1
|
Zetzsche H, Raschke L, Fürtig B. Allosteric activation of RhlB by RNase E induces partial duplex opening in substrate RNA. Front Mol Biosci 2023; 10:1139919. [PMID: 37719267 PMCID: PMC10500059 DOI: 10.3389/fmolb.2023.1139919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
The E. coli DEAD-Box helicase RhlB is responsible for ATP-dependent unwinding of structured mRNA to facilitate RNA degradation by the protein complex degradosome. The allosteric interaction with complex partner RNase E is necessary to stimulate both, RhlB's ATPase and RNA unwinding activity to levels comparable with other DEAD-Box helicases. However, the structural changes of the helicase RhlB induced by binding of RNase E have not been characterized and how those lead to increased reaction rates has remained unclear. We investigated the origin of this activation for RNA substrates with different topologies. Using NMR spectroscopy and an RNA centered approach, we could show that RNase E binding increases the affinity of RhlB towards a subset of RNA substrates, which leads to increased ATP turnover rates. Most strikingly, our studies revealed that in presence of RNase E (694-790) RhlB induces a conformational change in an RNA duplex with 5'- overhang even in absence of ATP, leading to partial duplex opening. Those results indicate a unique and novel activation mode of RhlB among DEAD-Box helicases, as ATP binding is thought to be an essential prerequisite for RNA unwinding.
Collapse
Affiliation(s)
| | | | - Boris Fürtig
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| |
Collapse
|
2
|
Negroni M, Kurzbach D. Missing Pieces in Structure Puzzles: How Hyperpolarized NMR Spectroscopy Can Complement Structural Biology and Biochemistry. Chembiochem 2023; 24:e202200703. [PMID: 36624049 DOI: 10.1002/cbic.202200703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Structure determination lies at the heart of many biochemical research programs. However, the "giants": X-ray diffraction, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, among others, leave quite a few dark spots on the structural pictures drawn of proteins, nucleic acids, membranes, and other biomacromolecules. For example, structural models under physiological conditions or of short-lived intermediates often remain out of reach of the established experimental methods. This account frames the possibility of including hyperpolarized, that is, dramatically signal-enhanced NMR in existing workflows to fill these spots with detailed depictions. We highlight how integrating methods based on dissolution dynamic nuclear polarization can provide valuable complementary information about formerly inaccessible conformational spaces for many systems. A particular focus will be on hyperpolarized buffers to facilitate the NMR structure determination of challenging systems.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
4
|
Eills J, Hale W, Utz M. Synergies between Hyperpolarized NMR and Microfluidics: A Review. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:44-69. [PMID: 35282869 DOI: 10.1016/j.pnmrs.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Hyperpolarized nuclear magnetic resonance and lab-on-a-chip microfluidics are two dynamic, but until recently quite distinct, fields of research. Recent developments in both areas increased their synergistic overlap. By microfluidic integration, many complex experimental steps can be brought together onto a single platform. Microfluidic devices are therefore increasingly finding applications in medical diagnostics, forensic analysis, and biomedical research. In particular, they provide novel and powerful ways to culture cells, cell aggregates, and even functional models of entire organs. Nuclear magnetic resonance is a non-invasive, high-resolution spectroscopic technique which allows real-time process monitoring with chemical specificity. It is ideally suited for observing metabolic and other biological and chemical processes in microfluidic systems. However, its intrinsically low sensitivity has limited its application. Recent advances in nuclear hyperpolarization techniques may change this: under special circumstances, it is possible to enhance NMR signals by up to 5 orders of magnitude, which dramatically extends the utility of NMR in the context of microfluidic systems. Hyperpolarization requires complex chemical and/or physical manipulations, which in turn may benefit from microfluidic implementation. In fact, many hyperpolarization methodologies rely on processes that are more efficient at the micro-scale, such as molecular diffusion, penetration of electromagnetic radiation into a sample, or restricted molecular mobility on a surface. In this review we examine the confluence between the fields of hyperpolarization-enhanced NMR and microfluidics, and assess how these areas of research have mutually benefited one another, and will continue to do so.
Collapse
Affiliation(s)
- James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany.
| | - William Hale
- Department of Chemistry, University of Florida, 32611, USA
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
6
|
Wei R, Hall AMR, Behrens R, Pritchard MS, King EJ, Lloyd‐Jones GC. Stopped‐Flow
19
F NMR Spectroscopic Analysis of a Protodeboronation Proceeding at the Sub‐Second Time‐Scale. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ran Wei
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew M. R. Hall
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| | - Richard Behrens
- Laboratory of Engineering Thermodynamics (LTD) Technische Universität Kaiserslautern Erwin-Schrödinger-Straße 44 Kaiserslautern 67663 Germany
| | | | - Edward J. King
- TgK Scientific Ltd. Bradford on Avon Wiltshire BA15 1DH UK
| | - Guy C. Lloyd‐Jones
- School of Chemistry The University of Edinburgh Joseph Black Building David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
7
|
Müller D, Bessi I, Richter C, Schwalbe H. The Folding Landscapes of Human Telomeric RNA and DNA G-Quadruplexes are Markedly Different. Angew Chem Int Ed Engl 2021; 60:10895-10901. [PMID: 33539622 PMCID: PMC8252441 DOI: 10.1002/anie.202100280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Indexed: 01/23/2023]
Abstract
We investigated the folding kinetics of G-quadruplex (G4) structures by comparing the K+ -induced folding of an RNA G4 derived from the human telomeric repeat-containing RNA (TERRA25) with a sequence homologous DNA G4 (wtTel25) using CD spectroscopy and real-time NMR spectroscopy. While DNA G4 folding is biphasic, reveals kinetic partitioning and involves kinetically favoured off-pathway intermediates, RNA G4 folding is faster and monophasic. The differences in kinetics are correlated to the differences in the folded conformations of RNA vs. DNA G4s, in particular with regard to the conformation around the glycosidic torsion angle χ that uniformly adopts anti conformations for RNA G4s and both, syn and anti conformation for DNA G4s. Modified DNA G4s with 19 F bound to C2' in arabino configuration adopt exclusively anti conformations for χ. These fluoro-modified DNA (antiTel25) reveal faster folding kinetics and monomorphic conformations similar to RNA G4s, suggesting the correlation between folding kinetics and pathways with differences in χ angle preferences in DNA and RNA, respectively.
Collapse
Affiliation(s)
- Diana Müller
- Goethe University Frankfurt/Centre for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Irene Bessi
- Goethe University Frankfurt/Centre for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
- Present address: Julius-Maximilians-University Würzburg, Institute of Organic Chemistry, Am Hubland 16, 97074, Würzburg, Germany
| | - Christian Richter
- Goethe University Frankfurt/Centre for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Goethe University Frankfurt/Centre for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
8
|
The Folding Landscapes of Human Telomeric RNA and DNA G‐Quadruplexes are Markedly Different. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Pintér G, Schwalbe H. Refolding of Cold‐Denatured Barstar Induced by Radio‐Frequency Heating: A New Method to Study Protein Folding by Real‐Time NMR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| |
Collapse
|
10
|
Pintér G, Schwalbe H. Refolding of Cold-Denatured Barstar Induced by Radio-Frequency Heating: A New Method to Study Protein Folding by Real-Time NMR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:22086-22091. [PMID: 32744407 PMCID: PMC7756886 DOI: 10.1002/anie.202006945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Indexed: 12/29/2022]
Abstract
The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio‐frequency power to lossy aqueous samples, refolding of barstar from its cold‐denatured state can be followed by real‐time NMR spectroscopy. Since temperature‐induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real‐time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low‐temperature‐unfolded state, which can potentially induce multiple folding pathways. The high time resolution real‐time 2D‐NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state‐correlated spectroscopy, an alternative folding pathway circumventing the rate‐limiting cis‐trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
11
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
12
|
Jensen PR, Meier S. Catalytic cycle of carbohydrate dehydration by Lewis acids: structures and rates from synergism of conventional and DNP NMR. Chem Commun (Camb) 2020; 56:6245-6248. [DOI: 10.1039/d0cc01756f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Structures and rates in the catalytic cycle of carbohydrate dehydration by Lewis acidic salt are determined through the systematic use of complementary NMR approaches.
Collapse
Affiliation(s)
- Pernille Rose Jensen
- Department of Health Technology
- Technical University of Denmark
- Ørsteds Plads
- Lyngby
- Denmark
| | - Sebastian Meier
- Department of Chemistry
- Technical University of Denmark
- Kemitorvet
- 2800 Kgs Lyngby
- Denmark
| |
Collapse
|
13
|
Grün JT, Hennecker C, Klötzner DP, Harkness RW, Bessi I, Heckel A, Mittermaier AK, Schwalbe H. Conformational Dynamics of Strand Register Shifts in DNA G-Quadruplexes. J Am Chem Soc 2019; 142:264-273. [PMID: 31815451 DOI: 10.1021/jacs.9b10367] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complex folding energy landscape of DNA G-quadruplexes leads to numerous conformations for this functionally important class of noncanonical DNA structures. A new layer of conformational heterogeneity comes from sequences with different numbers of G-nucleotides in each of the DNA G-strands that form the four-stranded G-quartet core. The mechanisms by which G-quadruplexes transition from one folded conformation to another are currently unknown. To address this question, we studied two different G-quadruplexes, selecting a single conformation by blocking hydrogen bonding with photolabile protection groups. Upon irradiation, the block can be released and the kinetics of re-equilibration to the native conformational equilibrium can be determined by time-resolved NMR. We compared the NMR-derived refolding kinetics with data derived from thermal hysteresis folding kinetic experiments and found excellent agreement. The outlined methodological approach allows separation of K+-induced G-quadruplex formation and subsequent refolding and provides key insight into rate-limiting steps of G-quadruplex conformational dynamics.
Collapse
Affiliation(s)
- J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany.,Center of Biomolecular Magnetic Resonance (BMRZ) , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | | | - Dean-Paulos Klötzner
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | - Robert W Harkness
- Department of Chemistry , McGill University , Montreal H3A 2K6 , Quebec , Canada
| | - Irene Bessi
- Institute of Organic Chemistry , Julius-Maximilians-University Würzburg , Würzburg 97074 , Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| | | | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany.,Center of Biomolecular Magnetic Resonance (BMRZ) , Goethe University Frankfurt am Main , Frankfurt 60438 , Germany
| |
Collapse
|
14
|
Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:86-134. [PMID: 31779887 DOI: 10.1016/j.pnmrs.2019.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, photochemical and photocatalytic applications have developed into one of the dominant research fields in chemistry. However, mechanistic investigations to sustain this enormous progress are still relatively sparse and in high demand by the photochemistry community. UV/Vis spectroscopy and EPR spectroscopy have been the main spectroscopic tools to study the mechanisms of photoreactions due to their higher time resolution and sensitivity. On the other hand, application of NMR in photosystems has been mainly restricted to photo-CIDNP, since the initial photoexcitation was thought to be the single key to understand photoinduced reactions. In 2015 the Gschwind group showcased the possibility that different reaction pathways could occur from the same photoexcited state depending on the reaction conditions by using in situ LED illumination NMR. This was the starting point to push the active participation of NMR in photosystems to its full potential, including reaction profiling, structure determination of intermediates, downstream mechanistic studies, dark pathways, intermediate sequencing with CEST etc. Following this, multiple studies using in situ illumination NMR have been reported focusing on mechanistic investigations in photocatalysis, photoswitches, and polymerizations. The recent increased popularity of this technique can be attributed to the simplicity of the experimental setup and the availability of low cost, high power LEDs. Here, we review the development of experimental design, applications and new concepts of illuminated NMR. In the first part, we describe the development of different designs of NMR illumination apparatus, illuminating from the bottom/side/top/inside, and discuss their pros and cons for specific applications. Furthermore, we address LASERs and LEDs as different light sources as well as special cases such as UVNMR(-illumination), FlowNMR, NMR on a Chip etc. To complete the discussion on experimental apparatus, the advantages and disadvantages of in situ LED illumination NMR versus ex situ illumination NMR are described. The second part of this review discusses different facets of applications of inside illumination experiments. It highlights newly revealed mechanistic and structural information and ideas in the fields of photocatalyis, photoswitches and photopolymerization. Finally, we present new concepts and methods based on the combination of NMR and illumination such as sensitivity enhancement, chemical pump probes, experimental access to transition state combinations and NMR actinometry. Overall this review presents NMR spectroscopy as a complementary tool to UV/Vis spectroscopy in mechanistic and structural investigations of photochemical processes. The review is presented in a way that is intended to assist the photochemistry and photocatalysis community in adopting and understanding this astonishingly powerful in situ LED illumination NMR method for their investigations on a daily basis.
Collapse
Affiliation(s)
- Philipp Nitschke
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Ruth M Gschwind
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
15
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
16
|
Halse ME, Procacci B, Perutz RN, Duckett SB. Towards measuring reactivity on micro-to-millisecond timescales with laser pump, NMR probe spectroscopy. Faraday Discuss 2019; 220:28-44. [DOI: 10.1039/c9fd00039a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a quantitative analysis of the timescales of reactivity that are accessible to a laser pump, NMR probe spectroscopy method using para-hydrogen induced polarisation (PHIP) and identify three kinetic regimes: fast, intermediate and slow.
Collapse
Affiliation(s)
| | - Barbara Procacci
- Centre for Hyperpolarisation in Magnetic Resonance
- Department of Chemistry
- University of York
- York
- UK
| | | | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance
- Department of Chemistry
- University of York
- York
- UK
| |
Collapse
|
17
|
Combined smFRET and NMR analysis of riboswitch structural dynamics. Methods 2019; 153:22-34. [DOI: 10.1016/j.ymeth.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
|
18
|
Wagner GE, Tassoti S, Glanzer S, Stadler E, Herges R, Gescheidt G, Zangger K. Monitoring fast chemical processes by reaction-interrupted excitation transfer (ExTra) NMR spectroscopy. Chem Commun (Camb) 2019; 55:12575-12578. [DOI: 10.1039/c9cc06427c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ExTra NMR utilises selectively inverted magnetisation for in situ monitoring of fast chemical processes.
Collapse
Affiliation(s)
- Gabriel E. Wagner
- Institute of Hygiene
- Microbiology and Environmental Medicine
- Medical University of Graz
- A 8010 Graz
- Austria
| | - Sebastian Tassoti
- Institute of Chemistry
- Organic and Bioorganic Chemistry
- University of Graz
- A-8010 Graz
- Austria
| | - Simon Glanzer
- Institute of Chemistry
- Organic and Bioorganic Chemistry
- University of Graz
- A-8010 Graz
- Austria
| | - Eduard Stadler
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry
- University of Kiel
- Otto-Hahn-Platz 4
- DE-24118 Kiel
- Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Klaus Zangger
- Institute of Chemistry
- Organic and Bioorganic Chemistry
- University of Graz
- A-8010 Graz
- Austria
| |
Collapse
|
19
|
Morozova OB, Ivanov KL. Time-Resolved Chemically Induced Dynamic Nuclear Polarization of Biologically Important Molecules. Chemphyschem 2018; 20:197-215. [DOI: 10.1002/cphc.201800566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center; Institutskaya 3a 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova 2 630090 Novosibirsk Russia
| | - Konstantin L. Ivanov
- International Tomography Center; Institutskaya 3a 630090 Novosibirsk Russia
- Novosibirsk State University; Pirogova 2 630090 Novosibirsk Russia
| |
Collapse
|
20
|
Dey S, Bielytskyi P, Gräsing D, Das A, Kundu R, Matysik J, Maiti S, Madhu P. Precise in situ photo-induced pH modulation during NMR spectrometry. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Schönbein AK, Kind J, Thiele CM, Michels JJ. Full Quantification of the Light-Mediated Gilch Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jonas Kind
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany
| | - Christina M. Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt, Germany
| | - Jasper J. Michels
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
22
|
Mompeán M, Sánchez-Donoso RM, de la Hoz A, Saggiomo V, Velders AH, Gomez MV. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nat Commun 2018; 9:108. [PMID: 29317665 PMCID: PMC5760532 DOI: 10.1038/s41467-017-02575-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 12/03/2022] Open
Abstract
Among the methods to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy, small-diameter NMR coils (microcoils) are promising tools to tackle the study of mass-limited samples. Alternatively, hyperpolarization schemes based on dynamic nuclear polarization techniques provide strong signal enhancements of the NMR target samples. Here we present a method to effortlessly perform photo-chemically induced dynamic nuclear polarization in microcoil setups to boost NMR signal detection down to sub-picomole detection limits in a 9.4T system (400 MHz 1H Larmor frequency). This setup is unaffected by current major drawbacks such as the use of high-power light sources to attempt uniform irradiation of the sample, and accumulation of degraded photosensitizer in the detection region. The latter is overcome with flow conditions, which in turn open avenues for complex applications requiring rapid and efficient mixing that are not easily achievable on an NMR tube without resorting to complex hardware. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with an inherently low sensitivity. Here, the authors present a combination of microcoils with photo-chemically induced dynamic nuclear polarization to boost NMR sensitivity down to sub-picomole detection limits.
Collapse
Affiliation(s)
- Miguel Mompeán
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa M Sánchez-Donoso
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain. .,Laboratory of BioNanoTechnology, Wageningen University, PO Box 8038, 6700, EK Wageningen, The Netherlands. .,MAGNEtic resonance research FacilitY-MAGNEFY, Wageningen University & Research, PO Box 8038, 6700, EK Wageningen, The Netherlands.
| | - M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada (UCLM), Avda Camilo José Cela s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
23
|
Gomez MV, Juan A, Jiménez-Márquez F, de la Hoz A, Velders AH. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring. Anal Chem 2018; 90:1542-1546. [PMID: 29280614 DOI: 10.1021/acs.analchem.7b04114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet toward the 25 nL detection volume and placed right above the microfluidic channel, irradiating the transparent back of the NMR chip. The setup presented here overcomes the limitations of conventional NMR systems for in situ UV-vis illumination, with the microchannel permitting efficient light penetration even in highly concentrated solutions, requiring lower-power light intensities, and enabling high photon flux. The efficacy of the setup is illustrated with two model reactions activated at different wavelengths.
Collapse
Affiliation(s)
- M Victoria Gomez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto Juan
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Francisco Jiménez-Márquez
- Escuela Técnica Superior de Ingenieros (ETSI) Industriales, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Antonio de la Hoz
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain
| | - Aldrik H Velders
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha (UCLM) , Avenida Camilo Jose Cela s/n, 13071 Ciudad Real, Spain.,Laboratory of BioNanoTechnology, Wageningen University , P.O. Box 8038, 6700 EK Wageningen, The Netherlands
| |
Collapse
|
24
|
Rennella E, Sára T, Juen M, Wunderlich C, Imbert L, Solyom Z, Favier A, Ayala I, Weinhäupl K, Schanda P, Konrat R, Kreutz C, Brutscher B. RNA binding and chaperone activity of the E. coli cold-shock protein CspA. Nucleic Acids Res 2017; 45:4255-4268. [PMID: 28126922 PMCID: PMC5397153 DOI: 10.1093/nar/gkx044] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 11/14/2022] Open
Abstract
Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they interact transiently and non-specifically with their RNA targets. So far, little is known about the mechanistic details of the RNA chaperone activity of these proteins. Prominent examples of RNA chaperones are bacterial cold shock proteins (Csp) that have been reported to bind single-stranded RNA and DNA. Here, we have used advanced NMR spectroscopy techniques to investigate at atomic resolution the RNA-melting activity of CspA, the major cold shock protein of Escherichia coli, upon binding to different RNA hairpins. Real-time NMR provides detailed information on the folding kinetics and folding pathways. Finally, comparison of wild-type CspA with single-point mutants and small peptides yields insights into the complementary roles of aromatic and positively charged amino-acid side chains for the RNA chaperone activity of the protein.
Collapse
Affiliation(s)
- Enrico Rennella
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Tomáš Sára
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus, Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Michael Juen
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Wunderlich
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Lionel Imbert
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Zsofia Solyom
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Adrien Favier
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Katharina Weinhäupl
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Robert Konrat
- Department of Computational & Structural Biology, Max F. Perutz Laboratories, Campus, Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France.,Centre National de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
25
|
Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm S, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Fürtig B, Wöhnert J, Schwalbe H. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation. eLife 2017; 6. [PMID: 28541183 PMCID: PMC5459577 DOI: 10.7554/elife.21297] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023] Open
Abstract
In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding. DOI:http://dx.doi.org/10.7554/eLife.21297.001
Collapse
Affiliation(s)
- Hannah Steinert
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Florian Sochor
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Janina Buck
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Helmling
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Fabian Hiller
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sara Keyhani
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonas Noeske
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Steffen Grimm
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Martin M Rudolph
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Heiko Keller
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Boris Fürtig
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jens Wöhnert
- Center for Biomolecular Magnetic Resonance, Institute of Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Halse ME, Procacci B, Henshaw SL, Perutz RN, Duckett SB. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 278:25-38. [PMID: 28347906 DOI: 10.1016/j.jmr.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H2) into a metal dihydride complex and then follows the time-evolution of the p-H2-derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H2-derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H2-derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H2-derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1H and 31P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H2-derived spin order over micro-to-millisecond timescales.
Collapse
Affiliation(s)
- Meghan E Halse
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Barbara Procacci
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Sarah-Louise Henshaw
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, York Science Park, University of York, Heslington, York YO10 5NY, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
27
|
Dunn AL, Landis CR. Progress toward reaction monitoring at variable temperatures: a new stopped-flow NMR probe design. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:329-336. [PMID: 27718501 DOI: 10.1002/mrc.4538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
A stopped-flow NMR probe is described that enables fast flow rates, short transfer times, and equilibration of the reactant magnetization and temperature prior to reaction. The capabilities of the probe are demonstrated by monitoring the polymerization of lactide as catalyzed by the air-sensitive catalyst 1,3-dimesitylimidazol-2-ylidene (IMes) over the temperature range of -30 to 40 °C. The incorporation of stopped-flow capabilities into an NMR probe permits the rich information content of NMR to be accessed during the first few seconds of a fast reaction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna L Dunn
- Department of Chemistry, University of Wisconsin, Madison, WI, United States
| | - Clark R Landis
- Department of Chemistry, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
28
|
Franco R, Gil-Caballero S, Ayala I, Favier A, Brutscher B. Probing Conformational Exchange Dynamics in a Short-Lived Protein Folding Intermediate by Real-Time Relaxation–Dispersion NMR. J Am Chem Soc 2017; 139:1065-1068. [DOI: 10.1021/jacs.6b12089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rémi Franco
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | | | - Isabel Ayala
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | - Adrien Favier
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| | - Bernhard Brutscher
- Institut
de Biologie Structurale, Université Grenoble Alpes, 71 Avenue
des Martyrs, 38044 Grenoble Cedex 9, France
- Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National
de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
29
|
Kind J, Thiele CM. Still shimming or already measuring?--Quantitative reaction monitoring for small molecules on the sub minute timescale by NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:109-115. [PMID: 26433632 DOI: 10.1016/j.jmr.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
In order to enable monitoring of rapidly occurring reactions Wagner et al. recently presented a simple scheme for 1D NMR experiments with continuous data acquisition, without inter-scan delays, using a spatially-selective and frequency-shifted excitation approach (Wagner et al., 2013). This scheme allows acquisition of proton spectra with temporal resolutions on the millisecond timescale. Such high temporal resolutions are desired in the case of reaction monitoring using stopped flow setups. In regular (1)H NMR-spectra without spatial selection the line width increases for a given shim setting with changes in sample volume, susceptibility, convection and temperature or concentration gradients due to the disturbance of magnetic field homogeneity. Concerning reaction monitoring this is unfortunate as shimming prior to acquisition becomes necessary to obtain narrow signals after injection of a reactant into an NMR sample. Even automatic shim routines may last up to minutes. Thus fast reactions can hardly be monitored online without large hardware dead times in a single stopped flow experiment. This problem is reduced in the spatially-selective and frequency-shifted continuous NMR experiment as magnetic field inhomogeneties are less pronounced and negative effects on the obtained line shapes are reduced as pointed out by Bax and Freeman (1980) [2] and demonstrated by Wagner et al. (2013). Here we present the utilization of this technique for observation of reactions in small molecule systems in which chemical conversion and longitudinal relaxation occur on the same timescale. By means of the alkaline ethyl acetate hydrolysis, a stoichiometric reaction, we show advantages of spatially-selective excitation on both temporal resolution and line shapes in stopped flow experiments. Results are compared to data obtained by non-selective small angle excitation experiments.
Collapse
Affiliation(s)
- J Kind
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, D-64287 Darmstadt, Germany
| | - C M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, D-64287 Darmstadt, Germany.
| |
Collapse
|
30
|
Morozova OB, Yurkovskaya AV. Assessment of Nanosecond Time Scale Motions in Native and Non-Native States of Ubiquitin. J Phys Chem B 2015; 119:12644-52. [DOI: 10.1021/acs.jpcb.5b07333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga B. Morozova
- International Tomography Center of SB RAS, Institutskaya
3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- International Tomography Center of SB RAS, Institutskaya
3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| |
Collapse
|
31
|
Rinnenthal J, Wagner D, Marquardsen T, Krahn A, Engelke F, Schwalbe H. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 251:84-93. [PMID: 25616187 DOI: 10.1016/j.jmr.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
A novel temperature jump (T-jump) probe operational at B(0) fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for (1)H-, (2)H- and (15)N-nuclei. High B(0) field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a (15)N-selectively labeled 40nt hsp17-RNA thermometer.
Collapse
Affiliation(s)
- Jörg Rinnenthal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | - Dominic Wagner
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany
| | | | - Alexander Krahn
- Bruker BioSpin GmbH, Am Silberstreifen, 76287 Rheinstetten, Germany
| | - Frank Engelke
- Bruker BioSpin GmbH, Am Silberstreifen, 76287 Rheinstetten, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt/Main, Germany.
| |
Collapse
|
32
|
Fürtig B, Reining A, Sochor F, Oberhauser EM, Heckel A, Schwalbe H. Characterization of conformational dynamics of bistable RNA by equilibrium and non-equilibrium NMR. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:11.13.1-16. [PMID: 25631532 DOI: 10.1002/0471142700.nc1113s55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Unlike proteins, a given RNA sequence can adopt more than a single conformation. The two (or more) conformations are long-lived and have similar stabilities, but interconvert only slowly. Such bi- or multistability is often linked to the biological functions of the RNA. This unit describes how nuclear magnetic resonance (NMR) spectroscopy can be used to characterize the conformational dynamics of bistable RNAs.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Frankfurt, Germany; Institute of Organic Chemistry and Chemical Biology, Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Kumar A, Balbach J. Real-time protein NMR spectroscopy and investigation of assisted protein folding. Biochim Biophys Acta Gen Subj 2014; 1850:1965-72. [PMID: 25497212 DOI: 10.1016/j.bbagen.2014.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND During protein-folding reactions toward the native structure, short-lived intermediate states can be populated. Such intermediates expose hydrophobic patches and can self-associate leading to non-productive protein misfolding. A major focus of current research is the characterization of short-lived intermediates and how molecular chaperones enable productive folding. Real-time NMR spectroscopy, together with the development of advanced methods, is reviewed here and the potential these methods have to characterize intermediate states as well as interactions with molecular chaperone proteins at single-residue resolution is highlighted. SCOPE OF REVIEW Various chaperone interactions can guide the protein-folding reaction and thus are important for protein structure formation, stability, and activity of their substrates. Chaperone-assisted protein folding, characterization of intermediates, and their molecular interactions using real-time NMR spectroscopy will be discussed. Additionally, recent advances in NMR methods employed for characterization of high-energy intermediates will be discussed. MAJOR CONCLUSIONS Real-time NMR combines high resolution with kinetic information of protein reactions, which can be employed not only for protein-folding studies and the characterization of folding intermediates but also to investigate the molecular mechanisms of assisted protein folding. GENERAL SIGNIFICANCE Real-time NMR spectroscopy remains an effective tool to reveal structural details about the interaction between chaperones and transient intermediates. Methodologically, it provides in-depth understanding of how kinetic intermediates and their thermodynamics contribute to the protein-folding reaction. This review summarizes the most recent advances in this field. This article is part of a Special Issue titled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Amit Kumar
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany.
| |
Collapse
|
34
|
Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-beleuchtete NMR-Spektroskopie Flavin-katalysierter Photooxidationen zeigt Lösungsmittelkontrolle des Elektronentransfermechanismus. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-Illuminated NMR Studies of Flavin-Catalyzed Photooxidations Reveal Solvent Control of the Electron-Transfer Mechanism. Angew Chem Int Ed Engl 2014; 54:1347-51. [DOI: 10.1002/anie.201409146] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/11/2022]
|
36
|
Torres O, Procacci B, Halse ME, Adams RW, Blazina D, Duckett SB, Eguillor B, Green RA, Perutz RN, Williamson DC. Photochemical Pump and NMR Probe: Chemically Created NMR Coherence on a Microsecond Time Scale. J Am Chem Soc 2014; 136:10124-31. [DOI: 10.1021/ja504732u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Olga Torres
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Barbara Procacci
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Meghan E. Halse
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Ralph W. Adams
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Damir Blazina
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Simon B. Duckett
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Beatriz Eguillor
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Richard A. Green
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | - Robin N. Perutz
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K
| | | |
Collapse
|
37
|
Ullrich SJ, Glaubitz C. Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res 2013; 46:2164-71. [PMID: 23745719 DOI: 10.1021/ar4000289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane proteins catalyze reactions at the cell membrane and facilitate thetransport of molecules or signals across the membrane. Recently researchers have made great progress in understanding the structural biology of membrane proteins, mainly based on X-ray crystallography. In addition, the application of complementary spectroscopic techniques has allowed researchers to develop a functional understanding of these proteins. Solid-state NMR has become an indispensable tool for the structure-function analysis of insoluble proteins and protein complexes. It offers the possibility of investigating membrane proteins directly in their environment, which provides essential information about the intrinsic coupling of protein structure and functional dynamics within the lipid bilayer. However, to date, researchers have hardly explored the enzymology of mem-brane proteins. In this Account, we review the perspectives for investigating membrane-bound enzymes by solid-state NMR. Understanding enzyme mechanisms requires access to kinetic parameters, structural analysis of the catalytic center, knowledge of the 3D structure and methods to follow the structural dynamics of the enzyme during the catalytic cycle. In principle, solid-state NMR can address all of these issues. Researchers can characterize the enzyme kinetics by observing substrate turnover within the membrane or at the membrane interphase in a time-resolved fashion as shown for diacylglycerol kinase. Solid-state NMR has also provided a mechanistic understanding of soluble enzymes including triosephosphate isomerase (TIM) and different metal-binding proteins, which demonstrates a promising perspective also for membrane proteins. The increasing availability of high magnetic fields and the development of new experimental schemes and computational protocols have made it easier to determine 3D structure using solid-state NMR. Dynamic nuclear polarization, a key technique to boost sensitivity of solid-state NMR at low temperatures, can help with the analysis of thermally trapped catalytic intermediates, while methods to improve signal-to-noise per time unit enable the real-time measurement of kinetics of conformational changes during the catalytic cycle.
Collapse
Affiliation(s)
- Sandra J. Ullrich
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max von Laue Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
38
|
Takahashi H, Iwama M, Akai N, Shibuya K, Kawai A. Pulsed EPR study on large dynamic electron polarisation created in the quenching of photo-excited xanthene dyes by nitroxide radicals in aqueous solutions. Mol Phys 2013. [DOI: 10.1080/00268976.2013.827255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Rennella E, Brutscher B. Fast Real-Time NMR Methods for Characterizing Short-Lived Molecular States. Chemphyschem 2013; 14:3059-70. [DOI: 10.1002/cphc.201300339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 12/22/2022]
|
40
|
Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 2013; 499:355-9. [PMID: 23842498 DOI: 10.1038/nature12378] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/12/2013] [Indexed: 11/09/2022]
Abstract
Riboswitches are cis-acting gene-regulatory RNA elements that can function at the level of transcription, translation and RNA cleavage. The commonly accepted molecular mechanism for riboswitch function proposes a ligand-dependent conformational switch between two mutually exclusive states. According to this mechanism, ligand binding to an aptamer domain induces an allosteric conformational switch of an expression platform, leading to activation or repression of ligand-related gene expression. However, many riboswitch properties cannot be explained by a pure two-state mechanism. Here we show that the regulation mechanism of the adenine-sensing riboswitch, encoded by the add gene on chromosome II of the human Gram-negative pathogenic bacterium Vibrio vulnificus, is notably different from a two-state switch mechanism in that it involves three distinct stable conformations. We characterized the temperature and Mg(2+) dependence of the population ratios of the three conformations and the kinetics of their interconversion at nucleotide resolution. The observed temperature dependence of a pre-equilibrium involving two structurally distinct ligand-free conformations of the add riboswitch conferred efficient regulation over a physiologically relevant temperature range. Such robust switching is a key requirement for gene regulation in bacteria that have to adapt to environments with varying temperatures. The translational adenine-sensing riboswitch represents the first example, to our knowledge, of a temperature-compensated regulatory RNA element.
Collapse
Affiliation(s)
- Anke Reining
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.
Collapse
Affiliation(s)
- Lars T Kuhn
- DFG Research Center Molecular Physiology of the Brain (CMPB), European Neuroscience Institute Göttingen (ENI-G) and EXC 171 Microscopy at the Nanometer Range, Göttingen, Germany,
| |
Collapse
|
42
|
Wagner GE, Sakhaii P, Bermel W, Zangger K. Monitoring fast reactions by spatially-selective and frequency-shifted continuous NMR spectroscopy: application to rapid-injection protein unfolding. Chem Commun (Camb) 2013; 49:3155-7. [DOI: 10.1039/c3cc39107h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Marshall CB, Meiri D, Smith MJ, Mazhab-Jafari MT, Gasmi-Seabrook GMC, Rottapel R, Stambolic V, Ikura M. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts. Methods 2012; 57:473-85. [PMID: 22750304 DOI: 10.1016/j.ymeth.2012.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/18/2023] Open
Abstract
The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.
Collapse
Affiliation(s)
- Christopher B Marshall
- Ontario Cancer Institute and The Campbell Family Cancer Research Institute, University Health Network, 101 College Street, Rm 4-804 Toronto Medical Discovery Tower, MaRS Building, Toronto, ON, Canada M5G 1L7
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange. Biophys J 2012; 102:2564-74. [PMID: 22713572 DOI: 10.1016/j.bpj.2012.03.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 11/20/2022] Open
Abstract
In this study, we have optimized NMR methodology to determine the thermodynamic parameters of basepair opening in DNA and RNA duplexes by characterizing the temperature dependence of imino proton exchange rates of individual basepairs. Contributions of the nuclear Overhauser effect to exchange rates measured with inversion recovery experiments are quantified, and the influence of intrinsic and external catalysis exchange mechanisms on the imino proton exchange rates is analyzed. Basepairs in DNA and RNA have an approximately equal stability, and the enthalpy and entropy values of their basepair dissociation are correlated linearly. Furthermore, the compensation temperature, T(c), which is derived from the slope of the correlation, coincides with the melting temperature, and duplex unfolding occurs at that temperature where all basepairs are equally thermodynamically stable. The impact of protium-deuterium exchange of the imino hydrogen on the free energy of RNA basepair opening is investigated, and it is found that two A·U basepairs show distinct fractionation factors.
Collapse
|
45
|
Rennella E, Cutuil T, Schanda P, Ayala I, Forge V, Brutscher B. Real-Time NMR Characterization of Structure and Dynamics in a Transiently Populated Protein Folding Intermediate. J Am Chem Soc 2012; 134:8066-9. [DOI: 10.1021/ja302598j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enrico Rennella
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Thomas Cutuil
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Paul Schanda
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| | - Vincent Forge
- DSV-iRTSV, Laboratoire de Chimie
et Biologie des Métaux, Université Grenoble 1, CEA,
CNRS, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CEA, CNRS, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
| |
Collapse
|
46
|
Wacker A, Buck J, Richter C, Schwalbe H, Wöhnert J. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol 2012; 9:672-80. [PMID: 22647526 DOI: 10.4161/rna.20106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Riboswitches are elements in the 5'-untranslated region of mRNAs that regulate gene expression by directly interacting with metabolites related to their own gene products. A remarkable feature of this gene regulation mechanism is the high specificity of riboswitches for their cognate ligands. In this study, we used a combination of static and time-resolved NMR-spectroscopic methods to investigate the mechanisms for ligand specificity in purine riboswitches. We investigate the xpt-aptamer domain from a guanine-responsive riboswitch and the mfl-aptamer domain from a 2'-deoxyguanosine-responsive riboswitch. The xpt-aptamer binds the purine nucleobases guanine/hypoxanthine with high affinity, but, unexpectedly, also the nucleoside 2'-deoxyguanosine. On the other hand, the mfl-aptamer is highly specific for its cognate ligand 2'-deoxyguanosine, and does not bind purine ligands. We addressed the question of aptamer`s ligand specificity by real-time NMR spectroscopy. Our studies of ligand binding and subsequently induced aptamer folding revealed that the xpt-aptamer discriminates against non-cognate ligands by enhanced life-times of the cognate complex compared with non-cognate complexes, whereas the mfl-aptamer rejects non-cognate ligands at the level of ligand association, employing a kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
47
|
Fürtig B, Buck J, Richter C, Schwalbe H. Functional dynamics of RNA ribozymes studied by NMR spectroscopy. Methods Mol Biol 2012; 848:185-199. [PMID: 22315070 DOI: 10.1007/978-1-61779-545-9_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Catalytic RNA motifs (ribozymes) are involved in various cellular processes. Although functional cleavage of the RNA phosphodiester backbone for self-cleaving ribozymes strongly differs with respect to sequence specificity, the structural context, and the underlying mechanism, these ribozyme motifs constitute evolved RNA molecules that carry out identical chemical functionality. Therefore, they represent ideal systems for detailed studies of the underlying structure-function relationship, illustrating the diversity of RNA's functional role in biology. Nuclear magnetic resonance (NMR) spectroscopic methods in solution allow investigation of structure and dynamics of functional RNA motifs at atomic resolution. In addition, characterization of RNA conformational transitions initiated either through addition of specific cofactors, as e.g. ions or small molecules, or by photo-chemical triggering of essential RNA functional groups provides insights into the reaction mechanism. Here, we discuss applications of static and time-resolved NMR spectroscopy connected with the design of suitable NMR probes that have been applied to characterize global and local RNA functional dynamics together with cleavage-induced conformational transitions of two RNA ribozyme motifs: a minimal hammerhead ribozyme and an adenine-dependent hairpin ribozyme.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
48
|
Lieblein AL, Buck J, Schlepckow K, Fürtig B, Schwalbe H. Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal kinetic partitioning. Angew Chem Int Ed Engl 2011; 51:250-3. [PMID: 22095623 DOI: 10.1002/anie.201104938] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/12/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Lena Lieblein
- Institute for Organic Chemistry and Chemical Biology, Center of Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt/Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
49
|
Lieblein AL, Buck J, Schlepckow K, Fürtig B, Schwalbe H. Zeitaufgelöste NMR-Untersuchungen zeigen einen kinetischen Partitionierungsmechanismus während der Faltung des DNA-i-Motivs. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Buck J, Wacker A, Warkentin E, Wöhnert J, Wirmer-Bartoschek J, Schwalbe H. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res 2011; 39:9768-78. [PMID: 21890900 PMCID: PMC3239184 DOI: 10.1093/nar/gkr664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Riboswitch RNAs fold into complex tertiary structures upon binding to their cognate ligand. Ligand recognition is accomplished by key residues in the binding pocket. In addition, it often crucially depends on the stability of peripheral structural elements. The ligand-bound complex of the guanine-sensing riboswitch from Bacillus subtilis, for example, is stabilized by extensive interactions between apical loop regions of the aptamer domain. Previously, we have shown that destabilization of this tertiary loop–loop interaction abrogates ligand binding of the G37A/C61U-mutant aptamer domain (Gswloop) in the absence of Mg2+. However, if Mg2+ is available, ligand-binding capability is restored by a population shift of the ground-state RNA ensemble toward RNA conformations with pre-formed loop–loop interactions. Here, we characterize the striking influence of long-range tertiary structure on RNA folding kinetics and on ligand-bound complex structure, both by X-ray crystallography and time-resolved NMR. The X-ray structure of the ligand-bound complex reveals that the global architecture is almost identical to the wild-type aptamer domain. The population of ligand-binding competent conformations in the ground-state ensemble of Gswloop is tunable through variation of the Mg2+ concentration. We quantitatively describe the influence of distinct Mg2+ concentrations on ligand-induced folding trajectories both by equilibrium and time-resolved NMR spectroscopy at single-residue resolution.
Collapse
Affiliation(s)
- Janina Buck
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7 & 9, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|