1
|
Wu ZX, Hu GW, Luan YX. Development of N-Hydroxy Catalysts for C–H Functionalization via Hydrogen Atom Transfer: Challenges and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhi-Xian Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Guan-Wen Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Lu B, Jiang X, Zeng X. Photolytic insertion of carbon monoxide into nitrosyl chloride: formation of nitrosoformyl chloride. Phys Chem Chem Phys 2022; 24:17673-17678. [PMID: 35837884 DOI: 10.1039/d2cp02913h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrosocarbonyls are exotic intermediates that remain scarcely characterized. By UV photolysis (365 nm) of nitrosyl chloride (ClNO) embedded in solid CO ice at 20 K, the elusive nitrosoformyl chloride (ClC(O)NO) has been synthesized via CO-insertion into the Cl-N bond in ClNO. The characterization of ClC(O)NO with matrix-isolation IR spectroscopy is supported by 13C and 15N isotope labeling and quantum chemical calculations at the B3LYP/6-311+G(3df) level of theory. Upon subsequent laser irradiation at 266 nm, CO-elimination in ClC(O)NO occurs by reformation of ClNO. In line with the calculated potential energy surface for ClC(O)NO at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311+G(3df) level, the observed IR frequencies and the corresponding isotopic shifts coincide with the calculated values for the lowest-energy planar conformer, in which the CO and NO moities adopt trans configuration with respect to the C-N bond. Furthermore, the CO-insertion in ClNO involves a stepwise pathway by first homolytic cleavage of the Cl-N bond in ClNO (→ Cl˙ + ˙NO), followed by successive CO-trapping (CO + Cl˙ → ClCO˙) and radical combination (ClCO˙ + ˙NO → ClC(O)NO) inside the solid CO-matrix cages.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
|
4
|
Bharadwaj V, Rahman MS, Sampson P, Seed AJ, Brasch NE. Exploring the Potential of 2-(2-Nitrophenyl)ethyl-Caged N-Hydroxysulfonamides for the Photoactivated Release of Nitroxyl (HNO). J Org Chem 2021; 86:16448-16463. [PMID: 34797664 DOI: 10.1021/acs.joc.1c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of nitroxyl (HNO) as a biological signaling molecule is attracting increasing attention. HNO-based prodrugs show considerable potential in treating congestive heart failure, with HNO reacting rapidly with metal centers and protein-bound and free thiols. A new class of 2-(2-nitrophenyl)ethyl (2-NPE)-photocaged N-hydroxysulfonamides has been developed, and the mechanisms of photodecomposition have been investigated. Three photodecomposition pathways are observed: the desired concomitant C-O/N-S bond cleavage to generate HNO, sulfinate, and 2-nitrostyrene, C-O bond cleavage to give the parent sulfohydroxamic acid and 2-nitrostyrene, and O-N bond cleavage to release a sulfonamide and 2-nitrophenylacetaldehyde. Laser flash photolysis experiments provide support for a Norrish type II mechanism involving 1,5-hydrogen atom abstraction to generate an aci-nitro species. A mechanism is proposed in which the (Z)-aci-nitro intermediate undergoes either C-O bond cleavage to release RSO2NHO(H), concerted C-O/N-S bond cleavage to generate sulfinate and HNO, or isomerization to the (E)-isomer prior to O-N bond cleavage. The pKa of the N(H) of the N-hydroxysulfonamide plays a key role in determining whether C-O or concerted C-O/N-S bond cleavage occurs. Deprotonating this site favors the desired C-O/N-S bond cleavage at the expense of an increased level of undesired O-N bond cleavage. Triplet state quenchers have no effect on the observed photoproducts.
Collapse
Affiliation(s)
- Vinay Bharadwaj
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Mohammad S Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Alexander J Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Zhai L, Tang Y, Zhang Y, Huang SH, Zhu L, Hong R. A Bridge to Alkaloid Synthesis. CHEM REC 2021; 22:e202100197. [PMID: 34473401 DOI: 10.1002/tcr.202100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Indexed: 11/07/2022]
Abstract
The construction of a structurally rigid architecture with chiral complexity, necessary to enhance the interaction with binding sites of drug targets, has been adapted as an intriguing approach in drug development. In the past few years, we have been interested in the synthesis of biologically significant and bridged alkaloids via novel synthetic methods and strategies based on recognition of the privileged pattern. Therefore, nitroso-ene and aza-Wacker cyclizations were elevated for the first time to construct bridged alkaloids, such as hosieine A, kopsone, melinonine-E and strychnoxanthine. Mechanistic investigations, including computational calculations for nitroso-ene reaction and deuterated experiments for aza-Wacker reaction, enable us to gain more insights into the chemical reactivity and selectivity of specific functional groups in developing viable synthetic methods.
Collapse
Affiliation(s)
- Li Zhai
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ye Tang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Yan Zhang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Sha-Hua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Lili Zhu
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ran Hong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| |
Collapse
|
6
|
Cink RB, Zhou Y, Du L, Rahman MS, Phillips DL, Simpson MC, Seed AJ, Sampson P, Brasch NE. Mechanistic Insights into Rapid Generation of Nitroxyl from a Photocaged N-Hydroxysulfonamide Incorporating the (6-Hydroxynaphthalen-2-yl)methyl Chromophore. J Org Chem 2021; 86:8056-8068. [PMID: 34107217 DOI: 10.1021/acs.joc.1c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HNO is a highly reactive molecule that shows promise in treating heart failure. Molecules that rapidly release HNO with precise spatial and temporal control are needed to investigate the biology of this signaling molecule. (Hydroxynaphthalen-2-yl)methyl-photocaged N-hydroxysulfonamides are a new class of photoactive HNO generators. Recently, it was shown that a (6-hydroxynaphthalen-2-yl)methyl (6,2-HNM)-photocaged derivative of N-hydroxysulfonamide incorporating the trifluoromethanesulfonamidoxy group (1) quantitatively generates HNO. Mechanistic studies have now been carried out on this system and reveal that the ground state protonation state plays a key role in whether concerted heterolytic C-O/N-S bond cleavage to release HNO occurs versus undesired O-N bond cleavage. N-Deprotonation of 1 can be achieved by adding an aqueous buffer or a carboxylate salt to an aprotic solvent. Evidence is presented for C-O/N-S bond heterolysis occurring directly from the singlet excited state of the N-deprotonated parent molecule on the picosecond time scale, using femtosecond time-resolved transient absorption spectroscopy, to give a carbocation and 1NO-. This is consistent with the observation of significant fluorescence quenching when HNO is generated. The carbocation intermediate reacts rapidly with nucleophiles including water, MeOH, or even (H)NO in the absence of a molecule that reacts rapidly with (H)NO to give an oxime.
Collapse
Affiliation(s)
- Ruth B Cink
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Yang Zhou
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - Mohammad S Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - M Cather Simpson
- The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Alexander J Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
7
|
Quadrelli P, Corti M, Leusciatti M, Moiola M, Mella M. Nitrosocarbonyl Carbohydrate Derivatives: Hetero Diels–Alder and Ene Reaction Products for Useful Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1707276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe generation and trapping of two new nitrosocarbonyl intermediates bearing carbohydrate-based chiral substituents is achieved by the mild oxidation of the corresponding nitrile oxides with tertiary amine N-oxides. Their capture with suitable dienes and alkenes afforded the corresponding hetero Diels–Alder cycloadducts and ene adducts from fair to excellent yields. The entire methodology looks highly promising by the easy conversion of aldoximes into hydroxymoyl halides, widening the access to nitrosocarbonyls, versatile tools in organic synthesis.
Collapse
Affiliation(s)
- Paolo Quadrelli
- University of Pavia, Department of Chemistry
- University of Pavia, Department of Chemistry
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Zhou Y, Cink RB, Seed AJ, Simpson MC, Sampson P, Brasch NE. Stoichiometric Nitroxyl Photorelease Using the (6-Hydroxy-2-naphthalenyl)methyl Phototrigger. Org Lett 2019; 21:1054-1057. [PMID: 30694069 DOI: 10.1021/acs.orglett.8b04099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The design and synthesis of a photoactivatable HNO donor incorporating the (6-hydroxynaphthalen-2-yl)methyl (6,2-HNM) photocage coupled to the trifluoromethanesulfonamidoxy analogue of the well-established HNO generator Piloty's acid is described. The photoactive HNO donor stoichiometrically generates HNO (∼98%) at neutral pH conditions, and evidence for concerted C-O and N-S bond cleavage was obtained. The methanesulfonamidoxy analogue primarily undergoes undesired N-O bond cleavage.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Ruth B Cink
- School of Science , Auckland University of Technology , Auckland 1142 , New Zealand.,Dodd-Walls Centre for Quantum and Photonic Technologies , Dunedin 9054 , New Zealand.,The Photon Factory, School of Chemical Sciences , The University of Auckland , Auckland 1142 , New Zealand
| | - Alexander J Seed
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - M Cather Simpson
- Dodd-Walls Centre for Quantum and Photonic Technologies , Dunedin 9054 , New Zealand.,The Photon Factory, School of Chemical Sciences , The University of Auckland , Auckland 1142 , New Zealand.,The Department of Physics , The University of Auckland, The MacDiarmid Institute for Advanced Materials and Nanotechnology , Auckland 1142 , New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - Nicola E Brasch
- School of Science , Auckland University of Technology , Auckland 1142 , New Zealand.,Dodd-Walls Centre for Quantum and Photonic Technologies , Dunedin 9054 , New Zealand
| |
Collapse
|
10
|
Szabó B, Tamás B, Faigl F, Éles J, Greiner I. Diastereoselective synthesis of cis-N-Boc-4-aminocyclohexanol with reductive ring opening method using continuous flow. J Flow Chem 2019. [DOI: 10.1007/s41981-018-00028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Zhang J, Kohlbouni ST, Borhan B. Cu-Catalyzed Oxidation of C2 and C3 Alkyl-Substituted Indole via Acyl Nitroso Reagents. Org Lett 2019; 21:14-17. [PMID: 30576149 PMCID: PMC7774803 DOI: 10.1021/acs.orglett.8b03185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The selective oxidation of C2-alkyl-substituted indoles to 3-oxindole and the selective C-H oxygenation or amination of C2,C3-dialkyl-substituted indoles at C2 are reported under mild conditions. The position of the alkyl substitution on the indole directs the reaction to different pathways under similar conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Maimon E, Lerner A, Samuni A, Goldstein S. Direct Observation of Acyl Nitroso Compounds in Aqueous Solution and the Kinetics of Their Reactions with Amines, Thiols, and Hydroxamic Acids. J Phys Chem A 2018; 122:7006-7013. [PMID: 30111101 DOI: 10.1021/acs.jpca.8b06672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acyl nitroso compounds or nitrosocarhonyls (RC(O)N═O) are reactive short-lived electrophiles, and their hydrolysis and reactions with nucleophiles produce HNO. Previously, direct detection of acyl nitroso species in nonaqueous media has been provided by time-resolved infrared spectroscopy demonstrating that its half-life is about 1 ms. In the present study hydroxamic acids (RC(O)NHOH) are oxidized electrochemically in buffered aqueous solutions (pH 5.9-10.2) yielding transient species characterized by their maximal absorption at 314-330 nm. These transient species decompose via a first-order reaction yielding mainly HNO and the respective carboxylic acid and therefore are ascribed to RC(O)N═O. The sufficiently long half-life of RC(O)N═O in aqueous solution allows for the first time the study of the kinetics of its reactions with various nucleophiles demonstrating that the nucleophilic reactivity follows the order thiolate > hydroxamate > amine. Metal chelates of CH3C(O)NHOH catalyze the hydrolysis of CH3C(O)N═O at the efficacy order of CuII > ZnII > NiII > CoII where only CuII catalyzes the hydrolysis also in the absence of the hydroxamate. Finally, oxidation of hydroxamic acids generates HNO, and the rate of this process is determined by the half-life of the respective acyl nitroso compound.
Collapse
Affiliation(s)
- Eric Maimon
- Nuclear Research Centre Negev, Beer Sheva 84190 , Israel.,Chemistry Department , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Ana Lerner
- Chemistry Department , Ben-Gurion University , Beer-Sheva 84105 , Israel
| | - Amram Samuni
- Institute of Medical Research-Israel Canada, Medical School , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
13
|
Zhou Y, Cink RB, Fejedelem ZA, Cather Simpson M, Seed AJ, Sampson P, Brasch NE. Development of Photoactivatable Nitroxyl (HNO) Donors Incorporating the (3‐Hydroxy‐2‐naphthalenyl)methyl Phototrigger. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Ruth B. Cink
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| | - Zachary A. Fejedelem
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - M. Cather Simpson
- The Photon Factory School of Chemical Sciences The University of Auckland Private Bag 92019 Auckland New Zealand
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Paul Sampson
- Department of Chemistry and Biochemistry Kent State University 44242 Kent OH USA
| | - Nicola E. Brasch
- School of Science Auckland University of Technology Private Bag 92006 1142 Auckland New Zealand
| |
Collapse
|
14
|
Maimon E, Samuni A, Goldstein S. Nitrogen Dioxide Reaction with Nitroxide Radical Derived from Hydroxamic Acids: The Intermediacy of Acyl Nitroso and Nitroxyl (HNO). J Phys Chem A 2018; 122:3747-3753. [PMID: 29608853 DOI: 10.1021/acs.jpca.8b02300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxamic acids (RC(O)NHOH) form a class of compounds that display interesting chemical and biological properties The chemistry of RC(O)NHOH) is associated with one- and two-electron oxidations forming the respective nitroxide radical (RC(O)NHO•) and acyl nitroso (RC(O)N═O), respectively, which are relatively unstable species. In the present study, the kinetics and mechanism of the •NO2 reaction with nitroxide radicals derived from acetohydroxamic acid, suberohydroxamic acid, benzohydroxamic acid, and suberoylanilide hydroxamic acid have been studied in alkaline solutions. Ionizing radiation was used to generate about equal yields of these radicals, demonstrating that the oxidation of the transient nitroxide radical by •NO2 produces HNO and nitrite at about equal yields. The rate constant of •NO2 reaction with the nitroxide radical derived from acetohydroxamic acid has been determined to be (2.5 ± 0.5) × 109 M-1 s-1. This reaction forms a transient intermediate absorbing at 314 nm, which decays via a first-order reaction whose rate increases upon increasing the pH or the hydroxamic acid concentration. Transient intermediates absorbing around 314 nm are also formed during the oxidation of hydroxamic acids by H2O2 catalyzed by horseradish peroxidase. It is shown that HNO is formed during the decomposition of these intermediates, and therefore, they are assigned to acyl nitroso compounds. This study provides for the first time a direct spectrophotometric detection of acyl nitroso compounds in aqueous solutions allowing the study of their chemistry and reaction kinetics.
Collapse
Affiliation(s)
- Eric Maimon
- Nuclear Research Centre Negev , Beer Sheva , Israel
| | - Amram Samuni
- Institute of Medical Research Israel-Canada , Medical School, The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Sara Goldstein
- Institute of Chemistry, The Accelerator Laboratory , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
15
|
Memeo M, Re C, Aimone F, Quadrelli P. Ene Reactions of Nitrosocarbonyl Intermediates with Trisubstituted Cycloalkenes: "Cis Effect" and Steric and Conformational Factors Drive the Selectivity. ACS OMEGA 2018; 3:682-690. [PMID: 31457923 PMCID: PMC6641422 DOI: 10.1021/acsomega.7b01124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
Nitrosocarbonyl intermediates, generated at room temperature by oxidation of nitrile oxides, undergo clean ene reactions with trisubstituted cycloalkenes. Nitrosocarbonyl benzene follows a Markovnikov orientation and abstracts preferentially the twix hydrogens over the lone ones. With the more sterically demanding nitrosocarbonyl mesitylene in the presence of 5- and 6-membered ring olefins, the Markovnikov directing effect is relieved, and twix and lone abstractions are observed. Endocyclic allylic hydrogens on the more congested side of the alkene are exclusively abstracted (the "cis effect") resembling the singlet oxygen behavior. The balance between steric and conformational factors, as well as the acylnitroso generation conditions, dictates the regioselectivity in some cases. Larger ring olefins undergo selective twix allylic hydrogen abstraction. The photochemical generation of nitrosocarbonyl is totally selective according to the Markovnikov orientation. The synthetic utility of the ene compounds is also accounted.
Collapse
Affiliation(s)
- Misal
Giuseppe Memeo
- Dipartimento
di Chimica, Università degli Studi
di Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Claudio Re
- Dipartimento
di Chimica, Università degli Studi
di Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Francesco Aimone
- Dipartimento
di Chimica, Università degli Studi
di Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento
di Chimica, Università degli Studi
di Pavia, Viale Taramelli
12, 27100 Pavia, Italy
| |
Collapse
|
16
|
Good SN, Sharpe RJ, Johnson JS. Highly Functionalized Tricyclic Oxazinanones via Pairwise Oxidative Dearomatization and N-Hydroxycarbamate Dehydrogenation: Molecular Diversity Inspired by Tetrodotoxin. J Am Chem Soc 2017; 139:12422-12425. [PMID: 28853553 DOI: 10.1021/jacs.7b07745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzenoids in principle represent attractive and abundant starting materials for the preparation of substituted cyclohexanes; however, the synthetic tools available for overcoming the considerable aromatic energies inherent to these building blocks limit the available product types. In this paper, we demonstrate access to heretofore unknown heterotricyclic structures by leveraging oxidative dearomatization of 2-hydroxymethyl phenols with concurrent N-hydroxycarbamate dehydrogenation using a common oxidant. The pairwise-generated, mutually reactive species then participate in a second stage acylnitroso Diels-Alder cycloaddition. The reaction chemistry of the derived [2.2.2]-oxazabicycles, bearing four orthogonal functional groups and three stereogenic centers, is shown to yield considerable diversity in downstream products. The methodology allows for the expeditious synthesis of a functionalized intermediate bearing structural and stereochemical features in common with the complex alkaloid tetrodotoxin.
Collapse
Affiliation(s)
- Steffen N Good
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Robert J Sharpe
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
17
|
Joshi BP, Memeo MG, Quadrelli P. Solid-phase supported nitrosocarbonyl intermediates: Old scope and new limitations in the organic synthesis. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
The nitrosocarbonyls (R-CONO) are highly reactive species and remarkable intermediates toward different synthetic targets. This review will cover a research area whose impact in current organic synthesis is constantly increasing in the chemical community. This review represents the first and comprehensive picture on the generation and trapping of nitrosocarbonyls and is solidly built on more than 380 papers. Six different classes of key starting materials such as hydroxamic acids, N-hydroxy carbamates, N-hydroxyureas, nitrile oxides, and 1,2,4-oxadiazole-4-oxides were highlighted. The content of the review surveys all the methods to generate the nitrosocarbonyls through different approaches (oxidative, thermal, photochemical, catalytic, aerobic, and the less common ones) in the light of efficiency, yields, and mildness. The most successful trapping agents employed to catch these fleeting intermediates are reviewed, exploiting their superior dienophilic, enophilic, and electrophilic power. The work is completed by paragraphs dedicated to the detection of the intermediates, theoretical studies, and insights about the challenges and future directions for the field.
Collapse
Affiliation(s)
- Misal Giuseppe Memeo
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| | - Paolo Quadrelli
- Dipartimento di Chimica, Università degli Studi di Pavia , Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
19
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
20
|
Zhou Y, Cink RB, Dassanayake RS, Seed AJ, Brasch NE, Sampson P. Rapid Photoactivated Generation of Nitroxyl (HNO) under Neutral pH Conditions. Angew Chem Int Ed Engl 2016; 55:13229-13232. [DOI: 10.1002/anie.201605160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/03/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Yang Zhou
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Ruth B. Cink
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Rohan S. Dassanayake
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Alexander J. Seed
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| | - Nicola E. Brasch
- School of Applied Sciences; Auckland University of Technology (AUT); Private Bag 92006 Auckland 1142 New Zealand
| | - Paul Sampson
- Department of Chemistry and Biochemistry; Kent State University (KSU); Kent OH 44240 USA
| |
Collapse
|
21
|
Nakashima E, Yamamoto H. Continuous flow of nitroso Diels-Alder reaction. Chem Commun (Camb) 2016; 51:12309-12. [PMID: 26138229 DOI: 10.1039/c5cc03458b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our flow reaction systems have provided quantitative yields of nitroso Diels-Alder products with no byproducts in cases of cyclic dienes without temperature and pressure controls. Additionally, the reaction times were significantly shortened by using homogeneous catalyst (CuCl) or heterogeneous reagent (MnO2) in comparison with batch reaction.
Collapse
Affiliation(s)
- Erika Nakashima
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA.
| | | |
Collapse
|
22
|
Basudhar D, Ridnour LA, Cheng R, Kesarwala AH, Heinecke J, Wink DA. Biological signaling by small inorganic molecules. Coord Chem Rev 2016; 306:708-723. [PMID: 26688591 PMCID: PMC4680994 DOI: 10.1016/j.ccr.2015.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small redox active molecules such as reactive nitrogen and oxygen species and hydrogen sulfide have emerged as important biological mediators that are involved in various physiological and pathophysiological processes. Advancement in understanding of cellular mechanisms that tightly regulate both generation and reactivity of these molecules is central to improved management of various disease states including cancer and cardiovascular dysfunction. Imbalance in the production of redox active molecules can lead to damage of critical cellular components such as cell membranes, proteins and DNA and thus may trigger the onset of disease. These small inorganic molecules react independently as well as in a concerted manner to mediate physiological responses. This review provides a general overview of the redox biology of these key molecules, their diverse chemistry relevant to physiological processes and their interrelated nature in cellular signaling.
Collapse
Affiliation(s)
- Debashree Basudhar
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Robert Cheng
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Julie Heinecke
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
23
|
Moon H, Park J, Tae J. Fluorescent Probes Based on Rhodamine Hydrazides and Hydroxamates. CHEM REC 2015; 16:124-40. [DOI: 10.1002/tcr.201500226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Heejeong Moon
- Department of Chemistry; Yonsei University; Yonsei-ro 50 Seodaemun-ku Seoul 120-749 Republic of Korea
| | - Jinyoung Park
- Department of Chemistry; Yonsei University; Yonsei-ro 50 Seodaemun-ku Seoul 120-749 Republic of Korea
| | - Jinsung Tae
- Department of Chemistry; Yonsei University; Yonsei-ro 50 Seodaemun-ku Seoul 120-749 Republic of Korea
| |
Collapse
|
24
|
Gutiérrez MM, Almaraz AE, Bari SE, Olabe JA, Amorebieta VT. The HNO donor ability of hydroxamic acids upon oxidation with cyanoferrates(III). J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- María M. Gutiérrez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandra E. Almaraz
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Sara E. Bari
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - José A. Olabe
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE (UBA, CONICET), Buenos Aires, Argentina
| | - Valentín T. Amorebieta
- Facultad de Ciencias Exactas y Naturales, Departamento de Química, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
25
|
Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Guthrie DA, Ho A, Takahashi CG, Collins A, Morris M, Toscano JP. “Catch-and-Release” of HNO with Pyrazolones. J Org Chem 2015; 80:1338-48. [DOI: 10.1021/jo502330w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daryl A. Guthrie
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Ho
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Cyrus G. Takahashi
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anthony Collins
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Matthew Morris
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P. Toscano
- Department
of Chemistry, 3400 North
Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
27
|
Syntheses of isoxazoline-carbocyclic nucleosides and their antiviral evaluation: a standard protocol. ScientificWorldJournal 2014; 2014:492178. [PMID: 25544956 PMCID: PMC4230217 DOI: 10.1155/2014/492178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/18/2014] [Indexed: 01/06/2023] Open
Abstract
The current synthesis of racemic purine and pyrimidine isoxazoline-carbocyclic nucleosides is reported, detailing the key-steps for standard and reliable preparations. Improved yields were obtained by the proper tuning of the single synthetic steps, opening the way for the preparation of a variety of novel compounds. Some of the obtained compounds were also evaluated against a wide variety of DNA and RNA viruses including HIV. No specific antiviral activity was observed in the cases at hand. Novel compounds were prepared for future biological tests.
Collapse
|
28
|
Carosso S, Miller MJ. Nitroso Diels-Alder (NDA) reaction as an efficient tool for the functionalization of diene-containing natural products. Org Biomol Chem 2014; 12:7445-68. [PMID: 25119424 PMCID: PMC4161629 DOI: 10.1039/c4ob01033g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review describes the use of nitroso Diels-Alder reactions for the functionalization of complex diene-containing natural products in order to generate libraries of compounds with potential biological activity. The application of this methodology to the structural modification of a series of natural products (thebaine, steroidal dienes, rapamycin, leucomycin, colchicine, isocolchicine and piperine) is discussed using relevant examples from the literature from 1973 onwards. The biological activity of the resulting compounds is also discussed. Additional comments are provided that evaluate the methodology as a useful tool in organic, bioorganic and medicinal chemistry.
Collapse
Affiliation(s)
- Serena Carosso
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
29
|
Bharadwaj G, Benini PGZ, Basudhar D, Ramos-Colon CN, Johnson GM, Larriva MM, Keefer LK, Andrei D, Miranda KM. Analysis of the HNO and NO donating properties of alicyclic amine diazeniumdiolates. Nitric Oxide 2014; 42:70-8. [PMID: 25192820 DOI: 10.1016/j.niox.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 11/17/2022]
Abstract
Nitroxyl (HNO) donors have been shown to elicit a variety of pharmacological responses, ranging from tumoricidal effects to treatment of heart failure. Isopropylamine-based diazeniumdiolates have been shown to produce HNO on decomposition under physiological conditions. Herein, we report the synthesis and HNO release profiles of primary alicyclic amine-based diazeniumdiolates. These compounds extend the range of known diazeniumdiolate-based HNO donors. Acetoxymethyl ester-protected diazeniumdiolates were also synthesized to improve purification and cellular uptake. The acetoxymethyl derivative of cyclopentylamine diazeniumdiolate not only showed higher cytotoxicity toward cancer cells as compared to the parent anion but was also effective in combination with tamoxifen for targeting estrogen receptor α-negative breast cancer cells.
Collapse
Affiliation(s)
- Gaurav Bharadwaj
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Patricia G Z Benini
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Debashree Basudhar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Cyf N Ramos-Colon
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Marti M Larriva
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Larry K Keefer
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Daniela Andrei
- Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
30
|
Johnson GM, Chozinski TJ, Salmon DJ, Moghaddam AD, Chen HC, Miranda KM. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent. Free Radic Biol Med 2013; 63:476-84. [PMID: 23685286 DOI: 10.1016/j.freeradbiomed.2013.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022]
Abstract
Donors of nitroxyl (HNO) have shown promise for treatment of stroke, heart failure, alcoholism and cancer. However, comparing the pharmacological capacities of various donors is difficult without first quantifying the amount of HNO released from each donor. Detection and quantitation of HNO has been complicated by the rapid self-consumption of HNO through irreversible dimerization, poor selectivity of trapping agents against other nitrogen oxides, and/or low sensitivity towards HNO. Here, an assay is described for the trapping of HNO by glutathione (GSH) followed by labeling of GSH with the fluorogenic agent, naphthalene-2,3-dicarboxaldehyde (NDA), and subsequent quantitation by fluorescence difference. The newly developed assay was used to validate the pH-dependence of HNO release from isopropylamine NONOate (IPA/NO), which is a dual donor of HNO and NO at physiological pH. Furthermore, varied assay conditions were utilized to suggest the ratios of the products of the reaction of GSH with HNO. At intracellular concentrations of GSH, the disulfide (GSSG) was the major product, but significant concentrations of glutathione sulfinamide (GS(O)NH₂) were also detected. This suggests that GS(O)NH₂, which is a selective biomarker of HNO, may be produced in concentrations that are amenable to in vivo analysis.
Collapse
Affiliation(s)
- Gail M Johnson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | | | | | | | | | | |
Collapse
|
31
|
HNO made-easy from photochemical cycloreversion of novel 3,5-heterocyclic disubstituted 1,2,4-oxadiazole-4-oxides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Quadrelli P, Mella M, Carosso S, Bovio B. N,O-Nucleosides from Ene Reactions of Nitrosocarbonyl Intermediates with the 3-Methyl-2-buten-1-ol. J Org Chem 2012; 78:516-26. [PMID: 23245669 DOI: 10.1021/jo302346a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Paolo Quadrelli
- Dipartimento
di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100, Pavia,
Italy
| | - Mariella Mella
- Dipartimento
di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100, Pavia,
Italy
| | - Serena Carosso
- Dipartimento
di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100, Pavia,
Italy
| | - Bruna Bovio
- Dipartimento
di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100, Pavia,
Italy
| |
Collapse
|
33
|
Quadrelli P, Lunghi F, Bovio B, Gautschi W, Caramella P. 1,2,4-Oxadiazole 4-Oxides as Nitrones in 1,3-Dipolar Cycloaddition Reactions to Vinyl Ethers. European J Org Chem 2012. [DOI: 10.1002/ejoc.201101615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Guthrie DA, Kim NY, Siegler MA, Moore CD, Toscano JP. Development of N-substituted hydroxylamines as efficient nitroxyl (HNO) donors. J Am Chem Soc 2012; 134:1962-5. [PMID: 22233148 DOI: 10.1021/ja2103923] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its inherent reactivity, nitroxyl (HNO), must be generated in situ through the use of donor compounds, but very few physiologically useful HNO donors exist. Novel N-substituted hydroxylamines with carbon-based leaving groups have been synthesized, and their structures confirmed by X-ray crystallography. These compounds generate HNO under nonenzymatic, physiological conditions, with the rate and amount of HNO released being dependent mainly on the nature of the leaving group. A barbituric acid and a pyrazolone derivative have been developed as efficient HNO donors with half-lives at pH 7.4, 37 °C of 0.7 and 9.5 min, respectively.
Collapse
Affiliation(s)
- Daryl A Guthrie
- Department of Chemistry, 3400 North Charles Street, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
35
|
The effect of nitro substitution on the photochemistry of benzyl benozhydroxamate: Photoinduced release of benzohydroxamic acid. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Sutton AD, Williamson M, Weismiller H, Toscano JP. Optimization of HNO production from N,O-bis-acylated hydroxylamine derivatives. Org Lett 2011; 14:472-5. [PMID: 22196028 DOI: 10.1021/ol203016c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide range of N,O-bis-acylated hydroxylamine derivatives with chloro or arenesulfonyl leaving groups, and a related set of N-hydroxy-N-acylsulfonamides, have been synthesized and evaluated for nitroxyl (HNO) production. Mechanistic studies have revealed that the observed aqueous chemistry is more complicated than originally anticipated, and have been used to develop a new series of efficient HNO precursors (4u-4x, 7c-7d) with tunable half-lives.
Collapse
Affiliation(s)
- Art D Sutton
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
37
|
Montenegro AC, Dabrowski SG, Gutiérrez MM, Amorebieta VT, Bari SE, Olabe JA. Catalytic oxidation of hydroxyurea to bound NO+/ NO2- mediated by pentacyano(L)ferrates. Characterization of the nitroxide radical, bound C-nitrosoformamide and NO as reaction intermediates. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
DuMond JF, King SB. The chemistry of nitroxyl-releasing compounds. Antioxid Redox Signal 2011; 14:1637-48. [PMID: 21235345 PMCID: PMC3113415 DOI: 10.1089/ars.2010.3838] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/14/2011] [Indexed: 01/11/2023]
Abstract
Nitroxyl (HNO) demonstrates a diverse and unique biological profile compared to nitric oxide, a redox-related compound. Although numerous studies support the use of HNO as a therapeutic agent, the inherent chemical reactivity of HNO requires the use of donor molecules. Two general chemical strategies currently exist for HNO generation from nitrogen-containing molecules: (i) the disproportionation of hydroxylamine derivatives containing good leaving groups attached to the nitrogen atom and (ii) the decomposition of nitroso compounds (X-N=O, where X represents a good leaving group). This review summarizes the synthesis and structure, the HNO-releasing mechanisms, kinetics and by-product formation, and alternative reactions of six major groups of HNO donors: Angeli's salt, Piloty's acid and its derivatives, cyanamide, diazenium diolate-derived compounds, acyl nitroso compounds, and acyloxy nitroso compounds. A large body of work exists defining these six groups of HNO donors and the overall chemistry of each donor requires consideration in light of its ability to produce HNO. The increasing interest in HNO biology and the potential of HNO-based therapeutics presents exciting opportunities to further develop HNO donors as both research tools and potential treatments.
Collapse
Affiliation(s)
- Jenna F DuMond
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
39
|
Bodnar BS, Miller MJ. The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organic syntheses. Angew Chem Int Ed Engl 2011; 50:5630-47. [PMID: 21520360 DOI: 10.1002/anie.201005764] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Indexed: 11/11/2022]
Abstract
Organic transformations that result in the formation of multiple covalent bonds within the same reaction are some of the most powerful tools in synthetic organic chemistry. Nitrosocarbonyl hetero-Diels-Alder (HDA) reactions allow for the simultaneous stereospecific introduction of carbon-nitrogen and carbon-oxygen bonds in one synthetic step, and provide direct access to 3,6-dihydro-1,2-oxazines. This Review describes the development of the nitrosocarbonyl HDA reaction and the utility of the resulting oxazine ring in the synthesis of a variety of important, biologically active molecules.
Collapse
Affiliation(s)
- Brian S Bodnar
- Chemspeed Technologies, Inc. 113 North Center Drive, North Brunswick, NJ 08906, USA
| | | |
Collapse
|
40
|
Bodnar BS, Miller MJ. Hetero-Diels-Alder-Reaktionen von Nitrosocarbonylverbindungen als nützliches Verfahren in der organischen Synthese. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005764] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Kim HJ, Jeong EM, Lee KJ. Using Morita-Baylis-Hillman acetates of 2-azidobenzaldehydes for the synthesis of 2-alkoxy-3-cyanomethylquinolines and alkyl quinoline-3-carboxylates. J Heterocycl Chem 2011. [DOI: 10.1002/jhet.667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Evans AS, Cohen AD, Gurard-Levin ZA, Kebede N, Celius TC, Miceli AP, Toscano JP. Photogeneration and reactivity of acyl nitroso compounds. CAN J CHEM 2011. [DOI: 10.1139/v10-101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acyl nitroso compounds have been generated by photolysis of several different classes of precursors including 9,10-dimethylanthracene adducts, nitrodiazo compounds, and 1,2,4-oxadiazole-4-oxides. Consideration of the nitronate-like resonance structure of nitrodiazo compounds led to an examination of the photochemistry of nitronates with α-leaving groups. Photolysis of such nitronates has been shown to generate an acyl nitroso species along with a carbene intermediate. Nanosecond time-resolved infrared (TRIR) spectroscopy has been used to detect photogenerated acyl nitroso compounds directly and to examine their reaction kinetics with amines and thiols. The mechanism of acyl nitroso aminolysis by primary amines involves general base catalysis, while the mechanism of aminolysis by secondary amines is strictly bimolecular. Thiols do not seem to be reactive with acyl nitroso compounds on the microsecond time scale, but thiolates are quite reactive. The reaction between benzoyl nitroside and an organic-soluble thiolate, tetrabutylammonium dodecanethiolate, proceeds via a proposed tetrahedral intermediate, which is observable by TRIR spectroscopy.
Collapse
Affiliation(s)
- Anthony S. Evans
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew D. Cohen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Naod Kebede
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tevye C. Celius
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - John P. Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
43
|
Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, Saavedra JE, Wink DA, Miranda KM, Keefer LK. Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc 2010; 132:16526-32. [PMID: 21033665 PMCID: PMC2984372 DOI: 10.1021/ja106552p] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Indexed: 12/28/2022]
Abstract
Here we describe a novel caged form of the highly reactive bioeffector molecule, nitroxyl (HNO). Reacting the labile nitric oxide (NO)- and HNO-generating salt of structure iPrHN-N(O)═NO(-)Na(+) (1, IPA/NO) with BrCH(2)OAc produced a stable derivative of structure iPrHN-N(O)═NO-CH(2)OAc (2, AcOM-IPA/NO), which hydrolyzed an order of magnitude more slowly than 1 at pH 7.4 and 37 °C. Hydrolysis of 2 to generate HNO proceeded by at least two mechanisms. In the presence of esterase, straightforward dissociation to acetate, formaldehyde, and 1 was the dominant path. In the absence of enzyme, free 1 was not observed as an intermediate and the ratio of NO to HNO among the products approached zero. To account for this surprising result, we propose a mechanism in which base-induced removal of the N-H proton of 2 leads to acetyl group migration from oxygen to the neighboring nitrogen, followed by cleavage of the resulting rearrangement product to isopropanediazoate ion and the known HNO precursor, CH(3)-C(O)-NO. The trappable yield of HNO from 2 was significantly enhanced over 1 at physiological pH, in part because the slower rate of hydrolysis for 2 generated a correspondingly lower steady-state concentration of HNO, thus, minimizing self-consumption and enhancing trapping by biological targets such as metmyoglobin and glutathione. Consistent with the chemical trapping efficiency data, micromolar concentrations of prodrug 2 displayed significantly more potent sarcomere shortening effects relative to 1 on ventricular myocytes isolated from wild-type mouse hearts, suggesting that 2 may be a promising lead compound for the development of heart failure therapies.
Collapse
|
44
|
Kovacic P, Edwards CL. Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso, nitroxyl, reactive oxygen species, and cell signaling. J Recept Signal Transduct Res 2010; 31:10-9. [DOI: 10.3109/10799893.2010.497152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Quadrelli P, Bovio B, Piccinini A, Caramella P, De Sarlo F, Machetti F. Conversion of a nitrosocarbonyl hetero Diels–Alder cycloadduct to useful isoxazoline-carbocyclic aminols. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.10.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Monbaliu JC, Marchand-Brynaert J, Peeters D. Is anthracene cofactor or spectator for the thermolysis of anthracenyl acylnitroso cycloadducts in the presence of a diene? Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Quadrelli P, Romano S, Piccanello A, Caramella P. The Remarkable Cis Effect in the Ene Reactions of Nitrosocarbonyl Intermediates. J Org Chem 2009; 74:2301-10. [DOI: 10.1021/jo801641j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Paolo Quadrelli
- Dipartimento di Chimica Organica and Unità di Ricerca CNISM e Dipartimento di Fisica “A. Volta”, Università degli Studi di Pavia, Via Bassi 6, 27100 - Pavia, Italy
| | - Silvano Romano
- Dipartimento di Chimica Organica and Unità di Ricerca CNISM e Dipartimento di Fisica “A. Volta”, Università degli Studi di Pavia, Via Bassi 6, 27100 - Pavia, Italy
| | - Andrea Piccanello
- Dipartimento di Chimica Organica and Unità di Ricerca CNISM e Dipartimento di Fisica “A. Volta”, Università degli Studi di Pavia, Via Bassi 6, 27100 - Pavia, Italy
| | - Pierluigi Caramella
- Dipartimento di Chimica Organica and Unità di Ricerca CNISM e Dipartimento di Fisica “A. Volta”, Università degli Studi di Pavia, Via Bassi 6, 27100 - Pavia, Italy
| |
Collapse
|
48
|
Yang YK, Cho HJ, Lee J, Shin I, Tae J. A Rhodamine−Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings. Org Lett 2009; 11:859-61. [DOI: 10.1021/ol802822t] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young-Keun Yang
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | - Jihyun Lee
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
49
|
Recupero F, Punta C. Free Radical Functionalization of Organic Compounds Catalyzed byN-Hydroxyphthalimide. Chem Rev 2007; 107:3800-42. [PMID: 17848093 DOI: 10.1021/cr040170k] [Citation(s) in RCA: 478] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Recupero
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, I-20131 Milano MI, Italy
| | | |
Collapse
|
50
|
Lee KY, Gowrisankar S, Lee YJ, Kim JN. Synthesis of 2-amino-2,3-dihydrobenzofurans and fully substituted furans from modified Baylis–Hillman adducts. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|