1
|
Johnson SL, Krueger TD, Solaris J, Chen C, Fang C. Proton Pachinko: Probing Excited-State Intramolecular Proton Transfer of St. John's Wort-Derived Fluorescent Photosensitizer Hypericin with Ultrafast Spectroscopy. Chemistry 2025; 31:e202500639. [PMID: 40034065 DOI: 10.1002/chem.202500639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/05/2025]
Abstract
Hypericin from St. John's wort has been used as a potent photosensitizer, but its working mechanism remains elusive which hinders its rational design for improved functionality. We implement ultrafast spectroscopy and quantum calculations to track the excited-state dynamics in an intricate hydrogen-bonding network of hypericin in solution. Using femtosecond transient absorption (fs-TA), we track excited state intramolecular proton transfer (ESIPT) via a previously unreported blueshift of a long-wavelength stimulated emission (SE) band with excitation-dependent dynamics in various solvents, owing to the dominant Q7,14 tautomer that undergoes bidirectional ESIPT. This finding is corroborated by ground-state femtosecond stimulated Raman spectroscopy (GS-FSRS) and density functional theory (DFT) calculations. Moreover, contrasting the neutral and anionic forms of hypericin enables us to reveal an intramolecular charge transfer step underlying ESIPT. We demonstrate UV and visible excitations as an integral platform to provide direct insights into the photophysics and origin for phototoxicity of hypericin. Such mechanistic insights into the excited state of hypericin will power its future development and use.
Collapse
Affiliation(s)
- Seth L Johnson
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Taylor D Krueger
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Janak Solaris
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| |
Collapse
|
2
|
Tang X, Wang L, Zhang Y, Sun C. Relationship between antioxidant activity and ESIPT process based on flavonoid derivatives: A comprehensive analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125370. [PMID: 39531972 DOI: 10.1016/j.saa.2024.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antioxidant activity, as a topic of current interest, is discussed together with the excited state intramolecular proton transfer (ESIPT) process for three flavonoid derivatives, based on density functional theory (DFT)and time-dependent DFT (TD-DFT) methods, as well as DPPH free radical scavenging assay. The potential energy curves and transition states demonstrate that the three molecules can undergo only single proton transfer in the excited state, and all of them are ultrafast ESIPT processes. The absorption spectra of all the molecules show effective protection against UV radiation with low fluorescence intensity, especially Baicalein (Bai), which demonstrates their great potential for sunscreen applications. The density of states, HOMO energy values, global and local indices reveal that the antioxidant activity of the molecules after ESIPT process is enhanced, with Bai having the highest antioxidant activity, which is significantly attributed to the number and position of phenolic hydroxyl groups. Moreover, by comparing the DPPH free radical scavenging activity under the dark and UV radiation conditions, the radical scavenging activity (RSA) value in the UV radiation is remarkably higher than that in the dark condition, in which Bai achieves RSA value of 93.4%. Overall, the antioxidant activity of all three ESIPT-based flavonoid derivatives, especially Bai, is significantly elevated in the keto* form, which reinforces the significant relationship between antioxidant activity and ESIPT process, and provides new application prospects for molecules with ESIPT properties.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Tang X, Wang Y, Wang L, Zhang Y, Sun C. Excited-state antioxidant activity for apigenin based on external electric field-modulated ESIPT behavior: TD-DFT and molecular docking calculations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113087. [PMID: 39733526 DOI: 10.1016/j.jphotobiol.2024.113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
Apigenin (Api), a flavonoid possessing dual features of antioxidant activity and intramolecular hydrogen bond (IMHB), is subjected to an external electric field (EEF) to investigate its excited-state antioxidant activity after excited state intramolecular proton transfer (ESIPT) behavior employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as well as molecular docking. The existence of IMHB is demonstrated by structural parameters and AIM topological analysis, where Api in the enol⁎ form under an EEF of +60 × 10-4 a.u. possesses strong IMHB. The potential energy curves confirm that the ESIPT process varies from barrierless to barriered as the positive EEF grows, thus determining the excited-state form. Api exhibits strong excited-state antioxidant activity in vitro whether or not under an EEF, especially under the EEF of -40 × 10-4 a.u., utilizing HOMO energy. According to average local ionization energy (ALIE), the electrophilic reaction site also changes after ESIPT process under the EEF, and the activity is significantly increased. Furthermore, activation of the antioxidant Keap1-Nrf2-ARE pathway in vivo, namely, the interaction of Keap1 protein with Api, calculated by molecular docking, suggests that an interaction between the Keap1 and excited-state Api exists accompanying lower and variable bind energy under the distinct EEFs. Taken together, combining the modulation of the ESIPT process with the excited-state antioxidant activity is an effective approach to enhance the antioxidant activity of compounds.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Ye Wang
- College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Xiao W, Zhang Q, You DH, Li NB, Zhou GM, Luo HQ. A FRET probe based on flavonol-benzothiazole for the detection of viscosity and SO 2 derivatives. Bioorg Chem 2024; 153:107913. [PMID: 39481145 DOI: 10.1016/j.bioorg.2024.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Sulfur dioxide (SO2) and viscosity play important roles in living organisms, and abnormal levels of them are associated with many diseases. Hence, a bifunctional fluorescence probe (E)-3-(2-(4-(4-(4-(6-fluoro-3-hydroxy-4-oxo-4H-chromen-2-yl)benzoyl)piperazin-1-yl)styryl)benzo-[d]thiazol-3-ium-3-yl)propane-1-sulfonate (HFBT) with fluorescence resonance energy transfer (FRET) properties was successfully constructed by using 3-hydroxyflavonol as the energy donor and benzothiazole sulphonate derivatives as the energy acceptor, and it can be used for the detection of SO2 derivatives (HSO3-/HSO32-) and viscosity. HFBT exhibits a large Stokes shift (245 nm), high resonance energy transfer efficiency (95.56 %), and excellent selectivity, anti-interference and low limit of detection (LOD = 0.057 μM) for HSO3-. The fluorescence intensity of HFBT at 596 nm gradually increases with the increase of viscosity. Interestingly, a visual HSO3- detection platform was successfully constructed and applied to the quantitative detection of HSO3- in food. Additionally, HFBT was successfully applied to imaging endogenous and exogenous HSO3- in cells. The successful development of HFBT provides an effective tool for the detection and imaging of HSO3- in food and cells.
Collapse
Affiliation(s)
- Wei Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Dong Hui You
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guang Ming Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
5
|
Ren F, Wu X, Liu G, Ding Y. Fluorescent response mechanism based on ESIPT and TICT of novel probe H 2Q JI: A TD-DFT investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124383. [PMID: 38772177 DOI: 10.1016/j.saa.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024]
Abstract
Recently, synthesized N-linked-disalicylaldehyde H2QJI probes have been used to detect heavy metal ions in the experiment conveniently. Nevertheless, there needs to be a more in-depth examination of the excited state intramolecular proton transfer (ESIPT) mechanism and photophysical properties of the probe. This work remedied it based on quantum chemistry calculations. We contained due hydrogen bond (O1-H2 ⋯ N3 and O4-H5 ⋯ O6) and then analyzed bond parameters, IR vibration spectra, and non-covalent interaction. The bond strength is enhanced under photoexcitation, and the former is significantly stronger. The calculated electron spectra are in agreement with the experimental values. The results of the S0 and S1 potential energy curves and IRC calculations also confirm the unique ESIPT behavior, which isan excited stated stepwise double proton transfer. The fluorescence, internal conversion, and intersystem crossing rate of KD molecules (twisted-, double proton transfer) were calculated respectively to reveal the radiative and non-radiative pathways. It proved that the corresponding spectra are not obtained since the electrons are mainly deactivated by the ISC (S1->T1). Furthermore, the interfragment charge transfer (IFCT) approach indicates that the molecule possesses twisted intramolecular charge transfer (TICT) characteristics, which lead to the quenching of fluorescence introduction.
Collapse
Affiliation(s)
- Fangyu Ren
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Xiaoxue Wu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Guoqing Liu
- School of Physics, Liaoning University, Shenyang 110036, PR China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
6
|
Chang KH, Yang YH, Su KH, Chen Y, Lin TC, Li JL, Liu ZY, Shi JH, Wang TF, Chang YT, Demchenko AP, Yang HC, Chou PT. Light Induced Proton Coupled Charge Transfer Triggers Counterion Directional Translocation. Angew Chem Int Ed Engl 2024; 63:e202403317. [PMID: 38578721 DOI: 10.1002/anie.202403317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yu-Hsuan Yang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Kuan-Hsuan Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Yi Chen
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Ta-Chun Lin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Jian-Liang Li
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Zong-Ying Liu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Jing-Han Shi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Tzu-Fang Wang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
| | - Yi-Tyng Chang
- Department of Medical Applied Chemistry Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Alexander P Demchenko
- A. V. Palladin Institute of Biochemistry, 01030, Kyiv, Ukraine
- Yuriy Fedkovych National University, Chernivtsi, 58012, Ukrainet
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, R.O.C
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Pethő Z, Pajtás D, Piga M, Magyar Z, Zakany F, Kovacs T, Zidar N, Panyi G, Varga Z, Papp F. A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1. FEBS J 2024; 291:2354-2371. [PMID: 38431775 DOI: 10.1111/febs.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.
Collapse
Affiliation(s)
- Zoltán Pethő
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
- Institut für Physiologie II, University of Münster, Germany
| | - Dávid Pajtás
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Martina Piga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Zsuzsanna Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
8
|
Wang J, Liu Q, Li Y, Pang Y. An environmentally sensitive zinc-selective two-photon NIR fluorescent turn-on probe and zinc sensing in stroke. J Pharm Anal 2024; 14:100903. [PMID: 38655400 PMCID: PMC11035362 DOI: 10.1016/j.jpha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 04/26/2024] Open
Abstract
A two-photon near infrared (NIR) fluorescence turn-on sensor with high selectivity and sensitivity for Zn2+ detection has been developed. This sensor exhibits a large Stokes' shift (∼300 nm) and can be excited from 900 to 1000 nm, with an emission wavelength of ∼785 nm, making it ideal for imaging in biological tissues. The sensor's high selectivity for Zn2+ over other structurally similar cations, such as Cd2+, makes it a promising tool for monitoring zinc ion levels in biological systems. Given the high concentration of zinc in thrombi, this sensor could provide a useful tool for in vivo thrombus imaging.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Engineering Research Center of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
10
|
Qiu LQ, Lv Q, Wang XD. Advances in white light-emitting organic crystals. LUMINESCENCE 2024; 39:e4585. [PMID: 37635303 DOI: 10.1002/bio.4585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
In past decades, organic crystals have presented considerable potential in the field of optoelectronics due to their rich tunable physical and chemical properties and excellent optoelectronic characteristics. White-light emission, as a special application, has received widespread attention and has been applied in various fields, generating significant interest in the scientific community. By preparing white light-emitting organic crystals, a series of applications for future white-light sources can be realized. This article reviews the research progress on the molecular design and synthesis, preparation, and application of white light-emitting organic crystals in recent years. We hope that this review will help to understand and facilitate the development of white light-emitting organic crystals.
Collapse
Affiliation(s)
- Lin-Qing Qiu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| | - Qiang Lv
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| | - Xue-Dong Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Gayathry TC, Gaur M, Mishra L, Mishra M, Barooah N, Bhasikuttan AC, Mohanty J. Supramolecular assembly of coumarin 7 with sulfobutylether-β-cyclodextrin for biomolecular applications. Front Chem 2023; 11:1245518. [PMID: 37731459 PMCID: PMC10508339 DOI: 10.3389/fchem.2023.1245518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Coumarins, in general, exhibit a wide range of photophysical characteristics and are highly sensitive to their microenvironment, and, therefore, their fluorescence characteristics have attracted immense attention as sensors in chemical and biological systems. In the present study, the supramolecular interaction of a bichromophoric coumarin dye, namely, Coumarin 7 (C7) with sulfobutylether-β-cyclodextrin (SBE7βCD) macrocyclic host at different pH conditions has been investigated by using optical spectroscopic techniques such as absorption, steady-state and time-resolved emissions, and circular dichroism measurements and compared with that of βCD. Considerable enhancement in the fluorescence intensity and lifetime of C7 on complexation with SBE7βCD proposes that non-radiative processes like TICT behavior are strictly hindered due to the confinement in the host cavity experienced by the C7 dye. The increase in the rotational correlation time evaluated from the fluorescence anisotropy decay kinetics further confirms the formation of tightly bound inclusion complexes. The binding constant values reveal that the monocationic form of dye at pH 3 shows ∼3 times stronger interaction with SBE7βCD than the neutral form of dye at pH 7 due to strong electrostatic cation-anion interaction. SBE7βCD:C7 exhibits an improved photostability and an upward pK a shift of 0.4 unit compared to the contrasting downward pK a shift of 0.5 with the βCD. The enhanced fluorescence yield and increased photostability have been exploited for bioimaging applications, and better images were captured by staining the Drosophila fly gut with the SBE7βCD:C7 complex. The enhancement in the binding interaction and the emission intensity were found to be responsive to external stimuli such as small competitive binders or metal ions and nearly quantitative dissociation of the complex was demonstrated to release the dye and would find stimuli-responsive applications.
Collapse
Affiliation(s)
- T. C. Gayathry
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Monika Gaur
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Lopamudra Mishra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Nilotpal Barooah
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Achikanath C. Bhasikuttan
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Jyotirmayee Mohanty
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
12
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
13
|
Effects and Influence of External Electric Fields on the Equilibrium Properties of Tautomeric Molecules. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020695. [PMID: 36677753 PMCID: PMC9865840 DOI: 10.3390/molecules28020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
In this review, we have attempted to briefly summarize the influence of an external electric field on an assembly of tautomeric molecules and to what experimentally observable effects this interaction can lead to. We have focused more extensively on the influence of an oriented external electric field (OEEF) on excited-state intramolecular proton transfer (ESIPT) from the studies available to date. The possibilities provided by OEEF for regulating several processes and studying physicochemical processes in tautomers have turned this direction into an attractive area of research due to its numerous applications.
Collapse
|
14
|
Abstract
Biomembranes are ubiquitous lipid structures that delimit the cell surface and organelles and operate as platforms for a multitude of biomolecular processes. The development of chemical tools─fluorescent probes─for the sensing and imaging of biomembranes is a rapidly growing research direction, stimulated by a high demand from cell biologists and biophysicists. This Account focuses on advances in these smart molecules, providing a voyage from the cell frontier─plasma membranes (PM)─toward intracellular membrane compartments─organelles. General classification of the membrane probes can be based on targeting principles, sensing profile, and optical response. Probes for PM and organelle membranes are designed based on multiple targeting principles: conjugation with natural lipids or synthetic targeting ligands and in situ cell labeling by bio-orthogonal chemistry, conjugation to protein tags, and receptor-ligand interactions. Thus, to obtain membrane probes targeting PM with selectivity to one leaflet, we designed membrane anchor ligands based on a charged group and an alkyl chain. According to the sensing profile, we define basic membrane markers with constant emission and probes for biophysical and chemical sensing. The markers are built from classical fluorophores, exemplified by a series of bright cyanines and BODIPY dyes bearing the PM anchors (MemBright). Membrane probes for biophysical sensing are based on environment-sensitive fluorophores: (1) polarity-sensitive solvatochromic dyes; (2) viscosity-sensitive fluorescent molecular rotors; (3) mechanosensitive fluorescent flippers; and (4) voltage-sensitive electrochromic dyes. Our solvatochromic probes based on Nile Red (NR12S, NR12A, NR4A), Laurdan (Pro12A), and 3-hydroxyflavone (F2N12S) through polarity-sensing can visualize liquid ordered and disordered phases of lipid membranes, sense lipid order and its heterogeneity in cell PM, detect apoptosis, etc. Chemically sensitive probes, combining a dye, membrane-targeting ligand, and molecular recognition unit, enable the detection of pH, ions, redox species, lipids, and proteins at the biomembrane surface. In terms of the optical response profile, we can identify (1) fluorogenic (turn-on) probes, allowing background-free imaging; (2) ratiometric probes, e.g., solvatochromic probes, which enable ratiometric imaging by changing their emission/excitation color; (3) fluorescence lifetime-responsive probes, e.g., fluorescence molecular rotors and flippers, suitable for fluorescence lifetime imaging (FLIM); and (4) switchable probes, important for single-molecule localization microscopy. We showed that combining solvatochromic probes with on-off switching through a reversible binding specifically to cell PM enables the mapping of their biophysical properties with superior resolution. While the majority of efforts have been focused on PM, the probes for cellular organelles, such as endoplasmic reticulum, mitochondria, Golgi apparatus, etc., emerge rapidly. Thus, nontargeted solvatochromic probes can distinguish organelles by the emission color. Targeted solvatochromic probes based on Nile Red revealed unique signatures of polarity and lipid order of individual organelles and their different sensitivities to oxidative or mechanical stress. Lipid droplets, which are membraneless lipidic structures, constitute another interesting organelle target for probing the cell stress. Currently, we stand at the beginning of a long route with big challenges ahead, in particular (1) to achieve superior organelle specificity; (2) to label specific biomembrane leaflets, notably the inner leaflet of PM; (3) to detect lipid organization in a proximity of specific proteins; and (4) to probe biomembranes in tissues and animals.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| |
Collapse
|
15
|
Surfactant-induced fluorescence enhancement of a quinoline-coumarin derivative in aqueous solutions and dropcast films. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Excited-state proton transfer reaction of a pyrenylurea derivative in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Papp F, Toombes GES, Pethő Z, Bagosi A, Feher A, Almássy J, Borrego J, Kuki Á, Kéki S, Panyi G, Varga Z. Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel. Commun Biol 2022; 5:1131. [PMID: 36289443 PMCID: PMC9606259 DOI: 10.1038/s42003-022-04065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements. Fluorometry signals indicating conformational change in an ion channel are generated by quenching amino acids and lipid effects during movement of the dye relative to the plane of the membrane.
Collapse
Affiliation(s)
- Ferenc Papp
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gilman E. S. Toombes
- grid.94365.3d0000 0001 2297 5165Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Dr., MSC 3701, Bethesda, MD 20892-3701 USA
| | - Zoltán Pethő
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary ,grid.5949.10000 0001 2172 9288Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Adrienn Bagosi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Adam Feher
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - János Almássy
- grid.7122.60000 0001 1088 8582Department of Physiology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Jesús Borrego
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Ákos Kuki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Sándor Kéki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gyorgy Panyi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Zoltan Varga
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| |
Collapse
|
18
|
Chaihan K, Semakul N, Promarak V, Bui TT, Kungwan N, Goubard F. Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: A combined experimental and theoretical study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Tao M, Li Y, Huang Q, Zhao H, Lan J, Wan Y, Kuang Z, Xia A. Correlation between Excited-State Intramolecular Proton Transfer and Electron Population on Proton Donor/Acceptor in 2-(2'-Hydroxyphenyl)oxazole Derivatives. J Phys Chem Lett 2022; 13:4486-4494. [PMID: 35574839 DOI: 10.1021/acs.jpclett.2c01025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modulating the excited-state intramolecular proton transfer (ESIPT) reaction to achieve anticipant performance is always fascinating for chemists. However, feasible methods and a definite mechanism for tuning the ESIPT reaction remain insufficient. In this work, we reported the feasibility of continuously modulating the ESIPT dynamics in 2-(2'-hydroxyphenyl)oxazole (HPO) derivatives with different substitutions on the positions 5 and 5' of the core HPO through steady-state/transient spectroscopy and theoretical calculations. We found that the main factor affecting the tendency of the ESIPT reaction is the variation of electron population on proton donor and acceptor. An index Δpdif was proposed to evaluate the overall promotion effect on proton transfer caused by the variation of electron population on proton donor and acceptor, which shows high reliability in interpreting the ESIPT tendency. This method, for its capacity to quickly estimate the tendency of ESIPT, shows great potential in ESIPT molecular design with chemical substitution of electron-donating/withdrawing moieties.
Collapse
Affiliation(s)
- Min Tao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100176, P. R. China
| | - Quan Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
- College of Chemistry and Chemical Engineering, Yibin University, Yibin, 644000, P. R. China
| | - Hongmei Zhao
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100176, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhuoran Kuang
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100176, P. R. China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100176, P. R. China
| |
Collapse
|
20
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
21
|
Vincent S, Mallick S, Barnoin G, Le HN, Michel BY, Burger A. An Expeditious Approach towards the Synthesis and Application of Water-Soluble and Photostable Fluorogenic Chromones for DNA Detection. Molecules 2022; 27:molecules27072267. [PMID: 35408665 PMCID: PMC9000371 DOI: 10.3390/molecules27072267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/29/2022] Open
Abstract
The intensive research for hybridization probes based on organic molecules with fluorogenic properties is currently attracting particular attention due to their potential to efficiently recognize different DNA conformations and the local environment. However, most established organic chromophores do not meet the requirements of this task, as they do not exhibit good brightness in aqueous buffer media, develop aggregation and/or are not easily conjugated to oligodeoxynucleotides (ODNs) while keeping their photophysics intact. Herein, an important modification strategy was employed for a well-known fluorophore, 2-(4-(diethylamino)phenyl)-3-hydroxychromone (dEAF). Although this push–pull dye absorbs intensively in the visible range and shows emission with large Stokes shifts in all organic solvents, it is strongly quenched in water. This Achilles’ heel prompted us to implement a new strategy to obtain a series of dyes that retain all the photophysical features of dEAF in water, conjugate readily with oligonucleotides, and furthermore demonstrate sensitivity to hydration, thus paving the way for a high-performance fluorogenic DNA hybridization probe.
Collapse
|
22
|
Shang C, Cao Y, Sun C, Li Y. Unveiling the influence of atomic electronegativity on the double ESIPT processes of uralenol: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120660. [PMID: 34857463 DOI: 10.1016/j.saa.2021.120660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
In this work, the effects of atomic electronegativity (O, S, and Se atoms) on the competitive double excited-state intramolecular proton transfer (ESIPT) reactions and photophysical characteristics of uralenol (URA) were systematically explored by using the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated hydrogen bond parameters, infrared (IR) vibrational spectra, reduced density gradient (RDG) scatter plots, interaction region indicator (IRI) isosurface and topology parameters have confirmed the six-membered intramolecular hydrogen bond (IHB) O4H5…O3 is the stronger one in all the three studied compounds. Subsequently, frontier molecular orbitals (FMOs) and natural bond orbital (NBO) population analysis essentially uncover that the electron redistribution has induced the ESIPT process. Besides, the constructed potential energy curves (PECs) have indicated that the ESIPT process prefers to occur along the O4H5…O3 rather than the O1H2…O3 and the proton-transfer energy barrier is gradually decreased with the weakening of atomic electronegativity from URA to URA-S and URA-Se. In a conclusion, the attenuating of atomic electronegativity has enhanced the IHBs of URA and thereby promoting the ESIPT reaction, which is helpful for further developing novel fluorophores based on ESIPT behavior in the future.
Collapse
Affiliation(s)
- Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yunjian Cao
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
23
|
Li Y, Min Q, Wang Y, Zhuang X, Hao X, Tian C, Fu X, Luan F. A portable visual coffee ring based on carbon dot sensitized lanthanide complex coordination to detect bisphenol A in water. RSC Adv 2022; 12:7306-7312. [PMID: 35424689 PMCID: PMC8982287 DOI: 10.1039/d2ra00039c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a ratiometric fluorescence sensor along with a portable coffee ring visualized detection method for bisphenol A (BPA) was developed based on carbon dots. The probe was formed by the coordination polymerization of Eu3+ and 5'-adenosine monophosphate on the surface of carbon dots containing a large number of hydroxyl and carbonyl groups. The results showed that the fluorescence intensity ratio and the concentration of BPA had a good linear relationship in a wide range of 0.1-100 μM with a detection limit of 20 nM (S/N = 3). The recoveries of the added standard BPA in water samples ranged from 91.80 to 102.7% with relative standard deviation values no more than 1.84% (n = 3). In addition, the changes of the fluorescence color of the CDs@Eu-AMP suspension with different BPA concentrations can be easily visualized under a UV lamp by the naked eye, which highlights the great potential of the coffee ring detection method for the fast and convenient monitoring of BPA in real water samples.
Collapse
Affiliation(s)
- Yixiao Li
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Qi Min
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Yunfei Wang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiaowen Hao
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Chunyuan Tian
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| | - Feng Luan
- College of Chemistry and Chemical Engineering, Yantai University Yantai China
| |
Collapse
|
24
|
Shang C, Cao Y, Shao Z, Sun C, Li Y. Tactfully unveiling the effect of solvent polarity on the ESIPT mechanism and photophysical property of the 3-hydroxylflavone derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120496. [PMID: 34689094 DOI: 10.1016/j.saa.2021.120496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
In this contribution, the solvent effects on the excited-state intramolecular proton transfer (ESIPT) and photophysical properties of 2-(4-(diphenylamine)phenyl)-3-hydroxy-4H-chromen-4-one (3HF-OH, Dyes Pigm. 2021, 184, 108865) in the dimethylsulfoxide (DMSO), acetonitrile (ACN), dichloromethane (DCM) and cyclohexane (CYH) phases have been comprehensively explored by using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The obtained bond lengths, bond angles and infrared (IR) vibration analysis related to the intramolecular hydrogen bond (IHB) reveal that the IHB intensity of 3HF-OH is weakened as the solvent polarity increased. Besides, the ESIPT process changes from the endothermic to the exothermic with the enlargement of solvent polarity, and the reaction barrier increases gradually. It is worth noting that the molecular configuration torsion of 3HF-OH is gradually intensified with the decline of solvent polarity, which aggravates the twisted intramolecular charge transfer (TICT) state and thereby partially attenuates the short-wavelength fluorescence of 3HF-OH in the CYH solvent. In addition to these, the structural torsion has restrained the occurrence of the ESIPT behavior by means of elevating the energy barrier. This theoretical research would provide valuable guidance for regulating and controlling the photophysical behavior of compounds via the strategy of changing solvent polarity.
Collapse
Affiliation(s)
- Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Yunjian Cao
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Zhuqi Shao
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
25
|
García-Calvo J, López-Andarias J, Maillard J, Mercier V, Roffay C, Roux A, Fürstenberg A, Sakai N, Matile S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem Sci 2022; 13:2086-2093. [PMID: 35308858 PMCID: PMC8849034 DOI: 10.1039/d1sc05208j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology. HydroFlippers respond to membrane compression and hydration in the same fluorescence lifetime imaging microscopy histogram: the responses do not correlate.![]()
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Javier López-Andarias
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Chloé Roffay
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
|
27
|
Assies L, García-Calvo J, Piazzolla F, Sanchez S, Kato T, Reymond L, Goujon A, Colom A, López-Andarias J, Straková K, Mahecic D, Mercier V, Riggi M, Jiménez-Rojo N, Roffay C, Licari G, Tsemperouli M, Neuhaus F, Fürstenberg A, Vauthey E, Hoogendoorn S, Gonzalez-Gaitan M, Zumbuehl A, Sugihara K, Gruenberg J, Riezman H, Loewith R, Manley S, Roux A, Winssinger N, Sakai N, Pitsch S, Matile S. Flipper Probes for the Community. Chimia (Aarau) 2021; 75:1004-1011. [PMID: 34920768 DOI: 10.2533/chimia.2021.1004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.
Collapse
Affiliation(s)
- Lea Assies
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - José García-Calvo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Francesca Piazzolla
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Samantha Sanchez
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Takehiro Kato
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Luc Reymond
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Antoine Goujon
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Adai Colom
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Javier López-Andarias
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Karolína Straková
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Dora Mahecic
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Vincent Mercier
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Margot Riggi
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva; Department of Molecular Biology, University of Geneva
| | - Noemi Jiménez-Rojo
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Chloé Roffay
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | | | - Maria Tsemperouli
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Frederik Neuhaus
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Alexandre Fürstenberg
- Department of Physical Chemistry, University of Geneva; Department of Inorganic and Analytical Chemistry, University of Geneva
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva
| | - Sascha Hoogendoorn
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Marcos Gonzalez-Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Andreas Zumbuehl
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Chemistry, University of Fribourg, 9 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | - Kaori Sugihara
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Physical Chemistry, University of Geneva
| | - Jean Gruenberg
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Robbie Loewith
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Molecular Biology, University of Geneva
| | - Suliana Manley
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; École Polytechnique Fédérale de Lausanne - EPFL, SB Cubotron 427, CH-1015 Lausanne, Switzerland
| | - Aurelien Roux
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Biochemistry, University of Geneva
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland
| | - Stefan Pitsch
- Spirochrome AG, Chalberwiesenstrasse 4, CH-8260 Stein am Rhein, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, 30 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 CH-Geneva, Switzerland;,
| |
Collapse
|
28
|
Tao M, Wen L, Huo D, Kuang Z, Song D, Wan Y, Zhao H, Yan J, Xia A. Solvent Effect on Excited-State Intramolecular Proton-Coupled Charge Transfer Reaction in Two Seven-Membered Ring Pyrrole-Indole Hydrogen Bond Systems. J Phys Chem B 2021; 125:11275-11284. [PMID: 34587453 DOI: 10.1021/acs.jpcb.1c07438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the past decades, tremendous efforts have been invested into organic molecules involved in the excited-state intramolecular proton transfer (ESIPT) reaction due to their enormously Stokes-shifted fluorescence and distinctive photophysical properties. The alterations of the environmental medium can effectively adjust the luminous performance of ESIPT molecules, which inspires us to unravel the solvent effect on the ESIPT mechanism. Here, we report the solvent-dependent excited-state properties of two new seven-membered ring pyrrole-indole ESIPT molecules, g-PPDBI and e-PPDBI, by steady-state spectra, picosecond transient fluorescence spectra, femtosecond transient absorption spectra, and theoretical calculations. The bathochromic-shifted normal fluorescence and the negligibly shifted tautomer fluorescence suggest the occurrence of an excited-state intramolecular proton-coupled charge transfer reaction. Thus, the solvent effect plays a vital role in stabilizing the intramolecular charge transferred state, resulting in a higher ESIPT reaction barrier in more polar solvents. Additionally, the observation of the slight dynamic difference between PPDBIs with different π-conjugation positions provides a new strategy to adjust the performance of ESIPT molecules.
Collapse
Affiliation(s)
- Min Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liu Wen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Di Song
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
29
|
Zhang F, Zhao J, Li C. Effect of benzene ring on the excited‐state intramolecular proton transfer mechanisms of hydroxyquinoline derivatives. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhang
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Jing Zhao
- School of Intelligent Systems Engineering Henan Institute of Technology Xinxiang China
| | - Chaozheng Li
- School of Mechanical and Electrical Engineering Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
30
|
Andriani RT, Kubo Y. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization. eLife 2021; 10:65822. [PMID: 34009126 PMCID: PMC8184218 DOI: 10.7554/elife.65822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Gating of the ATP-activated channel P2X2 has been shown to be dependent not only on [ATP] but also on membrane voltage, despite the absence of a canonical voltage-sensor domain. We aimed to investigate the structural rearrangements of rat P2X2 during ATP- and voltage-dependent gating, using a voltage-clamp fluorometry technique. We observed fast and linearly voltage-dependent fluorescence intensity (F) changes at Ala337 and Ile341 in the TM2 domain, which could be due to the electrochromic effect, reflecting the presence of a converged electric field. We also observed slow and voltage-dependent F changes at Ala337, which reflect structural rearrangements. Furthermore, we determined that the interaction between Ala337 in TM2 and Phe44 in TM1, which are in close proximity in the ATP-bound open state, is critical for activation. Taking these results together, we propose that the voltage dependence of the interaction within the converged electric field underlies the voltage-dependent gating.
Collapse
Affiliation(s)
- Rizki Tsari Andriani
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, School of Life Science, Kanagawa, Japan
| |
Collapse
|
31
|
Shaydyuk Y, Bashmakova NV, Dmytruk AM, Kachkovsky OD, Koniev S, Strizhak AV, Komarov IV, Belfield KD, Bondar MV, Babii O. Nature of Fast Relaxation Processes and Spectroscopy of a Membrane-Active Peptide Modified with Fluorescent Amino Acid Exhibiting Excited State Intramolecular Proton Transfer and Efficient Stimulated Emission. ACS OMEGA 2021; 6:10119-10128. [PMID: 34056166 PMCID: PMC8153670 DOI: 10.1021/acsomega.1c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 μJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
National Academy of Sciences, Murmanskaya Street 1, Kyiv 02660, Ukraine
| | - Serhii Koniev
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Igor V. Komarov
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kevin D. Belfield
- New
Jersey Institute of Technology, College of Science and Liberal Arts, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Oleg Babii
- Institute
of Biological Interfaces (IBG-2), Karlsruhe
Institute of Technology (KIT), POB3640, Karlsruhe 76021, Germany
| |
Collapse
|
32
|
Kanlayakan N, Kungwan N. Molecular design of amino-type hydrogen-bonding molecules for excited-state intramolecular proton transfer (ESIPT)-based fluorescent probe using the TD-DFT approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj01277k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A molecular screening of a new series of NH-type molecules for ESIPT-based fluorescent probes has been carried out using time-dependent density. functional theory.
Collapse
Affiliation(s)
| | - Nawee Kungwan
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Thailand
- Center of Excellence in Materials Science and Technology
| |
Collapse
|
33
|
Göbel D, Rusch P, Duvinage D, Bigall NC, Nachtsheim BJ. Emission color-tunable oxazol(in)yl-substituted excited-state intramolecular proton transfer (ESIPT)-based luminophores. Chem Commun (Camb) 2020; 56:15430-15433. [PMID: 33231590 PMCID: PMC8517962 DOI: 10.1039/d0cc05780k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Oxazolinyl- and arylchalcogenazolyl-substituted hydroxyfluorenes exhibiting excited-state intramolecular proton transfer (ESIPT) are described as potent and highly modular luminophores. Emission color tuning was achieved by varying the π-expansion and the insertion of different chalcogen atoms.
Collapse
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.
| | - Pascal Rusch
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Daniel Duvinage
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany
| | - Nadja C Bigall
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.
| |
Collapse
|
34
|
Affiliation(s)
- Nadav Amdursky
- Schulich Faculty of ChemistryTechnion – Israel Institute of Technology Haifa 3200003 Israel
| | - Yiyang Lin
- State Key Laboratory of Organic-Inorganic Composites Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
35
|
Concilio S, Di Martino M, Nardiello AM, Panunzi B, Sessa L, Miele Y, Rossi F, Piotto S. A Flavone-Based Solvatochromic Probe with A Low Expected Perturbation Impact on the Membrane Physical State. Molecules 2020; 25:E3458. [PMID: 32751363 PMCID: PMC7436088 DOI: 10.3390/molecules25153458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The study of the cell membrane is an ambitious and arduous objective since its physical state is regulated by a series of processes that guarantee its regular functionality. Among the different methods of analysis, fluorescence spectroscopy is a technique of election, non-invasive, and easy to use. Besides, molecular dynamics analysis (MD) on model membranes provides useful information on the possibility of using a new probe, following its positioning in the membrane, and evaluating the possible perturbation of the double layer. In this work, we report the rational design and the synthesis of a new fluorescent solvatochromic probe and its characterization in model membranes. The probe consists of a fluorescent aromatic nucleus of a 3-hydroxyflavone moiety, provided with a saturated chain of 18 carbon atoms and a zwitterionic head so to facilitate the anchoring to the polar heads of the lipid bilayer and avoid the complete internalization. It was possible to study the behavior of the probe in GUV model membranes by MD analysis and fluorescence microscopy, demonstrating that the new probe can efficiently be incorporated in the lipid bilayer, and give a color response, thanks to is solvatochromic properties. Moreover, MD simulation of the probe in the membrane supports the hypothesis of a reduced perturbation of the membrane physical state.
Collapse
Affiliation(s)
- Simona Concilio
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Miriam Di Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Anna Maria Nardiello
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, 80055 Portici, Italy;
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| | - Ylenia Miele
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences “DEEP Sciences”, University of Siena, 53100 Siena, Italy;
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.D.M.); (A.M.N.); (L.S.)
| |
Collapse
|
36
|
Mishra J, Kaur M, Kaur N, Ganguli AK. Highly selective and sensitive simultaneous nanomolar detection of Cs(i) and Al(iii) ions using tripodal organic nanoparticles in aqueous media: the effect of the urea backbone on chemosensing. RSC Adv 2020; 10:22691-22700. [PMID: 35514585 PMCID: PMC9054604 DOI: 10.1039/d0ra03171b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
Chemosensing plays a very important role in the detection of essential/pollutant ions in aqueous media. In this manuscript, two tripodal ligands, i.e., 1-(2-hydroxybenzyl)-3-(4-nitrophenyl)-1-phenylurea (ligand 1) and 1-(2-hydroxybenzyl)-3-(4-nitrophenyl)-1-phenylthiourea (ligand 2) have been synthesised, which differ in the linker molecule, i.e., urea and thiourea in ligand 1 and ligand 2, respectively. The ligands were characterised by NMR, IR and mass spectroscopic techniques. Ligands 1 and 2 (2 mM) were further employed for the generation of their organic nanoparticles (ONPs) (0.01 mM) of size 20-25 nm and 30-35 nm, respectively, by the reprecipitation method. The chemosensing properties of 1-ONP and 2-ONP solutions were investigated. 1-ONP showed simultaneous recognition behaviour towards Cs(i) and Al(iii) with the limits of detection of ∼220 and ∼377 nM, respectively, in an aqueous medium, while 2-ONP did not show any recognition behaviour towards any ion.
Collapse
Affiliation(s)
- Jayanti Mishra
- Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University Chandigarh 160014 India
- Department of Chemistry, East Point College of Engineering and Technology Virgo Nagar Post, Avalahalli Bengaluru 560049 Karnataka India
| | - Manpreet Kaur
- Department of Chemistry, Panjab University Chandigarh 160014 India
| | - Navneet Kaur
- Department of Chemistry, Panjab University Chandigarh 160014 India
| | - Ashok K Ganguli
- Department of Chemistry, Indian Institute of Technology Hauz Khas New Delhi 110016 India
| |
Collapse
|
37
|
Kjær C, Zhao Y, Stockett MH, Chen L, Hansen K, Nielsen SB. Gas-phase Förster resonance energy transfer in mass-selected ions with methylene or peptide linkers between two dyes: a concerted dance of charges. Phys Chem Chem Phys 2020; 22:11095-11100. [DOI: 10.1039/d0cp01287d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emission from gaseous rhodamine 640 is redshifted when the dye is tethered to rhodamine 575 due to internal Coulomb interaction.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy
- Aarhus University
- Denmark
| | - Ying Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | | | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Klavs Hansen
- Center for Joint Quantum Studies and Department of Physics
- Tianjin University
- 92 Weijin Road
- China
- Department of Physics
| | | |
Collapse
|
38
|
Donon J, Habka S, Vaquero-Vara V, Brenner V, Mons M, Gloaguen E. Electronic Stark Effect in Isolated Ion Pairs. J Phys Chem Lett 2019; 10:7458-7462. [PMID: 31647874 DOI: 10.1021/acs.jpclett.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stark spectral shifts of a molecular probe are commonly used to estimate the local electric field in condensed media. The very large fields reported, typically in the 0.1-10 GV m-1 range, are, however, difficult to reproduce in a controlled manner, limiting the calibration of these molecular probes to ranges below 0.1 GV m-1. In this context, we investigated gas-phase, isolated, molecular ion pairs, where a phenyl ring is immersed in the electric field produced by the nearby ionic groups. The intensity of the electric field is chemically tuned in the 1 GV m-1 range by changing the nature of the cations, and the phenyl ring response is monitored by UV spectroscopy. A quadratic Stark effect is observed, demonstrating the possibility to characterize molecular probes in a solvent-free environment and in the very large field range they typically meet in condensed media such as biological environments.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Sana Habka
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Vanesa Vaquero-Vara
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Valérie Brenner
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Michel Mons
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| | - Eric Gloaguen
- LIDYL, CEA , CNRS, Université Paris Saclay ; CEA Saclay, Bât 522 , 91191 Gif-sur-Yvette , France
| |
Collapse
|
39
|
Sukpattanacharoen C, Salaeh R, Promarak V, Escudero D, Kungwan N. Heteroatom substitution effect on electronic structures, photophysical properties, and excited-state intramolecular proton transfer processes of 3-hydroxyflavone and its analogues: A TD-DFT study. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Wang Y, Ren FD, Cao DL. A dynamic and electrostatic potential prediction of the prototropic tautomerism between imidazole 3-oxide and 1-hydroxyimidazole in external electric field. J Mol Model 2019; 25:330. [PMID: 31659461 DOI: 10.1007/s00894-019-4216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
In order to obtain an optimum scheme for separating the proton-transfer tautomer, a dynamic investigation into the effect of the external electric field on the proton-transfer tautomeric conversion in imidazole 3-oxide and 1-hydroxyimidazole was carried out at the M06-2X/6-311++G** and CCSD(T)/6-311++G(2d,p) level, accompanied by the analysis of the surface electrostatic potentials. The results show that, for both the forward reaction "imidazole 3-oxide → N-hydroxyimidazole free radical → 1-hydroxyimidazole" and its reverse reaction processes, the fields parallel to the N→O or N-OH bond axis affect the barrier heights and rate constants considerably more than those parallel to the other orientations. As the field strength is increased along the orientation from the O to N atom, the chemical equilibrium moves toward the direction for the formation of 1-hydroxyimidazole, while the amount of imidazole 3-oxide is increased with the increased field strength along the opposite orientation. In the fields along the orientation consistent with the dipole moment, the electrostatic potentials and their variances "abnormally" increase for the transition states with the N→O bond in comparison with those in no field (they decrease generally), which enhances the nucleophilicity of the coordination O atom and the electrophilicity of the activated H atom. The analyses of the AIM (atoms in molecules) and NICS (nucleus-independent chemical shift) were used to explain the above anomaly. Graphical Abstract Electrostatic potentials and their variances "abnormally" increase in the external electric field, which greatly affects tautomeric conversion.
Collapse
Affiliation(s)
- Yong Wang
- School of Chemical Engineering and Technology, North University of China, Shanxi Taiyuan, 030051, China
| | - Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Shanxi Taiyuan, 030051, China.
| | - Duan-Lin Cao
- School of Chemical Engineering and Technology, North University of China, Shanxi Taiyuan, 030051, China
| |
Collapse
|
41
|
Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chem Rev 2019; 119:10977-11005. [DOI: 10.1021/acs.chemrev.9b00279] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Chen Y, Yang Y, Zhao Y, Liu S, Li Y. Effect of solvent environment on excited state intramolecular proton transfer in 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4h-chromen-4-one. Phys Chem Chem Phys 2019; 21:17711-17719. [PMID: 31367718 DOI: 10.1039/c9cp03752g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The new ratiometric fluorescent probe 2-(4-(dimethylamino)phenyl)-3-hydroxy-6,7-dimethoxy-4h-chromen-4-one (HOF) monitoring of methanol in biodiesel was discovered experimentally (T. Y. Qin et al., Sens. Actuators, B, 2018, 277, 484-491). But the experimental study did not report the reaction mechanism in detail. In this study, density functional theory (DFT) and time-density functional theory (TDDFT) methods were used to theoretically study the excited-state intramolecular proton transfer (ESIPT) process of the HOF molecule. The molecular structure in the ground state and the excited state was optimized, and the infrared vibrational spectra, the frontier molecular orbitals, the charge transfer, the potential energy curves and the transition-state structures were calculated. The calculated results prove that the solvent polarity has a great influence on the ESIPT reaction of the HOF molecule. As the solvent polarity increased, the intensity of the intramolecular hydrogen bond decreased, and ESIPT was more difficult to occur. This work has studied the mechanism of the ESIPT reaction in more detail, and paved the way for future research on HOF molecules.
Collapse
Affiliation(s)
- Yunpeng Chen
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China.
| | | | | | | | | |
Collapse
|
43
|
Papp F, Lomash S, Szilagyi O, Babikow E, Smith J, Chang TH, Bahamonde MI, Toombes GES, Swartz KJ. TMEM266 is a functional voltage sensor regulated by extracellular Zn 2. eLife 2019; 8:42372. [PMID: 30810529 PMCID: PMC6392501 DOI: 10.7554/elife.42372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-activated ion channels contain S1-S4 domains that sense membrane voltage and control opening of ion-selective pores, a mechanism that is crucial for electrical signaling. Related S1-S4 domains have been identified in voltage-sensitive phosphatases and voltage-activated proton channels, both of which lack associated pore domains. hTMEM266 is a protein of unknown function that is predicted to contain an S1-S4 domain, along with partially structured cytoplasmic termini. Here we show that hTMEM266 forms oligomers, undergoes both rapid (µs) and slow (ms) structural rearrangements in response to changes in voltage, and contains a Zn2+ binding site that can regulate the slow conformational transition. Our results demonstrate that the S1-S4 domain in hTMEM266 is a functional voltage sensor, motivating future studies to identify cellular processes that may be regulated by the protein. The ability of hTMEM266 to respond to voltage on the µs timescale may be advantageous for designing new genetically encoded voltage indicators.
Collapse
Affiliation(s)
- Ferenc Papp
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,MTA-DE-NAP B Ion Channel Structure-Function Research Group, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Suvendu Lomash
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Orsolya Szilagyi
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Erika Babikow
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Jaime Smith
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Maria Isabel Bahamonde
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Ewan Stephen Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
44
|
Chen Y, Yang Y, Zhao Y, Liu S, Li Y. The effect of different environments on excited-state intramolecular proton transfer in 4′-methoxy-3-hydroxyflavone. Org Chem Front 2019. [DOI: 10.1039/c8qo01111g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Excited state intramolecular proton transfer reaction occurs with increasing difficulty in the solvents tested in the order toluene → ACN → DMF.
Collapse
Affiliation(s)
- Yunpeng Chen
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yunfan Yang
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yu Zhao
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Shixing Liu
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yongqing Li
- Department of Physics
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
45
|
Li C, Guo W, Zhou P, Tang Z. The effects of the heteroatom and position on excited-state intramolecular proton transfer of new hydroxyphenyl benzoxazole derivatives: a time-dependent density functional theory study. Org Chem Front 2019. [DOI: 10.1039/c9qo00295b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effects of the heteroatom and position on excited-state intramolecular proton transfer (ESIPT) of 2-[4′-(N-4,6-dichloro-1,3,5-triazi-n-2-yl)2′hydroxyphenyl]benzoxazole (4THBO) have been investigated via time-dependent density functional theory studies.
Collapse
Affiliation(s)
- Changming Li
- School of Electrical Engineering
- University of South China
- Hengyang 421001
- China
- State Key Lab of Molecular Reaction Dynamics
| | - Wei Guo
- School of Electrical Engineering
- University of South China
- Hengyang 421001
- China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering
- Shandong University
- Qingdao 266235
- P. R. China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering
- Shandong University
- Qingdao 266235
- P. R. China
| |
Collapse
|
46
|
Abbandonato G, Storti B, Tonazzini I, Stöckl M, Subramaniam V, Montis C, Nifosì R, Cecchini M, Signore G, Bizzarri R. Lipid-Conjugated Rigidochromic Probe Discloses Membrane Alteration in Model Cells of Krabbe Disease. Biophys J 2018; 116:477-486. [PMID: 30709620 DOI: 10.1016/j.bpj.2018.11.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Martin Stöckl
- Bioimaging Center, Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Vinod Subramaniam
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
47
|
Moncomble A, Falantin C, Cornard JP. Electronic Spectroscopies Combined with Quantum Chemistry Calculations: Study of the Interactions of 3-Hydroxyflavone with Copper Ions. J Phys Chem B 2018; 122:8943-8951. [PMID: 30183301 DOI: 10.1021/acs.jpcb.8b06062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current study aims at obtaining a better understanding of the mechanisms involved in the complexation of copper ions by 3-hydroxyflavone (3HF), which is one of the most studied compounds of the flavonoid family. To achieve this goal, quantum chemistry calculations combined with electronic spectroscopies, including absorption, fluorescence emission, and excitation, have been used. The formation of successive complexes of stoichiometry (metal/ligand) 1:2, 1:1, and 3:2 has been highlighted. Even under acidic conditions (pH = 4.0), the α-hydroxy-keto function of the molecule presents a high complexing power with regard to copper ions, insofar as a stable complex of 1:2 stoichiometry is obtained with a large conditional stability constant (log β = 8.7). The formation of this predominant species induces a quenching of the dual fluorescence of 3HF, whereas the second complex of stoichiometry 1:1 presents a fluorescence emission.
Collapse
Affiliation(s)
- Aurélien Moncomble
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Cécilia Falantin
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| | - Jean-Paul Cornard
- Université de Lille, CNRS, UMR 8516-LASIR-Laboratoire de Spectrochimie Infrarouge et Raman , F-59000 Lille , France
| |
Collapse
|
48
|
Massue J, Jacquemin D, Ulrich G. Molecular Engineering of Excited-state Intramolecular Proton Transfer (ESIPT) Dual and Triple Emitters. CHEM LETT 2018. [DOI: 10.1246/cl.180495] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julien Massue
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Denis Jacquemin
- CEISAM, UMR CNRS 6230, BP 92208, 2 rue de la Houssinière, 44322 Nantes, Cedex 03, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
49
|
Humeniuk HV, Rosspeintner A, Licari G, Kilin V, Bonacina L, Vauthey E, Sakai N, Matile S. White‐Fluorescent Dual‐Emission Mechanosensitive Membrane Probes that Function by Bending Rather than Twisting. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804662] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Giuseppe Licari
- Department of Physical ChemistryUniversity of Geneva Geneva Switzerland
| | - Vasyl Kilin
- Department of Applied PhysicsUniversity of Geneva Geneva Switzerland
| | - Luigi Bonacina
- Department of Applied PhysicsUniversity of Geneva Geneva Switzerland
| | - Eric Vauthey
- Department of Physical ChemistryUniversity of Geneva Geneva Switzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
50
|
Humeniuk HV, Rosspeintner A, Licari G, Kilin V, Bonacina L, Vauthey E, Sakai N, Matile S. White-Fluorescent Dual-Emission Mechanosensitive Membrane Probes that Function by Bending Rather than Twisting. Angew Chem Int Ed Engl 2018; 57:10559-10563. [PMID: 29924457 PMCID: PMC6099517 DOI: 10.1002/anie.201804662] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Indexed: 12/20/2022]
Abstract
Bent N,N'-diphenyl-dihydrodibenzo[a,c]phenazine amphiphiles are introduced as mechanosensitive membrane probes that operate by an unprecedented mechanism, namely, unbending in the excited state as opposed to the previously reported untwisting in the ground and twisting in the excited state. Their dual emission from bent or "closed" and planarized or "open" excited states is shown to discriminate between micelles in water and monomers in solid-ordered (So ), liquid-disordered (Ld ) and bulk membranes. The dual-emission spectra cover enough of the visible range to produce vesicles that emit white light with ratiometrically encoded information. Strategies to improve the bent mechanophores with expanded π systems and auxochromes are reported, and compatibility with imaging of membrane domains in giant unilamellar vesicles by two-photon excitation fluorescence (TPEF) microscopy is demonstrated.
Collapse
Affiliation(s)
| | | | - Giuseppe Licari
- Department of Physical ChemistryUniversity of GenevaGenevaSwitzerland
| | - Vasyl Kilin
- Department of Applied PhysicsUniversity of GenevaGenevaSwitzerland
| | - Luigi Bonacina
- Department of Applied PhysicsUniversity of GenevaGenevaSwitzerland
| | - Eric Vauthey
- Department of Physical ChemistryUniversity of GenevaGenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of GenevaGenevaSwitzerland
| |
Collapse
|