1
|
Keene JD, Freymeyer NJ, McBride JR, Rosenthal SJ. Ultrafast spectroscopy studies of carrier dynamics in semiconductor nanocrystals. iScience 2022; 25:103831. [PMID: 35198890 PMCID: PMC8844678 DOI: 10.1016/j.isci.2022.103831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Semiconductor nanocrystals have become ubiquitous both in scientific research and in applied technologies related to light. When a nanocrystal absorbs a photon an electron-hole pair is created whose fate dictates whether the nanocrystal will be suitable for a particular application. Ultrafast spectroscopy provides a real-time window to monitor the evolution of the electron-hole pair. In this review, we focus on CdSe nanocrystals, the most-studied nanocrystal system to date, and also highlight ultrasmall nanocrystals, "standard nanocrystals" of different binary composition, alloyed nanocrystals, and core/shell nanocrystals and nanorods. We focus on four time-resolved spectroscopies used to interrogate nanocrystals: pump-probe, fluorescence upconversion, time-correlated single photon counting, and non-linear spectroscopies. The basics of the nanocrystals and the spectroscopies are presented, followed by a detailed synopsis of ultrafast spectroscopy studies performed on the various semiconductor nanocrystal systems.
Collapse
Affiliation(s)
- Joseph D. Keene
- Department of Chemistry, Mercer University, Macon, GA 31207, USA
| | - Nathaniel J. Freymeyer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - James R. McBride
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Department of Materials Science, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Quantitative Analysis of Single Quantum Dot Trajectories. Methods Mol Biol 2020. [PMID: 32246331 DOI: 10.1007/978-1-0716-0463-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Single quantum dot tracking (SQDT) is a powerful technique for interrogating biomolecular dynamics in living cells and tissue. SQDT has particularly excelled in driving discovery at the single-molecule level in the fields of neuronal communication, plasma membrane organization, viral infection, and immune system response. Here, we briefly characterize various elements of the SQDT analytical framework and provide the reader with a detailed set of executable commands to implement commonly used algorithms for SQDT data processing.
Collapse
|
4
|
Han Z, Sarkar S, Smith AM. Zwitterion and Oligo(ethylene glycol) Synergy Minimizes Nonspecific Binding of Compact Quantum Dots. ACS NANO 2020; 14:3227-3241. [PMID: 32105448 PMCID: PMC7321848 DOI: 10.1021/acsnano.9b08658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantum dots (QDs) are a class of fluorescent nanocrystals in development as labels for molecular imaging in cells and tissues. Recently, coatings for quantum dots based on multidentate polymers have improved labeling performance in a range of bioanalytical applications, primarily due to reduced probe hydrodynamic size. Now, an ongoing challenge is to eliminate nonspecific binding between these small probes and cellular components that mask specifically labeled molecules. Here, we describe insights into controlling and minimizing intermolecular interactions governing nonspecific binding using multidentate polymers with tunable hydrophilic functional groups that are cationic, anionic, zwitterionic (ZW), or nonionic (oligoethylene glycol; OEG). By fixing surface-binding groups and polymer length, coated colloids have similar sizes but diverse physicochemical properties. We measure binding to globular proteins, fixed cells, and living cells and observe a substantial improvement in nonspecific binding resistance when surfaces are functionalized with a combination of ZW and OEG. The independent underlying effects of counterion adsorption and flexibility appear to synergistically resist adsorption when combined, particularly for fixed cells enriched in both charged and hydrophobic moieties. We further show that ZW-OEG QDs are stable under diverse conditions and can be self-assembled with antibodies to specifically label surface antigens on living cells and cytoplasmic proteins in fixed cells. This surface engineering strategy can be adopted across the diverse range of colloidal materials currently in use and in development for biomedical applications to optimize their molecular labeling specificity.
Collapse
Affiliation(s)
- Zhiyuan Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suresh Sarkar
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew M Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Thal LB, Mann VR, Sprinzen D, McBride JR, Reid KR, Tomlinson ID, McMahon DG, Cohen BE, Rosenthal SJ. Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater Sci 2020; 8:837-845. [PMID: 31790090 PMCID: PMC7002256 DOI: 10.1039/c9bm01629e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.
Collapse
Affiliation(s)
- Lucas B Thal
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kovtun O, Tomlinson ID, Ferguson RS, Rosenthal SJ. Quantum dots reveal heterogeneous membrane diffusivity and dynamic surface density polarization of dopamine transporter. PLoS One 2019; 14:e0225339. [PMID: 31751387 PMCID: PMC6872175 DOI: 10.1371/journal.pone.0225339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy. We demonstrate that Qdot-tagged DAT proteins exhibited highly heterogeneous membrane diffusivity dependent on the local membrane topography. We also show that Qdot-tagged DATs were localized away from the flat membrane regions and were dynamically retained in the membrane protrusions and cell edges for the duration of imaging. Single quantum dot tracking of wildtype DAT and its conformation-defective coding variants (R60A and W63A) revealed a significantly accelerated rate of dysfunctional DAT membrane diffusion. We believe our results warrant an in-depth investigation as to whether compromised membrane dynamics is a common feature of brain disorder-derived DAT mutants.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Riley S. Ferguson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gillies J. Synthesis, characterisation and bioconjugation of [109Cd]CdSe/ZnS core/shell quantum dots as “proof of principle” for the potential development of an anti-cancer theranostic. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Tomlinson ID, Kovtun O, Crescentini TM, Rosenthal SJ. Biotinylated-spiperone ligands for quantum dot labeling of the dopamine D2 receptor in live cell cultures. Bioorg Med Chem Lett 2019; 29:959-964. [DOI: 10.1016/j.bmcl.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 12/26/2022]
|
9
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
10
|
Masteri-Farahani M, Askari F. Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:448-453. [PMID: 30172872 DOI: 10.1016/j.saa.2018.08.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent graphene quantum dots (GQDs) were prepared and utilized as nanosensor for differentiation and determination of two most common narcotic drugs i.e. morphine and methamphetamine. The microstructure and optical properties of the GQDs were investigated by various physicochemical methods. XRD analysis indicated low crystalline nature, demonstrating the graphitic nature of the GQDs. According to the Tauc plot derived from UV-Vis spectrum, the optical band gap of the GQDs was determined to ~4.98 eV, assigned to the n-π* transitions. Cyclic voltammetry analysis of the GQDs determined electrochemical band gap of ~4.88 eV with HOMO and LUMO energies equal to -6.83 eV and -1.95 eV, respectively. The GQDs were employed as fluorescent sensing probe for determination of morphine and methamphetamine. The blue fluorescence of the prepared GQDs under the excitation at 362 nm was quenched in the presence of methamphetamine and enhanced in the presence of morphine. The detection limits of 1.48 and 0.5 μg/ml were found for methamphetamine and morphine, respectively. This inexpensive sensing system shows some advantages such as short response time (t < 1 min) and low detection limit as well as nontoxicity.
Collapse
Affiliation(s)
| | - Faezeh Askari
- Faculty of Chemistry, Kharazmi University, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Mehata MS, Ratnesh RK. Luminescence properties and exciton dynamics of core–multi-shell semiconductor quantum dots leading to QLEDs. Dalton Trans 2019; 48:7619-7631. [DOI: 10.1039/c9dt00989b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carrier relaxation processes in CdSe core QDs and core–multi-shell QDs under excitation at 450 nm.
Collapse
Affiliation(s)
- Mohan Singh Mehata
- Laser-Spectroscopy Laboratory
- Department of Applied Physics
- Delhi Technological University
- Delhi-110042
- India
| | - R. K. Ratnesh
- Laser-Spectroscopy Laboratory
- Department of Applied Physics
- Delhi Technological University
- Delhi-110042
- India
| |
Collapse
|
12
|
Kovtun O, Tomlinson ID, Bailey DM, Thal LB, Ross EJ, Harris L, Frankland MP, Ferguson RS, Glaser Z, Greer J, Rosenthal SJ. Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 2018; 706:741-752. [PMID: 30270931 PMCID: PMC6157616 DOI: 10.1016/j.cplett.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of nanometer-sized semiconductor crystals, known as quantum dots, allows us to directly observe individual biomolecular transactions through a fluorescence microscope. Here, we review the evolution of single quantum dot tracking over the past two decades, highlight key biophysical discoveries facilitated by quantum dots, briefly discuss biochemical and optical implementation strategies for a single quantum dot tracking experiment, and report recent accomplishments of our group at the interface of molecular neuroscience and nanoscience.
Collapse
Affiliation(s)
- Oleg Kovtun
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Ian D. Tomlinson
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Danielle M. Bailey
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Lucas B. Thal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | - Emily J. Ross
- Departments of Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Lauren Harris
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | | | | | - Zachary Glaser
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Jonathan Greer
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Sandra J. Rosenthal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Chemical and Biomolecular Engineering, Chemical Biology, Vanderbilt University
- Departments of Physics and Astronomy, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
13
|
Bailey DM, Kovtun O, Rosenthal SJ. Antibody-Conjugated Single Quantum Dot Tracking of Membrane Neurotransmitter Transporters in Primary Neuronal Cultures. Methods Mol Biol 2018; 1570:165-177. [PMID: 28238136 DOI: 10.1007/978-1-4939-6840-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Single particle tracking (SPT) experiments have provided the scientific community with invaluable single-molecule information about the dynamic regulation of individual receptors, transporters, kinases, lipids, and molecular motors. SPT is an alternative to ensemble averaging approaches, where heterogeneous modes of motion might be lost. Quantum dots (QDs) are excellent probes for SPT experiments due to their photostability, high brightness, and size-dependent, narrow emission spectra. In a typical QD-based SPT experiment, QDs are bound to the target of interest and imaged for seconds to minutes via fluorescence video microscopy. Single QD spots in individual frames are then linked to form trajectories that are analyzed to determine their mean square displacement, diffusion coefficient, confinement index, and instantaneous velocity. This chapter describes a generalizable protocol for the single particle tracking of membrane neurotransmitter transporters on cell membranes with either unmodified extracellular antibody probes and secondary antibody-conjugated quantum dots or biotinylated extracellular antibody probes and streptavidin-conjugated quantum dots in primary neuronal cultures. The neuronal cell culture, the biotinylation protocol and the quantum dot labeling procedures, as well as basic data analysis are discussed.
Collapse
Affiliation(s)
- Danielle M Bailey
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sandra J Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37235, USA.
- Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
14
|
Jarvis M, Arnold M, Ott J, Pant K, Prabhakarpandian B, Mitragotri S. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass. Bioeng Transl Med 2017; 2:268-277. [PMID: 29313036 PMCID: PMC5689499 DOI: 10.1002/btm2.10079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.
Collapse
Affiliation(s)
- Maria Jarvis
- Biomolecular Sciences and Engineering ProgramUniversity of CaliforniaSanta BarbaraCA 93106
| | - Michael Arnold
- Dept. of Molecular, Cellular and Developmental BiologyUniversity of CaliforniaSanta BarbaraCA 93106
| | - Jenna Ott
- Dept. of Chemical Engineering University of California, Center for BioengineeringSanta BarbaraCA 93106
| | - Kapil Pant
- Biomedical Technology, CFDRCHuntsvilleAL 35806
| | | | - Samir Mitragotri
- Biomolecular Sciences and Engineering ProgramUniversity of CaliforniaSanta BarbaraCA 93106
- Dept. of Chemical Engineering University of California, Center for BioengineeringSanta BarbaraCA 93106
- Present address:
John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMA 02138
| |
Collapse
|
15
|
Wang S, Wen Y, Wang Y, Ma Y, Liu Z. Pattern Recognition of Cells via Multiplexed Imaging with Monosaccharide-Imprinted Quantum Dots. Anal Chem 2017; 89:5646-5652. [DOI: 10.1021/acs.analchem.7b00965] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shuangshou Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanyan Ma
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Calzada R, Thompson CM, Westmoreland DE, Edme K, Weiss EA. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2016; 28:6716-6723. [PMID: 28260836 PMCID: PMC5333977 DOI: 10.1021/acs.chemmater.6b03106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper describes a procedure for transferring colloidal CdS and CdSe quantum dots (QDs) from organic solvents to water by exchanging their native hydrophobic ligands for phosphonopropionic acid (PPA) ligands, which bind to the QD surface through the phosphonate group. This method, which uses dimethylformamide as an intermediate transfer solvent, was developed in order to produce high-quality water soluble QDs with neither a sulfur-containing ligand nor a polymer encapsulation layer, both of which have disadvantages in applications of QDs to photocatalysis and biological imaging. CdS (CdSe) QDs were transferred to water with a 43% (48%) yield using PPA. The photoluminescence (PL) quantum yield for PPA-capped CdSe QDs is larger than that for QDs capped with the analogous sulfur-containing ligand, mercaptopropionic acid (MPA), by a factor of four at pH 7, and by up to a factor of 100 under basic conditions. The MPA ligands within MPA-capped QDs oxidize at Eox ~ +1.7 V vs. SCE, whereas cyclic voltammograms of PPA-capped QDs show no discerible oxidation peaks at applied potentials up to +2.5 V vs. SCE. The PPA-capped QDs are chemically and colloidally stable for at least five days in the dark, even in the presence of O2, and are stable when continuously illuminated for five days, when oxygen is excluded and a sacrificial reductant is present to capture photogenerated holes.
Collapse
|
17
|
Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater 2016; 41:1-16. [PMID: 27265153 DOI: 10.1016/j.actbio.2016.06.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nanoparticles (NPs) are playing a progressively more significant role in multimodal and multifunctional molecular imaging. The agents like Superparamagnetic iron oxide (SPIO), manganese oxide (MnO), gold NPs/nanorods and quantum dots (QDs) possess specific properties like paramagnetism, superparamagnetism, surface plasmon resonance (SPR) and photoluminescence respectively. These specific properties make them able for single/multi-modal and single/multi-functional molecular imaging. NPs generally have nanomolar or micromolar sensitivity range and can be detected via imaging instrumentation. The distinctive characteristics of these NPs make them suitable for imaging, therapy and delivery of drugs. Multifunctional nanoparticles (MNPs) can be produced through either modification of shell or surface or by attaching an affinity ligand to the nanoparticles. They are utilized for targeted imaging by magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), positron emission tomography (PET), computed tomography (CT), photo acoustic imaging (PAI), two photon or fluorescent imaging and ultra sound etc. Toxicity factor of NPs is also a very important concern and toxic effect should be eliminated. First generation NPs have been designed, developed and tested in living subjects and few of them are already in clinical use. In near future, molecular imaging will get advanced with multimodality and multifunctionality to detect diseases like cancer, neurodegenerative diseases, cardiac diseases, inflammation, stroke, atherosclerosis and many others in their early stages. In the current review, we discussed single/multifunctional nanoparticles along with molecular imaging modalities. STATEMENT OF SIGNIFICANCE The present article intends to reveal recent avenues for nanomaterials in multimodal and multifunctional molecular imaging through a review of pertinent literatures. The topic emphasises on the distinctive characteristics of nanomaterial which makes them, suitable for biomedical imaging, therapy and delivery of drugs. This review is more informative of indicative technologies which will be helpful in a way to plan, understand and lead the nanotechnology related work.
Collapse
|
18
|
Guo P, Fan J, Cheng Y, Wang J, Wang C. Characterization of the Self-Assembly of Glutathione Stabilized Cadmium Selenide–Zinc Sulfide Quantum Dots with a Cyanine5-Labeled Peptide by Capillary Electrophoresis and Fluorescence. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1171328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Nag OK, Naciri J, Oh E, Spillmann CM, Delehanty JB. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers. Bioconjug Chem 2016; 27:982-93. [DOI: 10.1021/acs.bioconjchem.6b00042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Jawad Naciri
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Code 5600, 4555 Overlook Avenue SW, Washington, DC 20375, United States
- Sotera Defense Solutions, Inc., 7230 Lee DeForest Drive, Columbia, Maryland 21046, United States
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| |
Collapse
|
20
|
Chen J, Xiao A, Zhang Z, Yu Y, Yan Z. The synthesis and modification of CdTe/CdS core shell quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:506-509. [PMID: 26162337 DOI: 10.1016/j.saa.2015.06.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 06/04/2023]
Abstract
A simple and economical synthesis method of CdTe quantum dots (QDs) has been developed using glutathione as a modifier in an aqueous system. The fluorescent properties of as-prepared CdTe QDs at different reaction times were studied to optimize the synthesis conditions. CdTe/CdS QDs with core-shell structure was obtained by modifying as-synthesized CdTe QDs with refluxing and microwave method, respectively. The properties of the CdTe/CdS QDs were thoroughly investigated by photoluminescence (PL) and inverted fluorescence microscope, and exhibited high fluorescence intensity and good optical property. The study also shows that the microwave synthesis of CdTe/CdS QDs had more dispersed particle size and higher fluorescence intensity.
Collapse
Affiliation(s)
- Jianqiu Chen
- School of Science, China Pharmaceutical University, Nanjing 210009, China.
| | - An Xiao
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengwei Zhang
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Yu
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Yan
- School of Science, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Abou Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC. Nanotechnology in dentistry: prevention, diagnosis, and therapy. Int J Nanomedicine 2015; 10:6371-94. [PMID: 26504385 PMCID: PMC4605240 DOI: 10.2147/ijn.s86033] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
| | - Laurent Bozec
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
| | - Roman A Perez
- Institute of Tissue Regenerative Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regenerative Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
22
|
Mock KL, Tillekeratne LMV, Kirchhoff JR. Synthesis and characterization of water soluble choline labeled cadmium selenide/zinc selenide/zinc sulfide luminescent quantum dots. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun 2015; 468:419-27. [PMID: 26168726 DOI: 10.1016/j.bbrc.2015.07.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022]
Abstract
The review addresses the current state of progress in the use of ultra-small nanoparticles from the category of quantum dots (QDs), which presently embraces a widening range of nanomaterials of different nature, including "classical" semiconductor groups III-V and II-VI nanocrystals, along with more recently emerged carbon, silicon, gold and other types of nanoparticles falling into this class of nanomaterials due to their similar physical characteristics such as small size and associated quantum confinement effects. A diverse range of QDs applications in nanomedicine has been extensively summarised previously in numerous publications. Therefore, this review is not intended to provide an all-embracing survey of the well documented QDs uses, but is rather focused on the most recent emerging developments, concepts and outstanding unresolved problematic and sometimes controversial issues. Over 125 publications are overviewed and discussed here in the context of major nanomedicine domains, i.e. medical imaging, diagnostics, therapeutic applications and combination of them in multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yuri Volkov
- Department of Clinical Medicine, School of Medicine and AMBER Centre, Trinity College, Dublin 8, Ireland.
| |
Collapse
|
24
|
Mehra NK, Jain NK. Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. J Drug Target 2015; 24:294-308. [PMID: 26147085 DOI: 10.3109/1061186x.2015.1055571] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon nanotubes (CNTs) have emerged as an intriguing nanotechnological tool for numerous biomedical applications including biocompatible modules for the bioactives delivery ascribed to their unique properties, such as greater loading efficiency, biocompatibility, non-immunogenicity, high surface area and photoluminescence, that make them ideal candidate in pharmaceutical and biomedical science. The design of multifunctional hybrid-CNTs for drug delivery and targeting may differ from the conventional drug delivery system. The conventional nanocarriers have few limitations, such as inappropriate availability of surface-chemical functional groups for conjugation, low entrapment/loading efficiency as well as stability as per ICH guidelines with generally regarded as safe (GRAS) prominences. The multifunctional hybrid-CNTs will sparked and open a new door for researchers, scientist of the pharmaceutical and biomedical arena. This review summarizes the vivid aspects of CNTs like characterization, supramolecular chemistry of CNTs-dendrimer, CNTs-nanoparticles, CNTs-quantum dots conjugate for delivery of bioactives, not discussed so far.
Collapse
Affiliation(s)
- Neelesh Kumar Mehra
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| | - Narendra Kumar Jain
- a Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University , Sagar , India
| |
Collapse
|
25
|
Pi P, Qin D, Lan JL, Cai Z, Yuan X, Xu SP, Zhang L, Qian Y, Wen X. Dissipative Particle Dynamics Simulation on the Nanocomposite Delivery System of Quantum Dots and Poly(styrene-b-ethylene oxide) Copolymer. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pihui Pi
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Dongxia Qin
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Jia-ling Lan
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Zhiqi Cai
- Shaoguan
Institute, Jinan University, Shaoguan City, People’s Republic of China 512026
| | - Xianxia Yuan
- Department
of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China 200240
| | - Shou-ping Xu
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Lijuan Zhang
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Yu Qian
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| | - Xiufang Wen
- The
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China 510640
| |
Collapse
|
26
|
Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, Rosenthal SJ. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci 2015; 6:526-34. [PMID: 25747272 PMCID: PMC5530757 DOI: 10.1021/cn500202c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- McCoy & McCoy Laboratories, Inc, Madisonville, Kentucky 42431, United States
| | - Dhananjay Sakrikar
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jerry C. Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Xochitl Arzeta-Ferrer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Randy D. Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
27
|
Hussey AM, Chambers JJ. Methods to locate and track ion channels and receptors expressed in live neurons. ACS Chem Neurosci 2015; 6:189-98. [PMID: 25307447 DOI: 10.1021/cn5002057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain cells use electrical and chemical signaling to communicate with each other and to send and receive information from the body. These neurons also encode information such as memories and are constantly adapting to changes as a result of positive alterations, such as learning, or negative events, such as neurological insults or neurodegeneration. In the last two decades, it has become clear that the placement of minute branches of neurons and, more importantly for the topic of this review, the placement of individual protein molecules, are the key events that enable neuronal network building and pruning. Advances in both electrophysiology and light-based imaging have allowed neuroscientists to answer fundamental questions about the key proteins involved in memory formation, maintenance, and loss. These findings have been enabled often through the clever use of chemical biology, biotechnology, and genetic engineering. In this review, we highlight numerous examples where chemical biology was used to provide new tools to answer difficult and near impossible questions in neurobiology.
Collapse
Affiliation(s)
- Amanda M. Hussey
- Department
of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Chambers
- Department
of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Neuroscience
and Behavior Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 562] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
29
|
Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. ACTA ACUST UNITED AC 2014; 4:149-66. [PMID: 25337468 PMCID: PMC4204040 DOI: 10.15171/bi.2014.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/02/2014] [Accepted: 09/21/2014] [Indexed: 12/20/2022]
Abstract
Introduction: A number of assays have so far been exploited for detection of cancer biomarkers in various malignancies. However, the expression of cancer biomarker(s) appears to be extremely low, therefore accurate detection demands sensitive optical imaging probes. While optical detection using conventional fluorophores often fail due to photobleaching problems, quantum dots (QDs) offer stable optical imaging in vitro and in vivo.
Methods: In this review, we briefly overview the impacts of QDs in biology and its applications in bioimaging of malignancies. We will also delineate the existing obstacles for early detection of cancer and the intensifying use of QDs in advancement of diagnostic devices.
Results: Of the QDs, unlike the II-VI type QDs (e.g., cadmium (Cd), selenium (Se) or tellurium (Te)) that possess inherent cytotoxicity, the I-III-VI 2 type QDs (e.g., AgInS2, CuInS2, ZnS-AgInS2) appear to be less toxic bioimaging agents with better control of band-gap energies. As highly-sensitive bioimaging probes, advanced hybrid QDs (e.g., QD-QD, fluorochrome-QD conjugates used for sensing through fluorescence resonance energy transfer (FRET), quenching, and barcoding techniques) have also been harnessed for the detection of biomarkers and the monitoring of delivery of drugs/genes to the target sites. Antibody-QD (Ab-QD) and aptamer- QD (Ap-QD) bioconjugates, once target the relevant biomarker, can provide highly stable photoluminescence (PL) at the target sites. In addition to their potential as nanobiosensors, the bioconjugates of QDs with homing devices have successfully been used for the development of smart nanosystems (NSs) providing targeted bioimaging and photodynamic therapy (PDT).
Conclusion: Having possessed great deal of photonic characteristics, QDs can be used for development of seamless multifunctional nanomedicines, theranostics and nanobiosensors.
Collapse
Affiliation(s)
- Omid Mashinchian
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Johari-Ahar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rashidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Photonics, School of Engineering-Emerging Technology, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Hennig R, Pollinger K, Veser A, Breunig M, Goepferich A. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation. J Control Release 2014; 194:20-7. [PMID: 25128717 DOI: 10.1016/j.jconrel.2014.07.062] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.
Collapse
Affiliation(s)
- Robert Hennig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Klaus Pollinger
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Anika Veser
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
31
|
Lee O, Kim J, Park G, Kim M, Son S, Ha S, Oh C. Non-invasive assessment of cutaneous wound healing using fluorescent imaging. Skin Res Technol 2014; 21:108-13. [PMID: 25066671 DOI: 10.1111/srt.12165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND/PURPOSE Optical imaging is a very important technique in the biomedical sciences. The purpose of this study was to develop an in vivo optical system for fluorescent imaging and molecular imaging applications using quantum dots (QDs). METHODS The in vivo optical system was composed of modular parts, including a light source, light guide, excitation filter wheel, excitation filters, emission filter wheel, emission filters, liquid crystal tunable filter (LCTF), macro lens, dark chamber, and a cooled charged-coupled device (CCD) camera for recording images. Filters were selected based on the excitation and absorption spectra of QDs to allow spectral separation and optimization of the acquired image. In contrast with conventional systems, our system allows selection of the emission bandwidth. RESULTS The system was tested in an in vivo study using a wound-healing model in nude mice. The healing process was examined after injection of fibroblasts and keratinocytes labeled with two different sets of QDs. The different QD probes were readily detected and distinguished using our system. CONCLUSION An in vivo optical system is a very useful tool for the detection of genes, proteins, and small-molecule drugs inside living animals, and this imaging modality can also be adopted for real-time visualization of cancer cell metastasis in live animals.
Collapse
Affiliation(s)
- O Lee
- Department of Radiological Science, College of Nursing and Health Science, Gimcheon University, Gimcheon, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Ekiz Kanik F, Ag D, Seleci M, Barlas FB, Kesik M, Hizalan G, Akpinar H, Timur S, Toppare L. A novel DAD type and folic acid conjugated fluorescent monomer as a targeting probe for imaging of folate receptor overexpressed cells. Biotechnol Prog 2014; 30:952-9. [DOI: 10.1002/btpr.1928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/06/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Fulya Ekiz Kanik
- Dept. of Biotechnology; Middle East Technical University; Ankara 06800 Turkey
| | - Didem Ag
- Dept. of Biochemistry, Faculty of Science; Ege University; Bornova-Izmir 35100 Turkey
| | - Muharrem Seleci
- Dept. of Biochemistry, Faculty of Science; Ege University; Bornova-Izmir 35100 Turkey
| | - Firat Baris Barlas
- Dept. of Biochemistry, Faculty of Science; Ege University; Bornova-Izmir 35100 Turkey
| | - Melis Kesik
- Dept. of Chemistry; Middle East Technical University; Ankara 06800 Turkey
| | - Gonul Hizalan
- Dept. of Chemistry; Middle East Technical University; Ankara 06800 Turkey
| | - Hava Akpinar
- Dept. of Polymer Science and Technology; Middle East Technical University; Ankara 06800 Turkey
| | - Suna Timur
- Dept. of Biochemistry, Faculty of Science; Ege University; Bornova-Izmir 35100 Turkey
- Ege University, Inst. on Drug Abuse, Toxicology and Pharmaceutical Science (BATI); 35100 Bornova Izmir Turkey
| | - Levent Toppare
- Dept. of Biotechnology; Middle East Technical University; Ankara 06800 Turkey
- Dept. of Chemistry; Middle East Technical University; Ankara 06800 Turkey
- Dept. of Polymer Science and Technology; Middle East Technical University; Ankara 06800 Turkey
- The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University; Ankara 06800 Turkey
| |
Collapse
|
33
|
Ma J, Hou Z, Song Y, Wang L, Guo E. Visual and quantitative screening of α1-adrenoceptor antagonists in living cells using quantum dots. ACS COMBINATORIAL SCIENCE 2014; 16:155-9. [PMID: 24628108 DOI: 10.1021/co5000135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The performance of α1-adrenoceptor antagonists in living cells was assessed using quantum dots conjugated to a derivative of the α1-adrenoceptor antagonist prazosin. The optimum receptor binding condition and apparent Kd of prazosin-conjugated quantum dots was first determined, followed by application of these structures to drug screening. Total internal reflection fluorescence microscopy and flow cytometry were used to visually and quantitatively measure the affinity of five candidate drugs. The observed affinity order and the affinity coefficient Ki were consistent with previously reported values. These results suggest that this method is suitable for specific drug screening in living cells and is able to realize the displacement assay over the large ranges of dissociation constants.
Collapse
Affiliation(s)
- Jing Ma
- School
of Pharmacy, Shandong University, Wenhua Xilu 44, 250012 Jinan, Shandong Province, P. R. China
| | - Zhun Hou
- School
of Pharmacy, Shandong University, Wenhua Xilu 44, 250012 Jinan, Shandong Province, P. R. China
| | - Yao Song
- Institute
of Vascular Medicine, Peking University Third Hospital, 49 North
Garden Road, 100191 Haidian District, Beijing, P. R. China
| | - Lei Wang
- School
of Pharmacy, Shandong University, Wenhua Xilu 44, 250012 Jinan, Shandong Province, P. R. China
| | - Exiang Guo
- Qingdao Municipal Hospital, 266071 Qingdao, Shandong Province, P. R. China
| |
Collapse
|
34
|
Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, Mondello S, Tan W, Anagli J, Wang K. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:111-31. [PMID: 24410486 DOI: 10.1089/omi.2013.0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.
Collapse
Affiliation(s)
- Firas H Kobeissy
- 1 Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kovtun O, Arzeta-Ferrer X, Rosenthal SJ. Quantum dot approaches for target-based drug screening and multiplexed active biosensing. NANOSCALE 2013; 5:12072-81. [PMID: 23946011 DOI: 10.1039/c3nr02019c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomolecule detection using quantum dots (Qdots), nanometer-sized semiconductor crystals, effectively addresses the limitations associated with conventional optical and biochemical techniques, as Qdots offer several key advantages over traditional fluorophores. In this minireview, we discuss the role of Qdots as a central nanoscaffold for the polyvalent assembly of multifunctional biomolecular probes and describe recent advances in Qdot-based biorecognition. Specifically, we focus on Qdot applications in target-based, drug screening assays and real-time active biosensing of cellular processes.
Collapse
Affiliation(s)
- Oleg Kovtun
- Departments of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
36
|
Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K. Quantum Dots Targeted to the Assigned Organelle in Living Cells. Microbiol Immunol 2013; 48:985-94. [PMID: 15611617 DOI: 10.1111/j.1348-0421.2004.tb03621.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescent nanocrystal quantum dots (QDs) have the potential to be applied to bioimaging since QDs emit higher and far longer fluorescence than conventional organic probes. Here we show that QDs conjugated with signal peptide obey the order to transport the assigned organelle in living cells. We designed the supermolecule of luminescent QDs conjugated with nuclear- and mitochondria-targeting ligands. When QDs with nuclear-localizing signal peptides were added to the culture media, we can visualize the movements of the QDs being delivered into the nuclear compartment of the cells with 15 min incubation. In addition, mitochondrial signal peptide can also transport QDs to the mitochondria in living cells. In conclusion, these techniques have the possibility that QDs can reveal the transduction of proteins and peptides into specific subcellular compartments as a powerful tool for studying intracellular analysis in vitro and even in vivo.
Collapse
Affiliation(s)
- Akiyoshi Hoshino
- Department of Medical Ecology and Informatics, Research Institute, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdelhamid HN, Wu HF. Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 2013; 1:6094-6106. [PMID: 32260994 DOI: 10.1039/c3tb21020k] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitosan modified CdS quantum dots (CdS@CTS) can be used as an effective bacterial biosensor due to their good bioaffinity among chitosan molecules and bacterial membranes. CdS@CTS is an ultrafast, sensitive, direct and biocompatible biosensor for pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). Chitosan biopolymer of CdS@CTS provides bioaffinity sites that can be employed for the assembly on pathogen bacteria cells due to the chemical similarity of the chitosan and the bacteria membranes. Thus, S. aureus and P. aeruginosa cells were detected at low concentrations of 150 and 200 cfu mL-1, respectively, in an extremely short time (1 min). The CdS@CTS-bacteria interaction is noncovalent. From the thermodynamic results, the van der Waals force and hydrogen bonding formation are characterized by negative enthalpy (ΔH), while positive entropy (ΔS) is considered as the evidence for typical hydrophobic interactions. Moreover, negative ΔH and positive ΔS might play a role in the electrostatic interactions. The negative free energy (ΔG) shows that the binding events were spontaneous processes. Matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) and transmission electron microscopy (TEM) were performed to evaluate the interactions and the biocompatibility of CdS@CTS toward bacteria cells. Their biocompatibility, together with the high sensitivity and the presence of multifunctional forces, making these quantum dots (CdS@CTS) an excellent and novel biosensor which can be widely applied in the near future.
Collapse
|
38
|
Surface passivation of CdSe-TOPO quantum dots by poly(acrylic acid): solvent sensitivity and photo-induced emission in water. IRANIAN POLYMER JOURNAL 2013. [DOI: 10.1007/s13726-013-0187-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Abstract
Atherosclerosis, a leading cause of morbidity and mortality worldwide, is characterized by the accumulation of lipid deposits inside arterial walls, leading to narrowing of the arterial lumen. A significant challenge in the development of diagnostic and therapeutic strategies is to elucidate the contribution of the various cellular participants, including macrophages, endothelial cells, and smooth muscle cells, in the initiation and progression of the atheroma. This protocol details a strategy using quantum dot nanocrystals to monitor homing and distribution of cell populations within atherosclerotic lesions with high signal to noise ratios over prolonged periods of analysis. This fluorescence-based approach enables the loading of quantum dots into cells such as macrophages without perturbing native cell functions in vivo, and has been used for the multiplexed imaging of quantum dot-labeled cells with biomarkers of atherosclerotic disease using conventional immunofluorescence techniques.
Collapse
|
40
|
Surface modified fluorescent quantum dots with neurotransmitter ligands for potential targeting of cell signaling applications. Colloids Surf B Biointerfaces 2013; 111:60-70. [PMID: 23777793 DOI: 10.1016/j.colsurfb.2013.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 11/22/2022]
Abstract
The possibility of combining nanotechnology with nanomedicine opens a broad field of research which may truly revolutionize our society. The neural system plays a crucial role in the human body, and most related diseases can dramatically change the quality of life. Thus, the present study reports a novel approach for using neurotransmitters as ligands in the synthesis of surface-modified fluorescent nanocrystals for potential use in cell labeling applications. Briefly, CdS quantum dots (QDs) were prepared using L-glutamic and L-aspartic as surface capping agents via a one-step chemical processing method, which resulted in stable aqueous colloidal systems at room temperature and ambient pressure. UV-visible spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM) were used to characterize the synthesis and relative stability of peptide-capped CdS nanocrystals. The results demonstrate that both ligands were effective in nucleating and stabilizing CdS quantum dots in colloidal aqueous suspensions, with an estimated dimension below 3.3 nm and with fluorescence activity. Thus, novel nanohybrids were developed based on QDs bioconjugated to surface-active neurotransmitter moieties suitable for investigation as potential biomarkers in cell targeting and signaling applications.
Collapse
|
41
|
Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X. Nanotools for neuroscience and brain activity mapping. ACS NANO 2013; 7:1850-66. [PMID: 23514423 PMCID: PMC3665747 DOI: 10.1021/nn4012847] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.
Collapse
Affiliation(s)
- A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, and Lawrence Berkeley Laboratory, Berkeley, California 94720-1460
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychiatry, and Semel Institute for Neuroscience & Human Behavior, Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095
| | - Edward S. Boyden
- Media Laboratory, Department of Biological Engineering, Brain and Cognitive Sciences, and McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University, Boston, Massachusetts 02115
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford California 94305
| | - John P. Donoghue
- Department of Neuroscience, Division of Engineering, Department of Computer Science, Brown University, Providence, Rhode Island 02912
| | - Scott E. Fraser
- Departments of Biological Sciences, Biomedical Engineering, Physiology and Biophysics, Stem Cell Biology and Regenerative Medicine, and Pediatrics, Radiology and Ophthalmology, University of Southern California, Los Angeles, California 90089
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Sotiris Masmanidis
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Paul L. McEuen
- Department of Physics, Laboratory of Atomic and Solid State Physics, and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853
| | - Arto V. Nurmikko
- Department of Physics and Division of Engineering, Brown University, Providence, Rhode Island 02912
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Darcy S. Peterka
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Clay Reid
- Allen Institute for Brain Science, Seattle, Washington 98103
| | - Michael L. Roukes
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, MC 149-33, Pasadena, California 91125
| | - Axel Scherer
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Electrical Engineering, Applied Physics, and Physics, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Address correspondence to , , ,
| | - Mark Schnitzer
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Applied Physics and Biology, James H. Clark Center, Stanford University, Stanford, California 94305
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute, La Jolla, California 92037, and Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Doris Tsao
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Gina Turrigiano
- Department of Biology and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
| | - Rafael Yuste
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
- Kavli Institute for Brain Science, Columbia University, New York, New York 10027
- Address correspondence to , , ,
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Departments of Chemistry and Chemical Biology and Physics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
42
|
Gussin H, Tomlinson ID, Cao D, Qian H, Rosenthal S, Pepperberg DR. Quantum dot conjugates of GABA and muscimol: binding to α1β2γ2 and ρ1 GABA(A) receptors. ACS Chem Neurosci 2013; 4:435-43. [PMID: 23509979 PMCID: PMC3605815 DOI: 10.1021/cn300144v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022] Open
Abstract
GABAA receptors are ligand-gated ion channels that mediate inhibitory synaptic signaling in the CNS. Fluorescent probes with the ability to target these receptors can provide insights into receptor location, distribution and dynamics in live cells, while revealing abnormalities in their distribution and dynamics that could occur in a variety of diseases. We have developed fluorescent probes of GABAA receptors that are composed of a CdSe/ZnS core-shell nanocrystal (quantum dot; qdot) conjugated to pegylated derivatives of the GABA receptor agonists GABA and muscimol (GABA-qdots and muscimol-qdots, respectively). Quantitative fluorescence imaging was used to analyze the binding activity of these conjugates to α1β2γ2 GABAA and ρ1 GABAA receptors expressed in Xenopus oocytes. The selectivity of these conjugates for α1β2γ2 GABAA and ρ1 GABAA receptors was determined by their ability to compete with the antagonists bicuculline and methyl-(1,2,3,6-tetrahydropyridin-4-yl)phosphinic acid (TPMPA). Both GABA- and muscimol-qdots exhibited robust binding to both α1β2γ2 and ρ1 GABAA receptors. At α1β2γ2 receptors, pretreatment with bicuculline reduced conjugate binding by ≥8-fold on average, an extent far exceeding the reduction produced by TPMPA (~30%). Conversely, at ρ1 receptors, pretreatment with TPMPA inhibited binding by ~10-fold, an extent greatly exceeding the change produced by bicuculline (~50% or less). These results indicate specific binding of muscimol-qdots and GABA-qdots to α1β2γ2 GABAA and ρ1 GABAA receptors in a manner that preserves the respective pharmacological sensitivities of these receptors to TPMPA and bicuculline, and encourage the use of qdot-conjugated neurotransmitter analogs as labeling agents at GABAA receptors.
Collapse
Affiliation(s)
- Hélène
A. Gussin
- Lions of Illinois Eye Research Institute,
Department of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, Chicago, Illinois 60612, United
States
| | - Ian D. Tomlinson
- Department of Chemistry and Departments of Physics, Chemical & Biomolecular
Engineering, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Dingcai Cao
- Lions of Illinois Eye Research Institute,
Department of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, Chicago, Illinois 60612, United
States
| | - Haohua Qian
- Lions of Illinois Eye Research Institute,
Department of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, Chicago, Illinois 60612, United
States
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892,
United States
| | - Sandra
J. Rosenthal
- Department of Chemistry and Departments of Physics, Chemical & Biomolecular
Engineering, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute,
Department of Ophthalmology and Visual Sciences, University
of Illinois at Chicago, Chicago, Illinois 60612, United
States
| |
Collapse
|
43
|
Choi Y, Kim M, Cho Y, Yun E, Song R. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells. NANOTECHNOLOGY 2013; 24:075101. [PMID: 23358444 DOI: 10.1088/0957-4484/24/7/075101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (K(d) = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.
Collapse
Affiliation(s)
- Youngseon Choi
- Medicinal Chemistry Laboratory, Institut Pasteur Korea (IP-K), 696 Sampyeong-dong, Bundang-gu,Seongnam-Si, Gyeonggi-Do, Korea
| | | | | | | | | |
Collapse
|
44
|
Chang JC, Rosenthal SJ. Quantum dot-based single-molecule microscopy for the study of protein dynamics. Methods Mol Biol 2013; 1026:71-84. [PMID: 23749570 DOI: 10.1007/978-1-62703-468-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Real-time microscopic visualization of single molecules in living cells provides a molecular perspective of cellular dynamics, which is difficult to be observed by conventional ensemble techniques. Among various classes of fluorescent tags used in single-molecule tracking, quantum dots are particularly useful due to their unique photophysical properties. This chapter provides an overview of single quantum dot tracking for protein dynamic studies. First, we review the fundamental diffraction limit of conventional optical systems and recent developments in single-molecule detection beyond the diffraction barrier. Second, we describe methods to prepare water-soluble quantum dots for biological labeling and single-molecule microscopy experimental design. Third, we provide detailed methods to perform quantum dot-based single-molecule microscopy. This technical section covers three protocols including (1) imaging system calibration using spin-coated single quantum dots, (2) single quantum dot labeling in living cells, and (3) tracking algorithms for single-molecule analysis.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
45
|
Abstract
Direct visualization of biological processes at single-molecule level provides a detailed perspective which conventional bulk measurements are hard to achieve. Among various classes of fluorescent tags used in single-molecule tracking, quantum dots are particularly useful due to their unique photophysical properties. In this chapter, we describe the principles, methodologies, and experimental protocols for qdot-based single-molecule imaging. The first half provides an overview of fluorescent microscopy and advances in single-molecule tracking using quantum dots. The remainder of this chapter describes methods to carry out qdot-based single-molecule experiments. Detailed protocols including qdot labeling, microscopy setup, and single-molecule analysis using appropriate computational programs are given.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
46
|
Devadasu VR, Bhardwaj V, Kumar MNVR. Can controversial nanotechnology promise drug delivery? Chem Rev 2012; 113:1686-735. [PMID: 23276295 DOI: 10.1021/cr300047q] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Venkat Ratnam Devadasu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | | | | |
Collapse
|
47
|
Chang JC, Kovtun O, Blakely RD, Rosenthal SJ. Labeling of neuronal receptors and transporters with quantum dots. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:605-19. [PMID: 22887823 PMCID: PMC3753009 DOI: 10.1002/wnan.1186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to efficiently visualize protein targets in cells is a fundamental goal in biological research. Recently, quantum dots (QDots) have emerged as a powerful class of fluorescent probes for labeling membrane proteins in living cells because of breakthrough advances in QDot surface chemistry and biofunctionalization strategies. This review discusses the increasing use of QDots for fluorescence imaging of neuronal receptors and transporters. The readers are briefly introduced to QDot structure, photophysical properties, and common synthetic routes toward the generation of water-soluble QDots. The following section highlights several reports of QDot application that seek to unravel molecular aspects of neuronal receptor and transporter regulation and trafficking. This article is closed with a prospectus of the future of derivatized QDots in neurobiological and pharmacological research.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
48
|
Engineering imaging probes and molecular machines for nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2012; 55:843-61. [DOI: 10.1007/s11427-012-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
|
49
|
Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 2012; 32:8919-29. [PMID: 22745492 DOI: 10.1523/jneurosci.0048-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signaling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arises from a p38 MAPK-dependent untethering of the SERT C terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behavior of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation.
Collapse
|
50
|
Yuksel M, Colak DG, Akin M, Cianga I, Kukut M, Medine EI, Can M, Sakarya S, Unak P, Timur S, Yagci Y. Nonionic, water self-dispersible "hairy-rod" poly(p-phenylene)-g-poly(ethylene glycol) copolymer/carbon nanotube conjugates for targeted cell imaging. Biomacromolecules 2012; 13:2680-91. [PMID: 22866988 DOI: 10.1021/bm3006193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation and fabrication of nanoscopic structures are of critical technological importance for future implementations in areas such as nanodevices and nanotechnology, biosensing, bioimaging, cancer targeting, and drug delivery. Applications of carbon nanotubes (CNTs) in biological fields have been impeded by the incapability of their visualization using conventional methods. Therefore, fluorescence labeling of CNTs with various probes under physiological conditions has become a significant issue for their utilization in biological processes. Herein, we demonstrate a facile and additional fluorophore-free approach for cancer cell-imaging and diagnosis by combining multiwalled CNTs with a well-known conjugated polymer, namely, poly(p-phenylene) (PP). In this approach, PP decorated with poly(ethylene glycol) (PEG) was noncovalently (π-π stacking) linked to acid-treated CNTs. The obtained water self-dispersible, stable, and biocompatible f-CNT/PP-g-PEG conjugates were then bioconjugated to estrogen-specific antibody (anti-ER) via -COOH functionalities present on the side-walls of CNTs. The resulting conjugates were used as an efficient fluorescent probe for targeted imaging of estrogen receptor overexpressed cancer cells, such as MCF-7. In vitro studies and fluorescence microscopy data show that these conjugates can specifically bind to MCF-7 cells with high efficiency. The represented results imply that CNT-based materials could easily be fabricated by the described approach and used as an efficient "fluorescent probe" for targeting and imaging, thereby providing many new possibilities for various applications in biomedical sensing and diagnosis.
Collapse
Affiliation(s)
- Merve Yuksel
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|