⋅CCl2 -C(OH)ClF species. The associated barrier heights were determined to be 1.11 and -0.99 kcal mol-1 , respectively. Furthermore, the energetic and thermodynamic parameters show that pathway 1 exhibits greater exothermicity and exergonicity compared to pathway 2, with differences of 8.11 and 8.21 kcal mol-1 , correspondingly. The primary pathway involves OH addition to the C2 position, with a rate constant of 6.2×10-13 cm3 molecule-1 sec-1 at 298 K. This analysis served to estimate the atmospheric lifetime, along with the photochemical ozone creation potential (POCP) and ozone depletion potential (ODP). It yielded an atmospheric lifetime of 8.49 days, an ODP of 4.8×10-4 , and a POCP value of 2.99, respectively. Radiative forcing efficiencies were also estimated at the M06-2X/6-311++G(d,p) level. Global warming potentials (GWPs) were calculated for 20, 100, and 500 years, resulting in values of 9.61, 2.61, and 0.74, respectively. TCFE is not expected to make a significant contribution to the radiative forcing of climate change. The results obtained from the time-dependent density functional theory (TDDFT) indicated that TCFE and its energized adducts are unable to photolysis under sunlight in the UV and visible spectrum. Secondary reactions involve the [TCFE-OH-O2 ]⋅ peroxy radical, leading subsequently to the [TCFE-OH-O]⋅ alkoxy radical. It was found that the alkoxy radical resulting from the peroxy radical can lead to the formation of phosgene (COCl2 ) and carbonyl chloride fluoride (CClFO), with phosgene being the primary product.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
7
|
Fu Z, Ma F, Liu Y, Yan C, Huang D, Chen J, Elm J, Li Y, Ding A, Pichelstorfer L, Xie HB, Nie W, Francisco JS, Zhou P. An overlooked oxidation mechanism of toluene: computational predictions and experimental validations. Chem Sci 2023; 14:13050-13059. [PMID: 38023500 PMCID: PMC10664553 DOI: 10.1039/d3sc03638c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Secondary organic aerosols (SOAs) influence the Earth's climate and threaten human health. Aromatic hydrocarbons (AHs) are major precursors for SOA formation in the urban atmosphere. However, the revealed oxidation mechanism dramatically underestimates the contribution of AHs to SOA formation, strongly suggesting the importance of seeking additional oxidation pathways for SOA formation. Using toluene, the most abundant AHs, as a model system and the combination of quantum chemical method and field observations based on advanced mass spectrometry, we herein demonstrate that the second-generation oxidation of AHs can form novel epoxides (TEPOX) with high yield. Such TEPOX can further react with H2SO4 or HNO3 in the aerosol phase to form less-volatile compounds including novel non-aromatic and ring-retaining organosulfates or organonitrates through reactive uptakes, providing new candidates of AH-derived organosulfates or organonitrates for future ambient observation. With the newly revealed mechanism, the chemistry-aerosol box modeling revealed that the SOA yield of toluene oxidation can reach up to 0.35, much higher than 0.088 based on the original mechanism under the conditions of pH = 2 and 0.1 ppbv NO. This study opens a route for the formation of reactive uptake SOA precursors from AHs and significantly fills the current knowledge gap for SOA formation in the urban atmosphere.
Collapse
Affiliation(s)
- Zihao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Dandan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences Shanghai China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Jonas Elm
- Department of Chemistry, iClimate, Aarhus University Langelandsgade 140 DK-8000 Aarhus C Denmark
| | - Yuanyuan Li
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Lukas Pichelstorfer
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki P. O. Box 64 FIN-00014 Helsinki Finland
- pi-numerics Wallbachsiedlung 28 5202 Neumarkt am W. Austria
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing 210023 China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania Philadelphia PA USA 19104-6316
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki P. O. Box 64 FIN-00014 Helsinki Finland
| |
Collapse
|
8
|
Madugula PPP, Balla R. Laser induced fluorescence and computational studies on the tropospheric photooxidation reactions of methyl secondary butyl ether initiated by OH radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99748-99761. [PMID: 37615909 DOI: 10.1007/s11356-023-29053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
The kinetics of the reaction of methyl secondary butyl ether with OH radicals was investigated experimentally using the pulsed laser photolysis-laser induced fluorescence technique (PLP-LIF) over temperatures ranging from 268 to 363 K. The rate coefficient value at 298 K was measured to be (1.09 ± 0.02) × 10-11 cm3 molecule-1 s-1 and the deduced Arrhenius expression is [Formula: see text]= (2.21 ± 0.29) × 10-12 exp ((471.71 ± 38.50)/T) cm3 molecule-1 s-1. To complement the experimental data, the kinetic study of the title reaction was performed computationally at CCSD(T)/cc-pVTZ//M06-2X/6-311 + G(d,p) level of theory with the incorporation of tunnelling correction from 200 to 400 K. The end products formed were qualitatively analyzed by using gas chromatography equipped with mass spectrometry (GC-MS) as detection technique and the mechanism for degradation was proposed. Thermochemical parameters were evaluated to determine the feasibility of individual reaction pathways. Atmospheric implications were evaluated and discussed in this manuscript.
Collapse
Affiliation(s)
| | - Rajakumar Balla
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
9
|
Viegas LP. A Multiconformational Transition State Theory Approach to OH Tropospheric Degradation of Fluorotelomer Aldehydes. Chemphyschem 2023; 24:e202300259. [PMID: 37326576 DOI: 10.1002/cphc.202300259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the Cx F2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of x ${x}$ . In this work we apply the MC-TST/CTSR protocol to thex = 2 , 3 ${x={\rm 2,3}}$ cases and calculate both rate coefficients at 298.15 K with a value ofk = ( 2 . 4 ± 1 . 4 ) × 10 - 12 ${k=(2.4\pm 1.4)\times {10}^{-12}}$ cm3 molecule-1 s-1 , practically coincident with the recommended experimental value of kexp =( 2 . 8 ± 1 . 4 ) × 10 - 12 ${(2.8\pm 1.4)\times {10}^{-12}}$ cm3 molecule-1 s-1 . We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.
Collapse
Affiliation(s)
- Luís P Viegas
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
10
|
Wang H, Zhao M, Zuo Q, Liu M, He X, Wang Z, Sun Y, Song R, Zhang Y. A theoretical study of the gas-phase reactions of propadiene with NO 3: mechanism, kinetics and insights. RSC Adv 2023; 13:21383-21392. [PMID: 37465581 PMCID: PMC10350637 DOI: 10.1039/d3ra02523c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
In this study, the conversion mechanisms and kinetics of propadiene (CH2[double bond, length as m-dash]C[double bond, length as m-dash]CH2) induced by NO3 were researched using density functional theory (DFT) and transition state theory (TST) measurements. The NO3-addition pathways to generate IM1 (CH2ONO2CCH2) and IM2 (CH2CONO2CH2) play a significant role. P3 (CH2CONOCHO + H) was the dominant addition/elimination product. Moreover, the results manifested that one H atom from the -CH2- group has to be abstracted by NO3 radicals, leading to the final product h-P1 (CH2CCH + HNO3). Due to the high barrier, the H-abstraction pathway is not important for the propadiene + NO3 reaction. In addition, the computed ktot value of propadiene reacting with NO3 at 298 K is 3.34 × 10-15 cm3 per molecule per s, which is in accordance with the experimental value. The computed lifetime of propadiene oxidized by NO3 radicals was assessed to be 130.16-6.08 days at 200-298 K and an altitude of 0-12 km. This study provides insights into the transformation of propadiene in a complex environment.
Collapse
Affiliation(s)
- Haomin Wang
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Meilian Zhao
- School of Public Health, Chengdu University of Traditional Chinese Medicine ChengDu PR China
| | - Qiwen Zuo
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Mingxing Liu
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Xinyu He
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Zhiguo Wang
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Yuxi Sun
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Ruojing Song
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Key Laboratory of Inorganic Materials Preparation and Synthesis, Mianyang Normal University Mianyang 621000 PR China +86 816 2200819 +86 816 2200064
| |
Collapse
|
11
|
Amić A, Mastiľák Cagardová D. A DFT Study on the Kinetics of HOO •, CH 3OO •, and O 2•- Scavenging by Quercetin and Flavonoid Catecholic Metabolites. Antioxidants (Basel) 2023; 12:1154. [PMID: 37371883 DOI: 10.3390/antiox12061154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Reaction kinetics have been theoretically examined to ascertain the potency of quercetin (Q) and flavonoid catecholic metabolites 1-5 in the inactivation of HOO•, CH3OO•, and O2•- under physiological conditions. In lipidic media, the koverallTST/Eck rate constants for the proton-coupled electron transfer (PCET) mechanism indicate the catecholic moiety of Q and 1-5 as the most important in HOO• and CH3OO• scavenging. 5-(3,4-Dihydroxyphenyl)-γ-valerolactone (1) and alphitonin (5) are the most potent scavengers of HOO• and CH3OO•, respectively. The koverallMf rate constants, representing actual behavior in aqueous media, reveal Q as more potent in the inactivation of HOO• and CH3OO• via single electron transfer (SET). SET from 3-O- phenoxide anion of Q, a structural motif absent in 1-5, represents the most contributing reaction path to overall activity. All studied polyphenolics have a potency of O2•- inactivation via a concerted two-proton-coupled electron transfer (2PCET) mechanism. The obtained results indicate that metabolites with notable radical scavenging potency, and more bioavailability than ingested flavonoids, may contribute to human health-promoting effects ascribed to parent molecules.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| |
Collapse
|
12
|
Wang C, Chen X, Liu Y, Huang T, Jiang S. Theoretical Study of the Gas-Phase Hydrolysis of Formaldehyde to Produce Methanediol and Its Implication to New Particle Formation. ACS OMEGA 2023; 8:15467-15478. [PMID: 37151514 PMCID: PMC10157852 DOI: 10.1021/acsomega.3c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Aldehydes were speculated to be important precursor species in new particle formation (NPF). The direct involvement of formaldehyde (CH2O) in sulfuric acid and water nucleation is negligible; however, whether its atmospheric hydrolysate, methanediol (CH2(OH)2), which contains two hydroxyl groups, participates in NPF is not known. This work investigates both CH2O hydrolysis and NPF from sulfuric acid and CH2(OH)2 with quantum chemistry calculations and atmospheric cluster dynamics modeling. Kinetic calculation shows that reaction rates of the gas-phase hydrolysis of CH2O catalyzed by sulfuric acid are 11-15 orders of magnitude faster than those of the naked path at 253-298 K. Based on structures and the calculated formation Gibbs free energies, the interaction between sulfuric acid/its dimer/its trimer and CH2(OH)2 is thermodynamically favorable, and CH2(OH)2 forms hydrogen bonds with sulfuric acid/its dimer/its trimer via two hydroxyl groups to stabilize clusters. Our further cluster kinetic calculations suggested that the particle formation rates of the system are higher than those of the binary system of sulfuric acid and water at ambient low sulfuric acid concentrations and low relative humidity. In addition, the formation rate is found to present a negative temperature dependence because evaporation rate constants contribute significantly to it. However, cluster growth is essentially limited by the weak formation of the largest clusters, which implies that other stabilizing vapors are required for stable cluster formation and growth.
Collapse
Affiliation(s)
- Chunyu Wang
- School
of Biological and Environmental Engineering, Chaohu University, Hefei 238024, Anhui, China
- Water
Environment Research Center, Chaohu University, Hefei 238024, Anhui, China
| | - Xiaoju Chen
- School
of Biological and Environmental Engineering, Chaohu University, Hefei 238024, Anhui, China
| | - Yirong Liu
- School
of Information Science and Technology, University
of Science and Technology of China, Hefei 230026, Anhui, China
| | - Teng Huang
- Laboratory
of Atmospheric Physico-Chemistry, Anhui
Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Shuai Jiang
- School
of Information Science and Technology, University
of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
13
|
Hoa NT, Ngoc Van LT, Vo QV. Reactions of nicotine and the hydroxyl radical in the environment: Theoretical insights into the mechanism, kinetics and products. CHEMOSPHERE 2023; 314:137682. [PMID: 36586441 DOI: 10.1016/j.chemosphere.2022.137682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nicotine (NCT) is a prevalent and highly poisonous tobacco alkaloid found in wastewater discharge. Advanced oxidative processes (AOP) are radical interactions between harmful pollutants and ambient free radicals that, theoretically, result in less toxic compounds. For a better understanding of the chemical transformations and long-term environmental effects of toxic discharges, the study of these processes is crucial. Here, quantum chemical calculations are used to investigate the AOP of the NCT in aqueous and lipidic environments. It was found that NCT interacted with HO• in polar and nonpolar media, with an overall rate constant koverall = 106 - 1010 M-1 s-1. The computed kinetic data are reasonably accurate as seen by the comparison with the experimental rate constant in water (pH = 7.0), which results in a kcalculated/kexperimetal ratio of 1.4. The hydrogen transfer (C7, C9, C12)-single electron transfer pathways are the main mechanisms for the HO• + NCT reaction in pentyl ethanoate solvent to form the cations as the primary products of the two-step reaction. However, in aqueous environments, the degradation of NCT by HO• radicals increases with increasing pH levels. It is predicted that oxidation products are less toxic than nicotine itself, especially in an aqueous environment with a pH < 7.0.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam
| | | | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam.
| |
Collapse
|
14
|
Reaction Mechanism and Kinetics of H and Cl Atom Abstraction in Dichloromethane With OH Radical. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
15
|
Adeniyi AA, Adeniyi JN, Olumayede EG. The theoretical study of the oxidation reaction of hydroxyl radical for the removal of volatile organic aliphatic and aromatic aldehydes from the atmosphere. Struct Chem 2023. [DOI: 10.1007/s11224-022-02120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Amić A, Mastiľák Cagardová D. DFT Study of the Direct Radical Scavenging Potency of Two Natural Catecholic Compounds. Int J Mol Sci 2022; 23:ijms232214497. [PMID: 36430975 PMCID: PMC9697371 DOI: 10.3390/ijms232214497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
To ascertain quercetin's and rooperol's potency of H-atom donation to CH3OO• and HOO•, thermodynamics, kinetics and tunnelling, three forms of chemical reaction control, were theoretically examined. In lipid media, H-atom donation from quercetin's catecholic OH groups via the proton-coupled electron transfer (PCET) mechanism, is more relevant than from C-ring enolic moiety. Amongst rooperol's two catecholic moieties, H-atom donation from A-ring OH groups is favored. Allylic hydrogens of rooperol are poorly abstractable via the hydrogen atom transfer (HAT) mechanism. Kinetic analysis including tunnelling enables a more reliable prediction of the H-atom donation potency of quercetin and rooperol, avoiding the pitfalls of a solely thermodynamic approach. Obtained results contradict the increasing number of misleading statements about the high impact of C-H bond breaking on polyphenols' antioxidant potency. In an aqueous environment at pH = 7.4, the 3-O- phenoxide anion of quercetin and rooperol's 4'-O- phenoxide anion are preferred sites for CH3OO• and HOO• inactivation via the single electron transfer (SET) mechanism.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +381-31-399-980
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
| |
Collapse
|
17
|
Kuzhanthaivelan S, Sunitha S, Rajakumar B. Computational investigation of thermochemistry and kinetics of the reaction between n-butyl peroxy and hydroperoxyl radicals. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Albertini S, Gruber E, Zappa F, Krasnokutski S, Laimer F, Scheier P. Chemistry and physics of dopants embedded in helium droplets. MASS SPECTROMETRY REVIEWS 2022; 41:529-567. [PMID: 33993543 DOI: 10.1002/mas.21699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/18/2023]
Abstract
Helium droplets represent a cold inert matrix, free of walls with outstanding properties to grow complexes and clusters at conditions that are perfect to simulate cold and dense regions of the interstellar medium. At sub-Kelvin temperatures, barrierless reactions triggered by radicals or ions have been observed and studied by optical spectroscopy and mass spectrometry. The present review summarizes developments of experimental techniques and methods and recent results they enabled.
Collapse
Affiliation(s)
- Simon Albertini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Serge Krasnokutski
- Laboratory Astrophysics Group of the MPI for Astronomy, University of Jena, Jena, Germany
| | - Felix Laimer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zhao B, Ji Y, Qin D, Ji Y, Chen J, An T. Competing pathways of cresol formation in toluene photooxidation: OH-toluene adducts react with NO 2 or with O 2? J Environ Sci (China) 2022; 114:211-220. [PMID: 35459487 DOI: 10.1016/j.jes.2021.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/14/2023]
Abstract
Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216-298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10-12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10-5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.
Collapse
Affiliation(s)
- Baocong Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongpeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dandan Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory of City Cluster Environmental Safety and Green development, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Lan X, Dai Y, Jing W, Meng X, Liu F, Wang S, He A, Li N. DFT investigation on the carbonate radical formation in the system containing carbon dioxide and hydroxyl free radical. J Mol Graph Model 2022; 114:108182. [DOI: 10.1016/j.jmgm.2022.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
21
|
Chen J, Li J, Chen X, Gu J, An T. The underappreciated role of monocarbonyl-dicarbonyl interconversion in secondary organic aerosol formation during photochemical oxidation of m-xylene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152575. [PMID: 34963606 DOI: 10.1016/j.scitotenv.2021.152575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Photochemical oxidation (including photolysis and OH-initiated reactions) of aromatic hydrocarbon produces carbonyls, which are involved in the formation of secondary organic aerosols (SOA). However, the mechanism of this process remains incompletely understood. Herein, the monocarbonyl-dicarbonyl interconversion and its role in SOA production were investigated via a series of photochemical oxidation experiments for m-xylene and representative carbonyls. The results showed that SOA mass concentration peaked at 113.5 ± 3.5 μg m-3 after m-xylene oxidation for 60 min and then decreased. Change in the main oxidation products from dicarbonyl (e.g., glyoxal, methylglyoxal) to monocarbonyl (e.g., formaldehyde) was responsible for this decrease. The photolysis of methylglyoxal or glyoxal produced formaldehyde, favoring SOA formation, while photopolymerization of formaldehyde to glyoxal decreased SOA production. The presence of ·OH altered the balance of photolysis interconversion, resulting in greater production of formaldehyde and SOA from glyoxal than methylglyoxal. Both photolysis and OH-initiated transformations of glyoxal to formaldehyde were suppressed by methylglyoxal, while glyoxal accelerated the reaction of ·OH with methylglyoxal to generate products which reversibly converted to glyoxal and methylglyoxal. These interconversion reactions reduced SOA production. The present study provides a new research perspective for the contribution mechanism of carbonyls in SOA formation and the findings are also helpful to efficiently evaluate the atmospheric fate of aromatic hydrocarbons.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiani Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Gu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Giri BR, Farooq A, Szőri M, Roscoe JM. The kinetics of the reactions of Br atoms with the xylenes: an experimental and theoretical study. Phys Chem Chem Phys 2022; 24:4843-4858. [PMID: 35080539 DOI: 10.1039/d1cp03740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports the temperature dependence of the rate coefficients for the reactions of atomic bromine with the xylenes that are determined experimentally and theoretically. The experiments were carried out in a Pyrex chamber equipped with fluorescent lamps to measure the rate coefficients at temperatures from 295 K to 346 K. Experiments were made at several concentrations of oxygen to assess its potential kinetic role under atmospheric conditions and to validate comparison of our rate coefficients with those obtained by others using air as the diluent. Br2 was used to generate Br atoms photolytically. The relative rate method was used to obtain the rate coefficients for the reactions of Br atoms with the xylenes. The reactions of Br with both toluene and diethyl ether (DEE) were used as reference reactions where the loss of the organic reactants was measured by gas chromatography. The rate coefficient for the reaction of Br with diethyl ether was also measured in the same way over the same temperature range with toluene as the reference reactant. The rate coefficients were independent of the concentration of O2. The experimentally determined temperature dependence of the rate coefficients of these reactions can be given in the units cm3 molecule-1 s-1 by: o-xylene + Br, log10(k) = (-10.03 ± 0.35) - (921 ± 110)/T; m-xylene + Br, log10(k) = (-10.78 ± 0.09) - (787 ± 92/T); p-xylene + Br, log10(k) = (-9.98 ± 0.39) - (956 ± 121)/T; diethyl ether + Br, log10(k) = (-7.69 ± 0.55) - (1700 ± 180)/T). This leads to the following rate coefficients, in the units of cm3 molecule-1 s-1, based on our experimental measurements: o-xylene + Br, k(298 K) = 7.53 × 10-14; m-xylene + Br, k(298 K) = 3.77 × 10-14; p-xylene + Br, k(298 K) = 6.43 × 10-14; diethyl ether + Br, k(298 K) = 4.02 × 10-14. Various ab initio methods including G3, G4, CCSD(T)/cc-pV(D,T)Z//MP2/aug-cc-pVDZ and CCSD(T)/cc-pV(D,T)Z//B3LYP/cc-pVTZ levels of theory were employed to gain detailed information about the kinetics as well as the thermochemical quantities. Among the ab initio methods, the G4 method performed remarkably well in describing the kinetics and thermochemistry of the xylenes + Br reaction system. Our theoretical calculations revealed that the reaction of Br atoms with the xylenes proceeds via a complex forming mechanism in an overall endothermic reaction. The rate determining step is the intramolecular rearrangement of the pre-reactive complex leading to the post-reactive complex. After lowering the relative energy of the corresponding transition state by less than 1.5 kJ mol-1 for this step in the reaction of each of the xylenes with Br, the calculated rate coefficients are in very good agreement with the experimental data.
Collapse
Affiliation(s)
- Binod R Giri
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center, Division of Physical Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia.
| | - Aamir Farooq
- King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center, Division of Physical Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia.
| | - Milán Szőri
- Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, Egyetemváros A/4, H-3515 Miskolc, Hungary
| | - John M Roscoe
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada.
| |
Collapse
|
23
|
Kuzhanthaivelan S, Jabeen F, Rajakumar B. Temperature dependent kinetics for the reaction between OH radicals and (E)- and (Z)- CHF = CHCl: A dual-level computational study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Theoretical studies of the reactions of methyl radical with dimethyl ether and 1,2-ethanediol. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Shi G, Song J, Li Z. Theoretical study of the reactions of triplet Oxygen atom with methyl and ethyl hydroperoxides. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1973605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gai Shi
- State Key Laboratory of Engines, Tianjin University, Tianjin, People’s Republic of China
| | - Jinou Song
- State Key Laboratory of Engines, Tianjin University, Tianjin, People’s Republic of China
| | - Zhijun Li
- State Key Laboratory of Engines, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
26
|
Roy K, Moholkar VS. p-nitrophenol degradation by hybrid advanced oxidation process of heterogeneous Fenton assisted hydrodynamic cavitation: Discernment of synergistic interactions and chemical mechanism. CHEMOSPHERE 2021; 283:131114. [PMID: 34147974 DOI: 10.1016/j.chemosphere.2021.131114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
The present study has investigated p-nitrophenol (PNP) degradation by hybrid advanced oxidation process (AOP) of hydrodynamic cavitation with heterogenous Fe3O4 nanoparticles. 78.8 ± 1.2% of PNP degradation was obtained at optimum operational conditions: inlet pressure = 8 atm, pH = 3, initial concentration of PNP = 20 mg L-1, Fe3O4:H2O2 = 1:100. PNP degradation profiles were analyzed using a kinetic model based on the reaction network. The closest match between the simulated and experimental degradation profiles was obtained for the initial concertation of [H2O2] = 0.6 M, which was far higher than concentration of externally added H2O2. This was attributed to in-situ generation of H2O2 through transient cavitation. Intense shear and turbulence generated in cavitating flow caused surface leaching of Fe3O4 particles that released Fe2+/Fe3+ ions. The synergy in the hybrid AOP was in-situ Fenton reactions between leached Fe2+/Fe3+ ions and H2O2 present in the reaction mixture. The mechanism in •OH mediated oxidative degradation of PNP was further explored with Density Functional Theory (DFT) simulations. Both •OH addition on benzene ring and H-abstraction reactions were simulated to identify the possible pathways for the degradation. On the basis of activation free energy analysis, degradation pathways initiating with both •OH addition and H abstraction were determined to be feasible. The ortho-C of benzene ring was the most favourable site for •OH addition, while H atom of phenolic hydroxyl group was more susceptible (or more reactive) for H-atom abstraction route.
Collapse
Affiliation(s)
- Kuldeep Roy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India
| | - Vijayanand S Moholkar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, Assam, India.
| |
Collapse
|
27
|
Kumar A, Mondal K, Rajakumar B. A Combined Experimental and Theoretical Study to Determine the Kinetics of 2-Ethoxy Ethanol with OH Radical in the Gas Phase. J Phys Chem A 2021; 125:8869-8881. [PMID: 34587445 DOI: 10.1021/acs.jpca.1c06590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of 2-ethoxy ethanol with OH radicals was experimentally measured in the temperature range of 278-363 K using the pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. The rate coefficient at room temperature was measured to be (1.14 ± 0.03) × 10-11 cm3 molecule-1 s-1, and the Arrhenius expression was derived to be kexpt278-363K = (1.61 ± 0.35) × 10-13 exp{(1256 ± 236)/T} cm3 molecule-1 s-1. Computational calculations were performed to compute the kinetics of the titled reaction in the temperature range of 200-400 K using advanced methods incorporated with tunneling correction at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. The Arrhenius expression derived from the computationally calculated rate coefficients is ktheo200-400K = (1.59 ± 0.35) × 10-13exp{(1389 ± 62)/T} cm3 molecule-1 s-1. The feasibility of each reaction pathway was also determined using the calculated thermochemical parameters. Atmospheric implication parameters such as cumulative atmospheric lifetime and photochemical ozone creation potential were calculated and are discussed in this paper.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| | - Koushik Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India.,Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
28
|
Theoretical investigations on the OH radical mediated kinetics of cis- and trans-CH3CF=CHF and CH3CH=CF2 over temperature range of 200-400K. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Wu X, Huang C, Chai J, Zhang F. Formation of Substituted Alkyls as Precursors of Peroxy Radicals with a Rapid H-Shift in the Atmosphere. J Phys Chem Lett 2021; 12:8790-8797. [PMID: 34491756 DOI: 10.1021/acs.jpclett.1c02503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long straight-chain alkyl peroxy (ROO) radicals substituted with C═C and oxo functional groups are expected to undergo a rapid hydrogen shift (H-shift), which is a critical step in the atmospheric autoxidation mechanism. The existence of a weak tertiary C-H bond plays a key role in the rapid H-shift. Here, the reaction kinetics between OH and two typical long straight-chain functionalized volatile organic compounds, 3-methyl-1-hexene (3-MH) and 2-methylpentanal (2-MP), was theoretically investigated to reveal the fate of the weak C-H bond. The results indicate that the most favored reaction pathways are direct consumption (H-abstraction of 2-MP) and indirect destruction (addition of OH to 3-MH) of the "weak" tertiary C-H bond. The yields of abstraction pathways producing precursors of ROO radicals that undergo rapid H-shifts are computed to be less than 10% for both 3-MH + OH and 2-MP + OH reactions.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Can Huang
- Chair of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany
| | - Jiajue Chai
- Institute at Brown for Environment and Society, and Department of Earth, Environmental and Planetary Sciences, Brown University, 182 Hope Street, Providence, Rhode Island 02912, United States
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
30
|
Amić A, Dimitrić Marković JM, Marković Z, Milenković D, Milanović Ž, Antonijević M, Mastiľák Cagardová D, Rodríguez-Guerra Pedregal J. Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081303. [PMID: 34439551 PMCID: PMC8389219 DOI: 10.3390/antiox10081303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022] Open
Abstract
Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +381-31-399-980
| | | | - Zoran Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Žiko Milanović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marko Antonijević
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; (Z.M.); (D.M.); (Ž.M.); (M.A.)
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia;
| | | |
Collapse
|
31
|
Somnitz H, Peukert S, Schäffer R, Fikri M, Schulz C. Direct rate-constant measurements and theoretical insight into the mechanism of the reactions H + hexamethyldisiloxane and H + tetramethyldisiloxane*. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. Somnitz
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - S. Peukert
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Duisburg, Germany
- CENIDE, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - R. Schäffer
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - M. Fikri
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Duisburg, Germany
- CENIDE, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| | - C. Schulz
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, University of Duisburg-Essen, Duisburg, Germany
- CENIDE, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
32
|
Neeman EM, González D, Blázquez S, Ballesteros B, Canosa A, Antiñolo M, Vereecken L, Albaladejo J, Jiménez E. The impact of water vapor on the OH reactivity toward CH 3CHO at ultra-low temperatures (21.7-135.0 K): Experiments and theory. J Chem Phys 2021; 155:034306. [PMID: 34293904 PMCID: PMC7611909 DOI: 10.1063/5.0054859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of water vapor (H2O) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of H2O was previously reported at temperatures between 60 and 118 K. In this work, we used Laval nozzle expansions to reinvestigate the impact of H2O on the OH-reactivity with acetaldehyde between 21.7 and 135.0 K. The results of this comprehensive study demonstrate that water, instead, slows down the reaction by factors of ∼3 (21.7 K) and ∼2 (36.2-89.5 K), and almost no effect of added H2O was observed at 135.0 K.
Collapse
Affiliation(s)
- E. M. Neeman
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - D. González
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - S. Blázquez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - B. Ballesteros
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - A. Canosa
- CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, Université de Rennes, F-35000, Rennes, France
| | - M. Antiñolo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - L. Vereecken
- Institute for energy and climate research, IEK-8: Troposphere. Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Albaladejo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - E. Jiménez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| |
Collapse
|
33
|
Bai FY, Deng MS, Chen MY, Kong L, Ni S, Zhao Z, Pan XM. Atmospheric oxidation of fluoroalcohols initiated by ˙OH radicals in the presence of water and mineral dusts: mechanism, kinetics, and risk assessment. Phys Chem Chem Phys 2021; 23:13115-13127. [PMID: 34075970 DOI: 10.1039/d1cp01324f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transport and formation of fluorinated compounds are greatly significant due to their possible environmental risks. In this work, the ˙OH-mediated degradation of CF3CF2CF2CH2OH and CF3CHFCF2CH2OH in the presence of O2/NO/NO2 was studied by using density functional theory and the direct kinetic method. The formation mechanisms of perfluorocarboxylic/hydroperfluorocarboxylic acids (PFCAs/H-PFCAs), which were produced from the reactions of α-hydroxyperoxy radicals with NO/NO2 and the ensuing oxidation of α-hydroxyalkoxy radicals, were clarified and discussed. The roles of water and silica particles in the rate constants and ˙OH reaction mechanism with fluoroalcohols were investigated theoretically. The results showed that water and silica particles do not alter the reaction mechanism but obviously change the kinetic properties. Water could retard fluoroalcohol degradation by decreasing the rate constants by 3-5 orders of magnitude. However, the heterogeneous ˙OH-rate coefficients on the silica particle surfaces, including H4SiO4, H6Si2O7, and H12Si6O18, are larger than that of the naked reaction by 1.20-24.50 times. This finding suggested that these heterogeneous reactions may be responsible for the atmospheric loss of fluoroalcohols and the burden of PFCAs. In addition, fluoroalcohols could be exothermically trapped by H12Si6O18, H6Si2O7, and H4SiO4, in which the chemisorption on H12Si6O18 is stronger than that on H6Si2O7 or H4SiO4. The global warming potentials and radiative forcing of CF3CF2CF2CH2OH/CF3CHFCF2CH2OH were calculated to assess their contributions to the greenhouse effect. The toxicities of individual species were also estimated via the ECOSAR program and experimental measurements. This work enhances the understanding of the environmental formation of PFCAs and the transformation of fluoroalcohols.
Collapse
Affiliation(s)
- Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China.
| | - Ming-Shuai Deng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China.
| | - Mei-Yan Chen
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China.
| | - Lian Kong
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China.
| | - Shuang Ni
- National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, P. R. China. and State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, P. R. China
| | - Xiu-Mei Pan
- National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
34
|
Viegas LP. Simplified Protocol for the Calculation of Multiconformer Transition State Theory Rate Constants Applied to Tropospheric OH-Initiated Oxidation Reactions. J Phys Chem A 2021; 125:4499-4512. [PMID: 33902279 DOI: 10.1021/acs.jpca.1c00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical kinetics plays a fundamental role in the understanding and modeling of tropospheric chemical processes, one of the most important being the atmospheric degradation of volatile organic compounds. These potentially harmful molecules are emitted into the troposphere by natural and anthropogenic sources and are chemically removed by undergoing oxidation processes, most frequently initiated by reaction with OH radicals, the atmosphere's "detergent". Obtaining the respective rate constants is therefore of critical importance, with calculations based on transition state theory (TST) often being the preferred choice. However, for molecules with rich conformational variety, a single-conformer method such as lowest-conformer TST is unsuitable while state-of-the-art TST-based methodologies easily become unmanageable. In this Feature Article, the author reviews his own cost-effective protocol for the calculation of bimolecular rate constants of OH-initiated reactions in the high-pressure limit based on multiconformer transition state theory. The protocol, which is easily extendable to other oxidation reactions involving saturated organic molecules, is based on a variety of freeware and open-source software and tested against a series of oxidation reactions of hydrofluoropolyethers, computationally very challenging molecules with potential environmental relevance. The main features, advantages and disadvantages of the protocol are presented, along with an assessment of its predictive utility based on a comparison with experimental rate constants.
Collapse
Affiliation(s)
- Luís P Viegas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Buildings 1630-1632, Aarhus 8000, Denmark
| |
Collapse
|
35
|
Arathala P, Musah RA. Catalytic effect of water and formic acid on the reaction of carbonyl sulfide with dimethyl amine under tropospheric conditions. Phys Chem Chem Phys 2021; 23:8752-8766. [PMID: 33876034 DOI: 10.1039/d1cp00180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculations were performed on the addition of amines [i.e. ammonia (NH3), methyl amine (MA), and dimethyl amine (DMA)] to carbonyl sulfide (OCS), followed by transfer of the amine H-atom to either the S-atom or O-atom of OCS, assisted by a single water (H2O) or a formic acid (FA) molecule, leading to the formation of the corresponding carbamothioic S- or O acids. For the OCS + NH3 and OCS + MA reactions with or without the H2O or FA, very high barriers were observed, making these reactions unfeasible. Interestingly, the barrier heights for the OCS + DMA reaction, involving H-atom transfer to either the S-atom or O-atom of OCS and assisted by a FA, were found to be -4.2 kcal mol-1 and -3.9 kcal mol-1, respectively, relative to those of the separated reactants. The barrier height values suggest that FA lowers the reaction barriers by ∼28.4 kcal mol-1 and ∼35.9 kcal mol-1 compared to the OCS + DMA reaction without the catalyst. Rate coefficient calculations were performed on the OCS + DMA reaction both without a catalyst, and assisted by a H2O and a FA molecule using canonical variational transition state theory and small curvature tunneling at the temperatures between 200 and 300 K. The rate data show that the OCS + DMA + FA reaction proceeds through H-atom transfer to the S-atom of OCS, which was found to be ∼103-1011 and 103-1010 times faster than the OCS + DMA and OCS + DMA + H2O reactions, respectively, in the studied temperature range. For the same temperature range, the rate of the OCS + DMA + FA reaction was found to be ∼108-1016 and 103-1012 times faster than the OCS + DMA and OCS + DMA + H2O reactions in which H-atom transfer to the O-atom of OCS occurred. This suggests that the OCS + DMA reaction that is assisted by FA is more efficient than the H2O assisted reaction. In addition, the rate of the OCS + DMA + FA reaction was found to be ∼1010 times slower than the OCS + ˙OH reaction at 298 K. This clarifies that the OCS + DMA + FA reaction may be feasible for the atmospheric removal of OCS under night-time forest fire conditions when the OCS and DMA concentrations are high and the ˙OH concentration is low.
Collapse
Affiliation(s)
- Parandaman Arathala
- University at Albany-State University of New York, Department of Chemistry, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
36
|
Mazo-Sevillano PD, Aguado A, Roncero O. Neural network potential energy surface for the low temperature ring polymer molecular dynamics of the H 2CO + OH reaction. J Chem Phys 2021; 154:094305. [PMID: 33685156 DOI: 10.1063/5.0044009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new potential energy surface (PES) and dynamical study of the reactive process of H2CO + OH toward the formation of HCO + H2O and HCOOH + H are presented. In this work, a source of spurious long range interactions in symmetry adapted neural network (NN) schemes is identified, which prevents their direct application for low temperature dynamical studies. For this reason, a partition of the PES into a diabatic matrix plus a NN many-body term has been used, fitted with a novel artificial neural network scheme that prevents spurious asymptotic interactions. Quasi-classical trajectory (QCT) and ring polymer molecular dynamics (RPMD) studies have been carried on this PES to evaluate the rate constant temperature dependence for the different reactive processes, showing good agreement with the available experimental data. Of special interest is the analysis of the previously identified trapping mechanism in the RPMD study, which can be attributed to spurious resonances associated with excitations of the normal modes of the ring polymer.
Collapse
Affiliation(s)
- Pablo Del Mazo-Sevillano
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
37
|
Abdel-Rahman MA, Shibl MF, El-Nahas AM, Abdel-Azeim S, El-demerdash SH, Al-Hashimi N. Mechanistic insights of the degradation of an O-anisidine carcinogenic pollutant initiated by OH radical attack: theoretical investigations. NEW J CHEM 2021. [DOI: 10.1039/d0nj06248k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O-Anisidine (O-AND) is one of the amino organic compounds that harm human health, and is considered as a carcinogenic chemical.
Collapse
Affiliation(s)
| | - Mohamed F. Shibl
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| | - Ahmed M. El-Nahas
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shebin El-Kom 32512
- Egypt
| | - Safwat Abdel-Azeim
- Center for Integrative Petroleum Research (CIPR)
- College of Petroleum Engineering and Geosciences
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran 31261
- Saudi Arabia
| | | | - Nessreen Al-Hashimi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| |
Collapse
|
38
|
Shiroudi A, Abdel-Rahman MA, El-Nahas AM, Altarawneh M. Atmospheric chemistry of oxazole: the mechanism and kinetic studies of the oxidation reaction initiated by OH radicals. NEW J CHEM 2021. [DOI: 10.1039/d0nj05797e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of oxazole by OH˙ radicals studied by DFT methods coupled with reaction kinetics calculations using TST and RRKM theories.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Young Researchers and Elite Club
- East Tehran Branch
- Islamic Azad University
- Tehran
- Iran
| | | | - Ahmed M. El-Nahas
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shebin El-Kom 32512
- Egypt
| | - Mohammednoor Altarawneh
- Chemical and Petroleum Engineering Department
- United Arab Emirates University (UAEU)
- Al-Ain 15551
- United Arab Emirates
| |
Collapse
|
39
|
Blázquez S, González D, Neeman EM, Ballesteros B, Agúndez M, Canosa A, Albaladejo J, Cernicharo J, Jiménez E. Gas-phase kinetics of CH 3CHO with OH radicals between 11.7 and 177.5 K. Phys Chem Chem Phys 2020; 22:20562-20572. [PMID: 32966434 PMCID: PMC7116299 DOI: 10.1039/d0cp03203d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase reactions in the interstellar medium (ISM) are a source of molecules in this environment. The knowledge of the rate coefficient for neutral-neutral reactions as a function of temperature, k(T), is essential to improve astrochemical models. In this work, we have experimentally measured k(T) for the reaction between the OH radical and acetaldehyde, both present in many sources of the ISM. Laser techniques coupled to a CRESU system were used to perform the kinetic measurements. The obtained modified Arrhenius equation is k(T = 11.7-177.5 K) = (1.2 ± 0.2) × 10-11 (T/300 K)-(1.8±0.1) exp-{(28.7 ± 2.5)/T} cm3 molecule-1 s-1. The k(T) value of the title reaction has been measured for the first time below 60 K. No pressure dependence of k(T) was observed at ca. 21, 50, 64 and 106 K. Finally, a pure gas-phase model indicates that the title reaction could become the main CH3CO formation pathway in dark molecular clouds, assuming that CH3CO is the main reaction product at 10 K.
Collapse
Affiliation(s)
- Sergio Blázquez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain.
| | - Daniel González
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain.
| | - Elias M Neeman
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain.
| | - Bernabé Ballesteros
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain. and Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain
| | - Marcelino Agúndez
- Molecular Astrophysics Group, Instituto de Física Fundamental (IFF-CSIC), Consejo Superior de Investigaciones Científicas, C/Serrano 123, 28006, Madrid, Spain
| | - André Canosa
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, F-35000 Rennes, France
| | - José Albaladejo
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain. and Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain
| | - José Cernicharo
- Molecular Astrophysics Group, Instituto de Física Fundamental (IFF-CSIC), Consejo Superior de Investigaciones Científicas, C/Serrano 123, 28006, Madrid, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain. and Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
40
|
Hudzik JM, Bozzelli JW, Asatryan R, Ruckenstein E. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part III. Kinetics of H-Abstraction by H, OH, and CH 3 Radicals. J Phys Chem A 2020; 124:4905-4915. [PMID: 32432474 DOI: 10.1021/acs.jpca.9b11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lignin is the most complex component of biomass, and development of a detailed chemical kinetic model for biomass pyrolysis mainly relies on the understanding of the lignin decomposition kinetics. para-Coumaryl alcohol (p-CMA, HOPh-CH═CH-CH2OH), the focus of our analysis, is the simplest of the lignin monomers (monolignols) containing a typical side-chain double bond and both alkyl- and phenolic-type OH-groups. In parts I and II of our work (Asatryan, R. J. Phys. Chem. A 2019, 123, 2570-2585; Hudzik, J. M. J. Phys. Chem. A 2020, current issue), we created a detailed potential energy surface (PES) and performed a kinetic analysis of chemically activated, unimolecular, and bimolecular reactions pathways for p-CMA + OH. Reaction pathways analyzed include dissociation, intramolecular abstraction, group transfer, and elimination processes. The α- and β-carbon addition reactions generate 1,3- (RA1) and 1,2-diol (RB1) adduct radicals, respectively. Well depths are approximately 29 and 41 kcal/mol below the p-CMA + OH entrance level. Kinetic analysis aides in determining the major pathways for our conventional and fractional pyrolysis experiments. The current paper focuses on the H-abstraction reactions via H, OH, and CH3 light ("pool") radicals from p-CMA. The thermochemical properties of all stable, radical, and transition-state species were determined using the ωB97XD density functional theory (DFT) and higher-level CBS-QB3 composite methods. Barrier heights from the prereaction complexes, for OH-radical abstractions, to the transition states for the propanoid side chain are compared to the model H-abstraction reactions of allyl alcohol (AA) with OH and p-CMA with H and CH3 radicals. The lowest-energy, most stable, p-CMA radical formed is at the C9 allylic position (p-CMA-C9j) with exothermicity of 26.63, 41.32, and 27.34 kcal/mol for H, OH, and CH3, respectively. For OH-radical abstraction at this position, our findings are consistent with corresponding data on AA + OH at 37.44 kcal/mol and similar to that of RB1. A similar stable radical with an exothermicity of 34.95 kcal/mol occurs for the phenol hydroxyl group, generating the p-CMA-O4j radical. H-abstraction pathways are considered in relation to other major pathways previously considered for p-CMA + OH reactions including H-atom shifts, dehydration, and β-scission reactions. Derived rate coefficients for substituted phenols can be utilized in detailed kinetic models for lignin/biomass pyrolysis.
Collapse
Affiliation(s)
- Jason M Hudzik
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joseph W Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New Jersey 14226, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New Jersey 14226, United States
| |
Collapse
|
41
|
Xiao F, Sun X, Li Z, Li X. Theoretical Study of Radical-Molecule Reactions with Negative Activation Energies in Combustion: Hydroxyl Radical Addition to Alkenes. ACS OMEGA 2020; 5:12777-12788. [PMID: 32548462 PMCID: PMC7288374 DOI: 10.1021/acsomega.0c00400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Many of the radical-molecule reactions are nonelementary reactions with negative activation energies, which usually proceed through two steps. They exist extensively in the atmospheric chemistry and hydrocarbon fuel combustion, so they are extensively studied both theoretically and experimentally. At the same time, various models, such as a two transition state model, a steady-state model, an equilibrium-state model, and a direct elementary dynamics model are proposed to get the kinetic parameters for the overall reaction. In this paper, a conversion temperature T C1 is defined as the temperature at which the standard molar Gibbs free energy change of the formation of the reaction complex is equal to zero, and it is found that when T ≫ T C1, the direct elementary dynamics model with an inclusion of the tunneling correction of the second step reaction is applicable to calculate the overall reaction rate constants for this kind of reaction system. The reaction class of hydroxyl radical addition to alkenes is chosen as the objects of this study, five reactions are chosen as the representative for the reaction class, and their single-point energies are calculated using the method of CCSD(T)/CBS, and it is shown that the highest conversion temperature for the five reactions is 139.89 K, far below the usual initial low-temperature (550 K) oxidation chemistry of hydrocarbon fuels; therefore, the steady-state approximation method is applicable. All geometry optimizations are performed at the BH&HLYP/6-311+G(d,p) level, and the result shows that the geometric parameters in the reaction centers are conserved; hence, the isodesmic reaction method is applicable to this reaction class. To validate the accuracy of this scheme, a comparison of electronic energy difference at the BH&HLYP/6-311+G(d,p) level and the corrected electronic energy difference with the electronic energy difference at the CCSD(T)/CBS level is performed for the five representative reactions, and it is shown that the maximum absolute deviation of electronic energy difference can be reduced from 2.54 kcal·mol-1 before correction to 0.58 kcal·mol-1 after correction, indicating that the isodesmic reaction method is applicable for the accurate calculation of the kinetic parameters for large-size molecular systems with a negative activation energy reaction. The overall rate constants for 44 reactions of the reaction class of hydroxyl radical addition to alkenes are calculated using the transition-state theory in combination with the isodesmic correction scheme, and high-pressure limit rate rules for the reaction class are developed. In addition, the thermodynamic parameter is calculated and the results indicate that our dynamics model is applicable for our studied reaction class. A chemical kinetic modeling and sensitivity analysis using the calculated kinetic data is performed for the combustion of ethene, and the results indicate the studied reaction is important for the low-to-medium temperature combustion modeling of ethene.
Collapse
Affiliation(s)
- FengXia Xiao
- College
of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - XiaoHui Sun
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - ZeRong Li
- College
of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - XiangYuan Li
- College
of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering
Research Center of Combustion and Cooling for Aerospace Power, Ministry
of Education, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
42
|
Mao Y, Levine DS, Loipersberger M, Horn PR, Head-Gordon M. Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals. Phys Chem Chem Phys 2020; 22:12867-12885. [PMID: 32510096 DOI: 10.1039/d0cp01933j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermolecular interactions between radicals and closed-shell molecules are ubiquitous in chemical processes, ranging from the benchtop to the atmosphere and extraterrestrial space. While energy decomposition analysis (EDA) schemes for closed-shell molecules can be generalized for studying radical-molecule interactions, they face challenges arising from the unique characteristics of the electronic structure of open-shell species. In this work, we introduce additional steps that are necessary for the proper treatment of radical-molecule interactions to our previously developed unrestricted Absolutely Localized Molecular Orbital (uALMO)-EDA based on density functional theory calculations. A "polarize-then-depolarize" (PtD) scheme is used to remove arbitrariness in the definition of the frozen wavefunction, rendering the ALMO-EDA results independent of the orientation of the unpaired electron obtained from isolated fragment calculations. The contribution of radical rehybridization to polarization energies is evaluated. It is also valuable to monitor the wavefunction stability of each intermediate state, as well as their associated spin density profiles, to ensure the EDA results correspond to a desired electronic state. These radical extensions are incorporated into the "vertical" and "adiabatic" variants of uALMO-EDA for studies of energy changes and property shifts upon complexation. The EDA is validated on two model complexes, H2O˙F and FH˙OH. It is then applied to several chemically interesting radical-molecule complexes, including the sandwiched and T-shaped benzene dimer radical cation, complexes of pyridine with benzene and naphthalene radical cations, binary and ternary complexes of the hydroxyl radical with water (˙OH(H2O) and ˙OH(H2O)2), and the pre-reactive complexes and transition states in the ˙OH + HCHO and ˙OH + CH3CHO reactions. These examples suggest that this second generation uALMO-EDA is a useful tool for furthering one's understanding of both energetic and property changes associated with radical-molecule interactions.
Collapse
Affiliation(s)
- Yuezhi Mao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
43
|
Hudzik JM, Barekati-Goudarzi M, Khachatryan L, Bozzelli JW, Ruckenstein E, Asatryan R. OH-Initiated Reactions of para-Coumaryl Alcohol Relevant to the Lignin Pyrolysis. Part II. Kinetic Analysis. J Phys Chem A 2020; 124:4875-4904. [DOI: 10.1021/acs.jpca.9b11894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jason M. Hudzik
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | | | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph W. Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| | - Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14226, United States
| |
Collapse
|
44
|
Messaoudi B. Quantum chemical study of the reaction of trichloroethylene with O(
3
P). INT J CHEM KINET 2020. [DOI: 10.1002/kin.21372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Boulanouar Messaoudi
- Laboratoire de Thermodynamique Appliquée et Modélisation MoléculaireDépartement de Chimie, Faculté des SciencesUniversité Abou Bekr Belkaid Tlemcen Algeria
| |
Collapse
|
45
|
Viegas LSP, Jensen F. Reactivity of α,ω-Dihydrofluoropolyethers toward OH Predicted by Multiconformer Transition State Theory and the Interacting Quantum Atoms Approach. J Phys Chem A 2020; 124:3460-3470. [PMID: 32242667 DOI: 10.1021/acs.jpca.0c02911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report rate constants for the tropospheric reaction between the OH radical and α,ω-dihydrofluoropolyethers, which represent a specific class of the hydrofluoropolyethers family with the formula HF2C(OCF2CF2)p(OCF2)qOCF2H. Four cases were considered: p0q2, p0q3, p1q0, and p1q1 (pxqy denoting p = x and q = y) with the calculations performed by a cost-effective protocol developed for bimolecular hydrogen-abstraction reactions. This protocol is based on multiconformer transition state theory and relies on computationally accessible M08-HX/apcseg-2//M08-HX/pcseg-1 calculations. Within the protocol's approximations, the results show that (1) the calculated rate constants are within a factor of five of the experimental results (p1q0 and p1q1) and (2) the chain length and composition have a negligible effect on the rate constants, which is consistent with the experimental work. The interacting quantum atoms energy decomposition scheme is used to analyze the observed trends and extract chemical information related to the imaginary frequencies and barrier heights that are key parameters controlling the reactivity of the reaction. The intramolecular exchange-correlation contributions in the reactants and transition states were found to be the dominating factor.
Collapse
Affiliation(s)
- Luı S P Viegas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, Buildings 1630-1632, Aarhus 8000, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
46
|
de Souza Machado G, Martins EM, Baptista L, Bauerfeldt GF. Prediction of Rate Coefficients for the H 2CO + OH → HCO + H 2O Reaction at Combustion, Atmospheric and Interstellar Medium Conditions. J Phys Chem A 2020; 124:2309-2317. [PMID: 32091904 DOI: 10.1021/acs.jpca.9b11690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the relevance of the H2CO + OH → HCO + H2O reaction for combustion, atmospheric, and interstellar medium conditions, a large discrepancy on energetic and kinetic data for this reaction is still observed in the previous literature. In this work, this hydrogen abstraction reaction has been investigated at the CCSD(T)/CBS level of theory, suggesting that both the prebarrier complex and saddle point are stabilized in relation to the reactants by 3.31 and 1.35 kcal mol-1, respectively. Moreover, from the Gibbs free energy profile of the reaction coordinate, it has been verified that the formation of the prebarrier complex is endergonic, for temperatures above 550 K. Hence, for temperatures lower than 550 K, the reaction is described by a mechanism consisting of three elementary steps, while for higher temperatures it can be assumed to be an elementary reaction. Finally, the prediction of rate coefficients suggests that unified statistical rate theory best applies to the low temperature regime, while canonical variational rate coefficients better fit experimental data at the high temperature regime.
Collapse
Affiliation(s)
- Gladson de Souza Machado
- Instituto de Quı́mica, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, Seropédica, RJ, 23890-000 Brazil
| | - Eduardo Monteiro Martins
- Departamento de Engenharia Sanitária e do Meio Ambiente, Faculdade de Engenharia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20550-900 Brazil
| | - Leonardo Baptista
- Departamento de Quı́mica e Ambiental, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Rodovia Presidente Dutra km 298, Resende, RJ, 27537-000 Brazil
| | - Glauco F Bauerfeldt
- Instituto de Quı́mica, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, Seropédica, RJ, 23890-000 Brazil
| |
Collapse
|
47
|
Church JR, Vaida V, Skodje RT. Gas-Phase Reaction Kinetics of Pyruvic Acid with OH Radicals: The Role of Tunneling, Complex Formation, and Conformational Structure. J Phys Chem A 2020; 124:790-800. [DOI: 10.1021/acs.jpca.9b09638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan R. Church
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Rex T. Skodje
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
48
|
Kinetics and oxidation mechanism of pyrene initiated by hydroxyl radical. A theoretical investigation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Gupta P, Rajakumar B. Cl Atoms and OH Radicals Initiated Kinetic and Mechanistic Study on the Degradation of Propyl Butanoate under Tropospheric Conditions. J Phys Chem A 2019; 123:10976-10989. [PMID: 31789521 DOI: 10.1021/acs.jpca.9b09546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of various OVOCs (mainly esters) in the troposphere leads to the generation of various organics, which in turn leads to an increase in the cloud acidity of the Earth's atmosphere. Hence, it becomes necessary to understand the mechanistic aspects of the reaction of these molecules with dominant atmospheric agents. In this study, the tropospheric degradation of one such ester, propyl butanoate (PB; CH3CH2CH2COOCH2CH2CH3) was studied with OH radicals and Cl atoms at the CCSD(T)//M06-2x/6-311+G(2d,2p) and CCSD(T)//BHandHLYP/6-311+G(2d,2p) level of theories over the studied temperature range of 200-400 K. The Arrhenius expressions obtained using the CVT/SCT/ISPE method were calculated as kPB + Cl (200-400 K) = 1.3 × 10-14 T1.3 exp[1335/T] cm3 molecule-1 s-1 and kPB + OH (200-400 K) = 1.8 × 10-26 T4.6 exp[4469/T] cm3 molecule-1 s-1. The obtained kinetics was also well validated against the SAR (structure-activity relationship)-based rate coefficients. The most prominent H-abstraction reaction channels were investigated for the PB + OH/Cl reaction. The abstraction of H atoms attached to the carbon atom present in the β-position to the ester (-C(O)O-) functionality was found to go via the lowest energy activation barriers for the reaction of PB toward both OH radicals and Cl atoms. The product degradation channels were also elucidated in an O2/NOx-rich environment. Moreover, to gauge the impact of the emitted PB on the troposphere, atmospheric lifetimes, radiative efficiencies, global warming potentials, and photochemical ozone creation potentials were also calculated and are included in the manuscript.
Collapse
Affiliation(s)
- Parth Gupta
- Department of Chemistry , Indian Institute of Technology, Madras , Chennai 600036 , India
| | - Balla Rajakumar
- Department of Chemistry , Indian Institute of Technology, Madras , Chennai 600036 , India
| |
Collapse
|
50
|
Gupta P, Rajakumar B. A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|