1
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
2
|
Espuche B, Moya SE, Calderón M. Nanogels: Smart tools to enlarge the therapeutic window of gene therapy. Int J Pharm 2024; 653:123864. [PMID: 38309484 DOI: 10.1016/j.ijpharm.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Gene therapy can potentially treat a great number of diseases, from cancer to rare genetic disorders. Very recently, the development and emergency approval of nucleic acid-based COVID-19 vaccines confirmed its strength and versatility. However, gene therapy encounters limitations due to the lack of suitable carriers to vectorize therapeutic genetic material inside target cells. Nanogels are highly hydrated nano-size crosslinked polymeric networks that have been used in many biomedical applications, from drug delivery to tissue engineering and diagnostics. Due to their easy production, tunability, and swelling properties they have called the attention as promising vectors for gene delivery. In this review, nanogels are discussed as vectors for nucleic acid delivery aiming to enlarge gene therapy's therapeutic window. Recent works highlighting the optimization of inherent transfection efficiency and biocompatibility are reviewed here. The importance of the monomer choice, along with the internal structure, surface decoration, and responsive features are outlined for the different transfection modalities. The possible sources of toxicological endpoints in nanogels are analyzed, and the strategies to limit them are compared. Finally, perspectives are discussed to identify the remining challenges for the nanogels before their translation to the market as transfection agents.
Collapse
Affiliation(s)
- Bruno Espuche
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Sergio E Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain.
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Zhang Y, Wang C, Yin M, Liang H, Gao Q, Hu S, Guo W. Liquid Metal Nanocores Initiated Construction of Smart DNA-Polymer Microgels with Programmable and Regulable Functions and Near-Infrared Light-Driven Locomotion. Angew Chem Int Ed Engl 2024; 63:e202311678. [PMID: 37963813 DOI: 10.1002/anie.202311678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/21/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Due to their sequence-directed functions and excellent biocompatibility, smart DNA microgels have attracted considerable research interest, and the combination of DNA microgels with functional nanostructures can further expand their applications in biosensing and biomedicine. Gallium-based liquid metals (LMs) exhibiting both fluidic and metallic properties hold great promise for the development of smart soft materials; in particular, LM particles upon sonication can mediate radical-initiated polymerization reactions, thus allowing the combination of LMs and polymeric matrix to construct "soft-soft" materials. Herein, by forming active surfaces under sonication, LM nanoparticles (LM NPs) initiated localized radical polymerization reactions allow the combination of functional DNA units and different polymeric backbones to yield multifunctional core/shell microgels. The localized polymerization reaction allows fine control of the microgel compositions, and smart DNA microgels with tunable catalytic activities can be constructed. Moreover, due to the excellent photothermal effect of LM NPs, the resulting temperature gradient between microgels and surrounding solution upon NIR light irradiation can drive the oriented locomotion of the microgels, and remote control of the activity of these smart microgels can be achieved. These microgels may hold promise for various applications, such as the development of in vivo and in vitro biosensing and drug delivery systems.
Collapse
Affiliation(s)
- Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 30071, Tianjin, P. R. China
| |
Collapse
|
4
|
Whiteley Z, Massaro G, Gkogkos G, Gavriilidis A, Waddington SN, Rahim AA, Craig DQM. Microfluidic production of nanogels as alternative triple transfection reagents for the manufacture of adeno-associated virus vectors. NANOSCALE 2023; 15:5865-5876. [PMID: 36866741 DOI: 10.1039/d2nr06401d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adeno-associated viral vectors (AAVs) have proved a mainstay in gene therapy, owing to their remarkable transduction efficiency and safety profile. Their production, however, remains challenging in terms of yield, the cost-effectiveness of manufacturing procedures and large-scale production. In this work, we present nanogels produced by microfluidics as a novel alternative to standard transfection reagents such as polyethylenimine-MAX (PEI-MAX) for the production of AAV vectors with comparable yields. Nanogels were formed at pDNA weight ratios of 1 : 1 : 2 and 1 : 1 : 3, of pAAV cis-plasmid, pDG9 capsid trans-plasmid and pHGTI helper plasmid respectively, where vector yields at a small scale showed no significant difference to those of PEI-MAX. Weight ratios of 1 : 1 : 2 showed overall higher titers than 1 : 1 : 3, where nanogels with nitrogen/phosphate ratios of 5 and 10 produced yields of ≈8.8 × 108 vg mL-1 and ≈8.1 × 108 vg mL-1 respectively compared to ≈1.1 × 109 vg mL-1 for PEI-MAX. In larger scale production, optimised nanogels produced AAV at a titer of ≈7.4 × 1011 vg mL-1, showing no statistical difference from that of PEI-MAX at ≈1.2 × 1012 vg mL-1, indicating that equivalent titers can be achieved with easy-to-implement microfluidic technology at comparably lower costs than traditional reagents.
Collapse
Affiliation(s)
- Zoe Whiteley
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Giulia Massaro
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Simon N Waddington
- Institute for Women's Health, University College London, 84-84 Chenies Mews, London, WC1E 6HU, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Duncan Q M Craig
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
5
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
6
|
Bhaladhare S, Bhattacharjee S. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review. Int J Biol Macromol 2023; 226:535-553. [PMID: 36521697 DOI: 10.1016/j.ijbiomac.2022.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The development of nanotechnology has influenced the advancements in biomedical and pharmaceutical fields. The design and formulation of stimuli-responsive nano-drug delivery systems, also called smart drug delivery systems, have attracted significant research worldwide and have been seen as a breakthrough in nanomedicines. The ability of these nanocarriers to respond to external and internal stimuli, such as pH, temperature, redox, electric and magnetic fields, enzymes, etc., has allowed them to deliver the cargo at targeted sites in a controlled fashion. The targeted drug delivery systems limit the harmful side effects on healthy tissue by toxic drugs and furnish spatial and temporal control drug delivery, improved patient compliance, and treatment efficiency. The polymeric nanogels (hydrogel nanoparticles) with stimuli-responsive characteristics have shown great potential in various biomedical, tissue engineering, and pharmaceutical fields. It is primarily because of their small size, biocompatibility, biodegradability, stimuli-triggered drug deliverability, high payload capacity, and tailored functionality. This comprehensive review deals distinctively with polymeric nanogels, their chemical, physical, and biological stimuli, the concepts of nanogels response to different stimuli, and recent advancements. This document will further improve the current understanding of stimuli-responsive materials and drug delivery systems and assist in exploring advanced potential applications of these intelligent materials.
Collapse
Affiliation(s)
- Sachin Bhaladhare
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India.
| | - Sulagna Bhattacharjee
- Chemical and Polymer Engineering, Tripura University, Suryamaninagar, Tripura 799022, India
| |
Collapse
|
7
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
8
|
Simakova A, Averick S, Jazani AM, Matyjaszewski K. Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonina Simakova
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | - Saadyah Averick
- Laboratory for Biomolecular Medicine Allegheny Health Network Research Institute Allegheny General Hospital Pittsburgh Pittsburgh PA 15212 United States
| | - Arman Moini Jazani
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | | |
Collapse
|
9
|
Development and evaluation of polymeric nanogels to enhance solubility of letrozole. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
11
|
Bicak T, Garnier M, Sabbah M, Griffete N. Photoinduced synthesis of fluorescent hydrogels without fluorescent monomers. Chem Commun (Camb) 2022; 58:9614-9617. [DOI: 10.1039/d2cc02888c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent monomer-free one-step strategy is developed for the synthesis of fluorescent acrylamide gels, using inexpensive and commercially available rhodamine B as the hydrogen donor in type II photoinitiation system....
Collapse
|
12
|
Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54621-54647. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.
Collapse
Affiliation(s)
- Hao Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Cangqian, Yuhang District, Hangzhou 311121, China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Chen Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Yamaguchi K, Hiraike O, Iwaki H, Matsumiya K, Nakamura N, Sone K, Ohta S, Osuga Y, Ito T. Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an In Situ Cross-Linkable Hydrogel for Peritoneal Dissemination of Ovarian Cancer. Mol Pharm 2021; 18:4090-4098. [PMID: 34662129 DOI: 10.1021/acs.molpharmaceut.1c00514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intraperitoneal chemotherapy demonstrates potential applicability in the treatment of peritoneally disseminated ovarian cancer because the disseminated tumors can directly receive exposure to high concentrations of anticancer drugs. However, a considerable proportion of drugs, particularly micromolecular and hydrophilic drugs, such as cisplatin (CDDP), are often excreted through glomerular filtration for a short period. To effectively deliver CDDP into peritoneally disseminated ovarian cancer tissues, we developed an alginate (AL)-based hybrid system in which a CDDP-loaded AL nanogel (AL/CDDP-nanogel) was encapsulated in an injectable AL-hydrogel cross-linked with calcium ions. This system enabled the sustained release of CDDP from the AL/CDDP-nanogel/AL-hydrogel hybrid for over a week. Herein, we constructed a peritoneally disseminated ovarian cancer mouse model using ovarian cancer cell lines with KRAS mutations (ID8-KRAS: KRASG12V). The AL/CDDP-nanogel/AL-hydrogel hybrid system showed significant antitumor activity in vivo. This therapy may be considered a novel strategy for the treatment of advanced-stage ovarian cancer with KRAS mutations.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruna Iwaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuki Matsumiya
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Noriko Nakamura
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Seiichi Ohta
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taichi Ito
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
14
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
15
|
León-Boigues L, Navarro R, Mijangos C. Free radical nanocopolymerization in AAO porous materials: Kinetic, copolymer composition and monomer reactivity ratios. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Sung B, Kim M, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021; 6:e10190. [PMID: 33532590 PMCID: PMC7823133 DOI: 10.1002/btm2.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- Department of Biological SciencesKent State UniversityKentOhioUSA
- Division of Energy and Environment TechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Min‐Ho Kim
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- MESA+ Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
| |
Collapse
|
17
|
Morales-Moctezuma MD, Spain SG. The effects of cononsolvents on the synthesis of responsive particles via polymerisation-induced thermal self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00396h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Responsive nanogels were synthesised via RAFT-mediated polymerisation-induced thermal self-assembly in cononsolvent mixtures of water and ethanol. The solvent mixture affected the particle size, tacticity and thermal properties.
Collapse
Affiliation(s)
- Marissa D. Morales-Moctezuma
- Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Sebastian G. Spain
- Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
18
|
Kertsomboon T, Chirachanchai S. Amphiphilic biodegradable co-networks of Poly(butylene succinate)-Poly(ethylene glycol) chains for nano-gelation via Click chemistry and its potential dispersant for multi-walled carbon nanotubes. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Ding S, Mustafa B, Anton N, Serra CA, Chan-Seng D, Vandamme TF. Production of lipophilic nanogels by spontaneous emulsification. Int J Pharm 2020; 585:119481. [PMID: 32473375 DOI: 10.1016/j.ijpharm.2020.119481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Nanosized gel particles, so-called nanogels, have attracted substantial interest in different application fields, thanks to their controllable and three-dimensional physical structure, good mechanical properties and potential biocompatibility. Literature reports many technologies for their preparation and design, however a recurrent limitation remains in their broad size distributions as well as in the poor size control. Therefore, the monodisperse and size-controlled nanogels preparation by simple process -like emulsification- is a real challenge still in abeyance to date. In this study we propose an original low energy emulsification approach for the production of monodisperse nanogels, for which the size can be finely controlled in the range 30 to 200 nm. The principle lies in the fabrication of a direct nano-emulsion containing both oil (medium chain triglycerides) and a bi-functional acrylate monomer. The nanogels are thus formed in situ upon UV irradiation of the droplet suspension. Advantage of such modification of the oil nano-carriers are the potential modulation of the release of encapsulated drugs, as a function of the density and/or properties of the polymer chain network entrapped in the oil nano-droplets. This hypothesis was confirmed using a model of hydrophobic drug -ketoprofen- entrapped into the nanogels particles, along with the study of the release profile, carried out in function of the nature of the monomers, density of polymer chains, and different formulation parameters.
Collapse
Affiliation(s)
- Shukai Ding
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France; Shaanxi University of Science & Technology, Institute of Atomic and Molecular Science, CN-710021 Xi'an, Shaanxi, China
| | - Bilal Mustafa
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France; Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; Faculty of Pharmacy, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Christophe A Serra
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France.
| | - Delphine Chan-Seng
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, F-67000 Strasbourg, France
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| |
Collapse
|
20
|
Dubay R, Fiering J, Darling EM. Effect of elastic modulus on inertial displacement of cell-like particles in microchannels. BIOMICROFLUIDICS 2020; 14:044110. [PMID: 32774585 PMCID: PMC7402708 DOI: 10.1063/5.0017770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
Label-free microfluidic-based cell sorters leverage innate differences among cells (e.g., size and stiffness), to separate one cell type from another. This sorting step is crucial for many cell-based applications. Polystyrene-based microparticles (MPs) are the current gold standard for calibrating flow-based cell sorters and analyzers; however, the deformation behavior of these rigid materials is drastically different from that of living cells. Given this discrepancy in stiffness, an alternative calibration particle that better reflects cell elasticity is needed for the optimization of new and existing microfluidic devices. Here, we describe the fabrication of cell-like, mechanically tunable MPs and demonstrate their utility in quantifying differences in inertial displacement within a microfluidic constriction device as a function of particle elastic modulus, for the first time. Monodisperse, fluorescent, cell-like microparticles that replicate the size and modulus of living cells were fabricated from polyacrylamide within a microfluidic droplet generator and characterized via optical and atomic force microscopy. Trajectories of our cell-like MPs were mapped within the constriction device to predict where living cells of similar size/modulus would move. Calibration of the device with our MPs showed that inertial displacement depends on both particle size and modulus, with large/soft MPs migrating further toward the channel centerline than small/stiff MPs. The mapped trajectories also indicated that MP modulus contributed proportionally more to particle displacement than size, for the physiologically relevant ranges tested. The large shift in focusing position quantified here emphasizes the need for physiologically relevant, deformable MPs for calibrating and optimizing microfluidic separation platforms.
Collapse
Affiliation(s)
| | - J. Fiering
- Draper, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
21
|
Tarvirdipour S, Schoenenberger CA, Benenson Y, Palivan CG. A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length. SOFT MATTER 2020; 16:1678-1691. [PMID: 31967171 DOI: 10.1039/c9sm01990a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To overcome the low efficiency and cytotoxicity associated with most non-viral DNA delivery systems we developed a purely peptidic self-assembling system that is able to entrap single- and double-stranded DNA of up to 100 nucleotides in length. (HR)3gT peptide design consists of a hydrophilic domain prone to undergo electrostatic interactions with DNA cargo, and a hydrophobic domain at a ratio that promotes the self-assembly into multi-compartment micellar nanoparticles (MCM-NPs). Self-assembled (HR)3gT MCM-NPs range between 100 to 180 nm which is conducive to a rapid and efficient uptake by cells. (HR)3gT MCM-NPs had no adverse effects on HeLa cell viability. In addition, they exhibit long-term structural stability at 4 °C but at 37 °C, the multi-micellar organization disassembles overtime which demonstrates their thermo-responsiveness. The comparison of (HR)3gT to a shorter, less charged H3gT peptide indicates that the additional arginine residues result in the incorporation of longer DNA segments, an improved DNA entrapment efficiency and an increase cellular uptake. Our unique non-viral system for DNA delivery sets the stage for developing amphiphilic peptide nanoparticles as candidates for future systemic gene delivery.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2020; 69:52-68. [PMID: 32014609 DOI: 10.1016/j.semcancer.2020.01.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/07/2023]
Abstract
Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.
Collapse
|
23
|
Misu S, Kurihara R, Kainuma R, Sato R, Nishihara T, Tanabe K. Hybridizing Oligonucleotides with Hydrophobic Peptide Nucleic Acids Assists Their Cellular Uptake through Aggregate Formation. Chembiochem 2020; 21:1140-1143. [PMID: 31702103 DOI: 10.1002/cbic.201900607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/21/2022]
Abstract
We applied hybridization between hydrophobic peptide nucleic acids (PNAs) and oligodeoxynucleotides (ODNs) to achieve their cellular uptake without any need for transfection reagents. We employed a pyrenyl unit as a hydrophobic functional group and introduced it at the terminus of the PNA strand. The pyrene-tethered PNA (PyPNA) strongly bound with its complementary ODNs to generate amphiphiles; the resulting hybrids formed aggregates that showed efficient cellular uptake and high biological stability. Aggregates containing a functional DNA aptamer that bound to the PyPNA penetrated the cell membrane smoothly, with the aptamer exerting its original function in living cells. Thus, PyPNA efficiently assisted the additive-free cellular uptake of ODNs.
Collapse
Affiliation(s)
- Sotaro Misu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Ryohsuke Kurihara
- School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Reina Kainuma
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Ryugai Sato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
24
|
Oehrl A, Schötz S, Haag R. Systematic Screening of Different Polyglycerin-Based Dienophile Macromonomers for Efficient Nanogel Formation through IEDDA Inverse Nanoprecipitation. Macromol Rapid Commun 2019; 41:e1900510. [PMID: 31750985 DOI: 10.1002/marc.201900510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Alternatives for strain-promoted azide-alkyne cycloaddition (SPAAC) chemistries are needed because of the employment of expensive and not easily scalable precursors such as bicyclo[6.1.0]non-4-yne (BCN). Inverse electron demand Diels Alder (iEDDA)-based click chemistries, using dienophiles and tetrazines, offer a more bioorthogonal and faster toolbox, especially in the biomedical field. Here, the straightforward synthesis of dendritic polyglycerin dienophiles (dPG-dienophiles) and dPG-methyl-tetrazine (dPG-metTet) as macromonomers for a fast, stable, and scalable nanogel formation by inverse nanoprecipitation is reported. Nanogel size-influencing parameters are screened such as macromonomer concentration and water-to-acetone ratio are screened. dPG-norbonene and dPG-cyclopropene show fast and stable nanogel formation in the size range of 40-200 nm and are thus used for the coprecipitation of the model protein myoglobin. High encapsulation efficiencies of more than 70% at a 5 wt% feed ratio are obtained in both cases, showing the suitability of the mild gelation chemistry for the encapsulation of small proteins.
Collapse
Affiliation(s)
- Alexander Oehrl
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| | - Sebastian Schötz
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Takustr 3, D-14195, Berlin, Germany
| |
Collapse
|
25
|
Artusio F, Ferri A, Gigante V, Massella D, Mazzarino I, Sangermano M, Barresi A, Pisano R. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Dev Ind Pharm 2019; 45:1862-1870. [PMID: 31549528 DOI: 10.1080/03639045.2019.1672714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The association of an active principle with a nanocarrier is known to improve its stability and protect it from external factors. Nevertheless, loading of nanoparticles with highly hydrophilic substances like caffeine remains a tricky issue. In the present study, inverse miniemulsion systems were successfully coupled to UV radiation to synthesize polymeric nanohydrogels for drug delivery. The proper choice of the continuous and dispersed phase chemical composition led to the entrapment of active principle into the miniemulsion droplets. Our confinement-based strategy enabled unprecedented caffeine encapsulation efficiency inside 100-nm particles. Dimensional, thermal, and spectroscopic characterizations were carried out to investigate both unloaded and loaded nanohydrogels. Furthermore, in vitro release studies evaluated caffeine release kinetics from nanohydrogels by means of dialysis tests. It was demonstrated that controlled and sustained release occurred within the first 50 hours. Experimental data were found to fit the Higuchi model suggesting that the active principle release is diffusion controlled.
Collapse
Affiliation(s)
- Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Valeria Gigante
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Italo Mazzarino
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Antonello Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
26
|
Asahi W, Kurihara R, Takeyama K, Umehara Y, Kimura Y, Kondo T, Tanabe K. Aggregate Formation of BODIPY-Tethered Oligonucleotides That Led to Efficient Intracellular Penetration and Gene Regulation. ACS APPLIED BIO MATERIALS 2019; 2:4456-4463. [DOI: 10.1021/acsabm.9b00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wataru Asahi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ryohsuke Kurihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kotaro Takeyama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yui Umehara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
27
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
28
|
Zou Y, Li D, Shen M, Shi X. Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 2019; 19:e1900272. [PMID: 31531955 DOI: 10.1002/mabi.201900272] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Nanogels (NGs) are 3-dimensional (3D) networks composed of hydrophilic or amphiphilic polymer chains, allowing for effective and homogeneous encapsulation of drugs, genes, or imaging agents for biomedical applications. Polyethylenimine (PEI), possessing abundant positively charged amine groups, is an ideal platform for the development of NGs. A variety of effective PEI-based NGs have been designed and much effort has been devoted to study the relationship between the structure and function of the NGs. In particular, PEI-based NGs can be prepared either using PEI as the major NG component or using PEI as a crosslinker. This review reports the recent progresses in the design of PEI-based NGs for gene and drug delivery and for bioimaging applications with a target focus to tackle the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Yu Zou
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal
| | - Du Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Portugal.,College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
29
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
30
|
Etchenausia L, Villar-Alvarez E, Forcada J, Save M, Taboada P. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109871. [PMID: 31499979 DOI: 10.1016/j.msec.2019.109871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
The present work investigates the potentiality of poly(N-vinyl caprolactam) (PVCL)-based thermoresponsive microgels decorated with cationic polymer brushes as drug delivery carriers. The effect of physico-chemical features of the colloids on cell viability response have to be carefully investigated to establish the range of suitable hydrodynamic diameters, crosslinking densities, lengths and ratios of the cationic polyelectrolyte shell which allow their efficient and effective use for cargo loading, transport and delivery. The colloidal stability of all cationic thermoresponsive microgels is maintained over several days of incubation at 37 °C in biological mimicking medium (Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum). The thin cationic polymer shell covalently anchored does not hinder the all range of microgels to be biocompatible while the higher cytotoxicity of the doxorubicin-loaded microgels on HeLa cells proves their anti-tumor activity. The core-shell PVCL drug delivery nanocarriers allow a sustained release of doxorubicin with a slightly higher viability of HeLa cells incubated in the presence of DOXO-loaded microgels compared to the free DOXO. The nature of the endocytosis pathway is investigated through a quantification of the extent of the cellular survival rate in the presence of various cellular uptake inhibitors. A clathrin-dependent internalization was observed.
Collapse
Affiliation(s)
- Laura Etchenausia
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France; Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Eva Villar-Alvarez
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacqueline Forcada
- Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Maud Save
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France.
| | - Pablo Taboada
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Jalababu R, Satya Veni S, Reddy KVNS. Development, characterization, swelling, and network parameters of amino acid grafted guar gum based pH responsive polymeric hydrogels. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1594058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. Jalababu
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - S. Satya Veni
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - K. V. N. S. Reddy
- Department of Chemistry, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
32
|
Abstract
The present review focuses on the description of the design, synthesis and physico-chemical and biological evaluation of polymer nanogels. Nanogels are robust swollen cross-linked polymer nanoparticles that can be used as highly efficient and biodegradable carriers for the transport of drugs in controlled drug delivery. In this article, various types of nanogels are described and methods for their preparation discussed. The possibility of using synthesized nanosystems for targeting are reviewed to show the potential of tailored structures to reach either solid tumor tissue or direct tumor cells. Finally, the methods for encapsulation or attachment of biologically active molecules, e.g. drugs, proteins, are described and compared.
Collapse
Affiliation(s)
- J Kousalová
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| | | |
Collapse
|
33
|
Chen X, Yang H, Xiao C, Chen X. Facile Synthesis of Resveratrol Nanogels with Enhanced Fluorescent Emission. Macromol Biosci 2018; 19:e1800438. [DOI: 10.1002/mabi.201800438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Huailin Yang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Department of ChemistryNortheast Normal University Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
- Jilin Biomedical Polymers Engineering Laboratory Changchun 130022 P. R. China
| |
Collapse
|
34
|
Abstract
An ideal gene carrier requires an excellent gating system to efficiently load, protect, deliver, and release environmentally sensitive nucleic acids on demand. Presented in this communication is a polymersome with a "boarding gate" and a "debarkation gate" in the membrane to complete the above important missions. This dually gated polymersome is self-assembled from a block copolymer, poly(ethylene oxide)- block-poly[ N-isopropylacrylamide- stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin- stat-2-(diethylamino)ethyl methacrylate] [PEO- b-P(NIPAM- stat-CMA- stat-DEA)]. The hydrophilic PEO chains form the coronas of the polymersome, whereas the temperature and pH-sensitive P(NIPAM- stat-CMA- stat-DEA) block forms the dually gated heterogeneous membrane. The temperature-controlled "boarding gate" can be opened at room temperature for facile encapsulation of siRNA and plasmid DNA into polymersomes directly in aqueous solution. The "debarkation gate" can be triggered by proton sponge effect for intracellular release. Biological studies confirmed the successful encapsulation of siRNA and plasmid DNA, efficient in vitro and in vivo gene transfection, and the expression of green fluorescent protein (GFP) from GFP-encoding plasmid, suggesting that this kind of polymersome with a dual gating system can serve as an excellent biomacromolecular shuttle for gene delivery and other biological applications.
Collapse
Affiliation(s)
- Fangyingkai Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jiangang Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Orthopaedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , 301 Middle Yanchang Road , Shanghai 200072 , China
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| |
Collapse
|
35
|
Petr Š, Jana D, Peter Č, Ewa P, Vladimír P. Poly(amino acid)-based nanogel by horseradish peroxidase catalyzed crosslinking in an inverse miniemulsion. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Agrawal G, Agrawal R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers (Basel) 2018; 10:E418. [PMID: 30966453 PMCID: PMC6415239 DOI: 10.3390/polym10040418] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In this paper, recent developments in the chemical design of functional microgels are summarized. A wide range of available synthetic methods allows the incorporation of various reactive groups, charges, or biological markers inside the microgel network, thus controlling the deformation and swelling degree of the resulting smart microgels. These microgels can respond to various stimuli, such as temperature, pH, light, electric field, etc. and can show unique deformation behavior at the interface. Due to their switchability and interfacial properties, these smart microgels are being extensively explored for various applications, such as antifouling coatings, cell encapsulation, catalysis, controlled drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247001, Uttar Pradesh, India.
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| |
Collapse
|
37
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Ruan W, Zheng M, An Y, Liu Y, Lovejoy DB, Hao M, Zou Y, Lee A, Yang S, Lu Y, Morsch M, Chung R, Shi B. DNA nanoclew templated spherical nucleic acids for siRNA delivery. Chem Commun (Camb) 2018; 54:3609-3612. [DOI: 10.1039/c7cc09257a] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A superior biocompatible spherical nucleic acid (SNA) conjugate was fabricated by grafting siRNA onto the surface of a core composed of a spherical DNA nanostructure that we have termed DNA nanoclew (DC).
Collapse
Affiliation(s)
- Weimin Ruan
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Yang An
- School of Basic Medical Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Yuanyuan Liu
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - David B. Lovejoy
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University
- Australia
| | - Mingcong Hao
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Yan Zou
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Albert Lee
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University
- Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University
- Australia
| | - Yiqing Lu
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University
- Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University
- Australia
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation
- School of Life Sciences
- Henan University
- Kaifeng
- P. R. China
| |
Collapse
|
39
|
Isaacson KJ, Jensen MM, Watanabe AH, Green BE, Correa MA, Cappello J, Ghandehari H. Self-Assembly of Thermoresponsive Recombinant Silk-Elastinlike Nanogels. Macromol Biosci 2018; 18:10.1002/mabi.201700192. [PMID: 28869362 PMCID: PMC5806626 DOI: 10.1002/mabi.201700192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Indexed: 12/28/2022]
Abstract
Recombinant silk-elastinlike protein polymers (SELPs) combine the biocompatibility and thermoresponsiveness of human tropoelastin with the strength of silk. Direct control over structure of these monodisperse polymers allows for precise correlation of structure with function. This work describes the fabrication of the first SELP nanogels and evaluation of their physicochemical properties and thermoresponsiveness. Self-assembly of dilute concentrations of SELPs results in nanogels with enhanced stability over micelles due to physically crosslinked beta-sheet silk segments. The nanogels respond to thermal stimuli via size changes and aggregation. Modifying the ratio and sequence of silk to elastin in the polymer backbone results in alterations in critical gel formation concentration, stability, aggregation, size contraction temperature, and thermal reversibility. The nanogels sequester hydrophobic compounds and show promise in delivery of bioactive agents.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Mark Martin Jensen
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Alexandre H Watanabe
- College of Pharmacy, University of Utah, 30 2000 E., Salt Lake City, UT, 84112, USA
| | - Bryant E Green
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Marcelo A Correa
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Joseph Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Bioengineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT, 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S. 2000 E., Salt Lake City, UT, 84112, USA
| |
Collapse
|
40
|
Madhusudana Rao K, Krishna Rao KS, Ha CS. Functional stimuli-responsive polymeric network nanogels as cargo systems for targeted drug delivery and gene delivery in cancer cells. DESIGN OF NANOSTRUCTURES FOR THERANOSTICS APPLICATIONS 2018:243-275. [DOI: 10.1016/b978-0-12-813669-0.00006-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Sánchez-Correa F, Vidaurre-Agut C, Serrano-Aroca Á, Campillo-Fernández AJ. Poly(2-hydroxyethyl acrylate) hydrogels reinforced with graphene oxide: Remarkable improvement of water diffusion and mechanical properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.46158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- F. Sánchez-Correa
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València; Valencia 46022 Spain
| | - C. Vidaurre-Agut
- Instituto de Tecnología Química, Universitat Politècnica de València; Valencia 46022 Spain
| | - Á. Serrano-Aroca
- Department of Applied and Technological Sciences, Bioengineering and Cellular Therapy Group, Faculty of Veterinary and Experimental Sciences; Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94; Valencia 46001 Spain
| | - A. J. Campillo-Fernández
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València; Valencia 46022 Spain
| |
Collapse
|
42
|
Dev Jayant R, Joshi A, Kaushik A, Tiwari S, Chaudhari R, Srivastava R, Nair M. Nanogels for Gene Delivery. NANOGELS FOR BIOMEDICAL APPLICATIONS 2017:128-142. [DOI: 10.1039/9781788010481-00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Gene therapy encompasses the development of proficient and safe vectors, which remains the topmost challenge. Employment of viral vectors is efficient but it is accompanied with safety risks, which highlights the need for non-viral vectors. Currently, several studies are being done on the development of non-viral vectors, which could enhance delivery and uptake of foreign genetic material by target cells, and facilitate their transport to nucleus. Viral vectors are efficient candidates of gene therapy but are limited due to their toxicity, carcinogenesis, immunogenicity, and low target tissue penetration. In order to avoid the risk, the development of non-viral vectors is being explored for gene delivery applications. Among the potent non-viral vectors, hydrogels seem to be promising due to their adapting chemical and three-dimensional structures, mechanical properties, proficient water retaining capacity and biocompatibility. This chapter will highlight the recent developments and potential of nanogels as gene delivery carriers for genetic and clinical applications.
Collapse
Affiliation(s)
- Rahul Dev Jayant
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Abhijeet Joshi
- Centre for Biosciences and Bio-medical Engineering, Indian Institute of Technology Indore (IIT-I) Indore India
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Sneham Tiwari
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| | - Rashmi Chaudhari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IITB) Mumbai India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IITB) Mumbai India
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University (FIU) Miami FL USA
| |
Collapse
|
43
|
Kar M, Fechner L, Nagel G, Glitscher E, Noe Rimondino G, Calderón M. Responsive Nanogels for Anti-cancer Therapy. NANOGELS FOR BIOMEDICAL APPLICATIONS 2017:210-260. [DOI: 10.1039/9781788010481-00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanogels (or nano-sized hydrogels) have been extensively investigated as an effective drug delivery system due to their various advantageous properties. Among them, stimuli responsive ‘smart’ nanogels, which have the ability to respond to various external stimuli, such as pH, redox, temperature, enzymes, and light, are the most attractive in the area of controlled anti-cancer drug delivery. In this book chapter, we review and discuss recent progress in the synthesis and applications of polymer-based stimuli-responsive nanogels for anti-cancer therapy and their future prospects.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Loryn Fechner
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Gregor Nagel
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Emanuel Glitscher
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Guido Noe Rimondino
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Departamento de Química Orgánica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba Argentina
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3 14195 Berlin Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine” Kantstr. 55 14513 Teltow Germany
| |
Collapse
|
44
|
Dimde M, Sahle FF, Wycisk V, Steinhilber D, Camacho LC, Licha K, Lademann J, Haag R. Synthesis and Validation of Functional Nanogels as pH-Sensors in the Hair Follicle. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/06/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Mathias Dimde
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Fitsum Feleke Sahle
- Center of Experimental and Applied Cutaneous Physiology; Charité-Universitätsmedizin Berlin; Charitéplatz 1 Berlin 10117 Germany
| | - Virginia Wycisk
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Dirk Steinhilber
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology; Charité-Universitätsmedizin Berlin; Charitéplatz 1 Berlin 10117 Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
45
|
Podgórna K, Jankowska K, Szczepanowicz K. Polysaccharide gel nanoparticles modified by the Layer-by-Layer technique for biomedical applications. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.07.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Zhou N, Cao X, Du X, Wang H, Wang M, Liu S, Nguyen K, Schmidt-Rohr K, Xu Q, Liang G, Xu B. Hyper-Crosslinkers Lead to Temperature- and pH-Responsive Polymeric Nanogels with Unusual Volume Change. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ning Zhou
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Xiaoyan Cao
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Xuewen Du
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Huaimin Wang
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Ming Wang
- Department of Biomedical Engineering; Tufts University; 419 Boston Ave Medford MA 02155 USA
| | - Shuang Liu
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Khang Nguyen
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering; Tufts University; 419 Boston Ave Medford MA 02155 USA
| | - Gaolin Liang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Bing Xu
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| |
Collapse
|
47
|
Zhou N, Cao X, Du X, Wang H, Wang M, Liu S, Nguyen K, Schmidt-Rohr K, Xu Q, Liang G, Xu B. Hyper-Crosslinkers Lead to Temperature- and pH-Responsive Polymeric Nanogels with Unusual Volume Change. Angew Chem Int Ed Engl 2017; 56:2623-2627. [DOI: 10.1002/anie.201611479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ning Zhou
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Xiaoyan Cao
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Xuewen Du
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Huaimin Wang
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Ming Wang
- Department of Biomedical Engineering; Tufts University; 419 Boston Ave Medford MA 02155 USA
| | - Shuang Liu
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Khang Nguyen
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering; Tufts University; 419 Boston Ave Medford MA 02155 USA
| | - Gaolin Liang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Bing Xu
- Department of Chemistry; Brandeis University; 415 South Street Waltham MA 02454 USA
| |
Collapse
|
48
|
Dimde M, Neumann F, Reisbeck F, Ehrmann S, Cuellar-Camacho JL, Steinhilber D, Ma N, Haag R. Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomater Sci 2017; 5:2328-2336. [DOI: 10.1039/c7bm00729a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An advanced cationic carrier system which combines high transfection efficiency with low cytotoxicity and a control over the release of the encapsulated genetic material by the reduction of the multivalent architecture upon pH triggered degradation was developed.
Collapse
Affiliation(s)
- Mathias Dimde
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Felix Reisbeck
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Svenja Ehrmann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
- Forschungszentrum für Elektronenmikroskopie
| | | | - Dirk Steinhilber
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies Helmholtz-Zentrum Geesthacht
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
49
|
Labriola NR, Mathiowitz E, Darling EM. Fabricating polyacrylamide microbeads by inverse emulsification to mimic the size and elasticity of living cells. Biomater Sci 2016; 5:41-45. [PMID: 27935612 PMCID: PMC5201106 DOI: 10.1039/c6bm00692b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inverse emulsification was used to fabricate polyacrylamide (PAAm) microbeads with size and elastic properties similar to typical, mammalian cells. These biomimicking microbeads could be fluorescently stained and functionalized with a collagen type-I coating, post-polymerization, for tracking bead locations and promoting cell recognition/binding, respectively. By occupying a previously unfilled range of sizes and mechanical properties, these microbeads may find unique use in both biomedical and materials applications.
Collapse
Affiliation(s)
- Nicholas R Labriola
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Edith Mathiowitz
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Eric M Darling
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA and School of Engineering and Department of Orthopaedics, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
50
|
Lai WF, He ZD. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 2016; 243:269-282. [DOI: 10.1016/j.jconrel.2016.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
|