1
|
Holmes ST, Boley CM, Dewicki A, Gardner ZT, Vojvodin CS, Iuliucci RJ, Schurko RW. Carbon-13 chemical shift tensor measurements for nitrogen-dense compounds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:179-189. [PMID: 38230444 DOI: 10.1002/mrc.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
This paper reports the principal values of the 13 C chemical shift tensors for five nitrogen-dense compounds (i.e., cytosine, uracil, imidazole, guanidine hydrochloride, and aminoguanidine hydrochloride). Although these are all fundamentally important compounds, the majority do not have 13 C chemical shift tensors reported in the literature. The chemical shift tensors are obtained from 1 H→13 C cross-polarization magic-angle spinning (CP/MAS) experiments that were conducted at a high field of 18.8 T to suppress the effects of 14 N-13 C residual dipolar coupling. Quantum chemical calculations using density functional theory are used to obtain the 13 C magnetic shielding tensors for these compounds. The best agreement with experiment arises from calculations using the hybrid functional PBE0 or the double-hybrid functional PBE0-DH, along with the triple-zeta basis sets TZ2P or pc-3, respectively, and intermolecular effects modeled using large clusters of molecules with electrostatic embedding through the COSMO approach. These measurements are part of an ongoing effort to expand the catalog of accurate 13 C chemical shift tensor measurements, with the aim of creating a database that may be useful for benchmarking the accuracy of quantum chemical calculations, developing nuclear magnetic resonance (NMR) crystallography protocols, or aiding in applications involving machine learning or data mining. This work was conducted at the National High Magnetic Field Laboratory as part of a 2-week school for introducing undergraduate students to practical laboratory experience that will prepare them for scientific careers or postgraduate studies.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - Cameron M Boley
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania, USA
| | - Angelika Dewicki
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania, USA
| | - Zachary T Gardner
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania, USA
| | - Cameron S Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| | - Robbie J Iuliucci
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania, USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Atterberry BA, Wimmer E, Estes DP, Rossini AJ. Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107457. [PMID: 37163927 DOI: 10.1016/j.jmr.2023.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
The measurement of the of chemical shift (CS) tensors via solid-state NMR (ssNMR) spectroscopy has proven to be a powerful probe of structure for organic molecules, biomolecules, and inorganic materials. However, when measuring the NMR spectra of heavy spin-1/2 isotopes the chemical shift anisotropy (CSA) is commonly on the order of thousands of parts per million, which makes acquisition of NMR spectra difficult due to the low NMR sensitivity imposed by the breadth of the signals and challenges in uniformly exciting the NMR spectrum. We have recently shown that complete 195Pt NMR spectra could be rapidly measured by using 195Pt saturation or excitation selective long pulses (SLP) with multiple rotor-cycle durations and RF fields less than 50 kHz into 1H{195Pt} or 1H-31P{195Pt} PE S-RESPDOR, TONE D-HMQC-4, J-resolved, and J-HMQC pulse sequences. The SLP only provide signal or dephasing when they are applied on resonance with a spinning sideband. The magic angle spinning 195Pt NMR spectrum is reconstructed in the sideband selective NMR experiments by acquiring 1D NMR spectra at variable 195Pt pulse offsets. In this work, we present a detailed investigation of the specific pulse conditions required for the ideal performance of sideband selective experiments. Sideband selective experiments are shown to be able to accurately reproduce MAS NMR spectra with minimal distortions of relative sideband intensities. It is also demonstrated that a 195Pt NMR spectrum indirectly detected with HMQC can be rapidly obtained by acquiring a single rotor cycle of indirect dimension evolution points. We dub this method One Rotor Cycle of Acquisition (ORCA) HMQC. Sideband selective experiments and ORCA HMQC experiments are shown to provide a one order of magnitude improvement in experiment times as compared to conventional wideline HMQC experiments.
Collapse
Affiliation(s)
- Benjamin A Atterberry
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA
| | - Erik Wimmer
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Deven P Estes
- University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, 70569, Germany
| | - Aaron J Rossini
- US DOE Ames National Laboratory, Ames, IA 50011, USA; Iowa State University, Department of Chemistry, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Hodgkinson P. NMR crystallography of molecular organics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:10-53. [PMID: 32883448 DOI: 10.1016/j.pnmrs.2020.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Developments of NMR methodology to characterise the structures of molecular organic structures are reviewed, concentrating on the previous decade of research in which density functional theory-based calculations of NMR parameters in periodic solids have become widespread. With a focus on demonstrating the new structural insights provided, it is shown how "NMR crystallography" has been used in a spectrum of applications from resolving ambiguities in diffraction-derived structures (such as hydrogen atom positioning) to deriving complete structures in the absence of diffraction data. As well as comprehensively reviewing applications, the different aspects of the experimental and computational techniques used in NMR crystallography are surveyed. NMR crystallography is seen to be a rapidly maturing subject area that is increasingly appreciated by the wider crystallographic community.
Collapse
Affiliation(s)
- Paul Hodgkinson
- Department of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
4
|
Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int J Mol Sci 2020; 21:ijms21082700. [PMID: 32295042 PMCID: PMC7215618 DOI: 10.3390/ijms21082700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Reliable values of the solid-state NMR (SSNMR) parameters together with precise structural data specific for a given amino acid site in an oligopeptide are needed for the proper interpretation of measurements aiming at an understanding of oligopeptides' function. The periodic density functional theory (DFT)-based computations of geometries and SSNMR chemical shielding tensors (CSTs) of solids are shown to be accurate enough to support the SSNMR investigations of suitably chosen models of oriented samples of oligopeptides. This finding is based on a thorough comparison between the DFT and experimental data for a set of tripeptides with both 13Cα and 15Namid CSTs available from the single-crystal SSNMR measurements and covering the three most common secondary structural elements of polypeptides. Thus, the ground is laid for a quantitative description of local spectral parameters of crystalline oligopeptides, as demonstrated for the backbone 15Namid nuclei of samarosporin I, which is a pentadecapeptide (composed of five classical and ten nonproteinogenic amino acids) featuring a strong antimicrobial activity.
Collapse
|
5
|
Martins ICB, Sardo M, Čendak T, Gomes JRB, Rocha J, Duarte MT, Mafra L. Hydrogen bonding networks in gabapentin protic pharmaceutical salts: NMR and in silico studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:243-255. [PMID: 30475406 DOI: 10.1002/mrc.4809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Hydrogen bonds (HBs) play a key role in the supramolecular arrangement of crystalline solids and, although they have been extensively studied, the influence of their strength and geometry on crystal packing remains poorly understood. Here we describe the crystal structures of two novel protic gabapentin (GBP) pharmaceutical salts prepared with the coformers methanesulfonic acid (GBP:METHA) and ethanesulfonic acid (GBP:ETHA). This study encompasses experimental and computational electronic structure analyses of 1 H NMR chemical shifts (CSs), upon in silico HB cleavage. GBP:METHA and GBP:ETHA crystal packing comprise two main structural domains: an ionic layer (characterized by the presence of charge-assisted + NHGBP ⋯O-METHA/ETHA HB interactions) and a neutral layer generated in a different way for each salt, mainly due to the presence of bifurcated HB interactions. A comprehensive study of HB networks is presented for GBP:METHA, by isolating molecular fragments involved in distinct HB types (NH⋯O, OH⋯O, and CH⋯O) obtained from in silico disassembling of an optimized three-dimensional packing structure. Formation of HB leads to calculated 1 H NMR CS changes from 0.4 to ~5.8 ppm. This study further attempts to assess how 1 H NMR CS of protons engaged in certain HB are affected when other nearby HB, involving bifurcated or geminal/vicinal hydrogen atoms, are removed.
Collapse
Affiliation(s)
- Inês C B Martins
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tomaž Čendak
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João Rocha
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Teresa Duarte
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Wang L, Uribe-Romo FJ, Mueller LJ, Harper JK. Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: a study on hydrogen bonding in polymorphs of palmitic acid. Phys Chem Chem Phys 2018; 20:8475-8487. [PMID: 29431770 PMCID: PMC5878182 DOI: 10.1039/c7cp06724k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hydrogen-bonding environments at the COOH moiety in eight polycrystalline polymorphs of palmitic acid are explored using solid-state NMR. Although most phases have no previously reported crystal structure, measured 13C chemical shift tensors for COOH moieties, combined with DFT modeling establish that all phases crystallize with a cyclic dimer (R22(8)) hydrogen bonding arrangement. Phases A2, Bm and Em have localized OH hydrogens while phase C has a dynamically disordered OH hydrogen. The phase designated As is a mix of five forms, including 27.4% of Bm and four novel phases not fully characterized here due to insufficient sample mass. For phases A2, Bm, Em, and C the anisotropic uncertainties in the COOH hydrogen atom positions are established using a Monte Carlo sampling scheme. Sampled points are retained or rejected at the ±1σ level based upon agreement of DFT computed 13COOH tensors with experimental values. The collection of retained hydrogen positions bear a remarkable resemblance to the anisotropic displacement parameters (i.e. thermal ellipsoids) from diffraction studies. We posit that this similarity is no mere coincidence and that the two are fundamentally related. The volumes of NMR-derived anisotropic displacement ellipsoids for phases with localized OH hydrogens are 4.1 times smaller than those derived from single crystal X-ray diffraction and 1.8 times smaller than the volume of benchmark single crystal neutron diffraction values.
Collapse
Affiliation(s)
- Luther Wang
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
| | | | | | | |
Collapse
|
7
|
Pandey KK. Relativistic DFT calculations of structure and 119 Sn NMR chemical shifts for bent M Sn C bonding in Power’s metallostannylenes of chromium, molybdenum, tungsten and iron and diaryl stannylenes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Pandey MK, Vivekanandan S, Ahuja S, Huang R, Im SC, Waskell L, Ramamoorthy A. Cytochrome-P450-cytochrome-b5 interaction in a membrane environment changes 15N chemical shift anisotropy tensors. J Phys Chem B 2013; 117:13851-60. [PMID: 24107224 DOI: 10.1021/jp4086206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics, and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, we report the experimentally measured backbone amide-(15)N CSA tensors for a membrane-bound 16.7 kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8 kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The (15)N-CSAs, determined using the (15)N CSA/(15)N-(1)H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with those for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-(15)N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex is observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we could measure amide-(15)N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in (15)N CSA for most residues of cytb5 in the complex, as compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions of cytb5 in the complex are -184.5, -146.8, and -146.2 ppm, respectively, with an overall average value of -165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | | | | | | |
Collapse
|
9
|
Pandey MK, Ramamoorthy A. Quantum chemical calculations of amide-15N chemical shift anisotropy tensors for a membrane-bound cytochrome-b5. J Phys Chem B 2013; 117:859-67. [PMID: 23268659 PMCID: PMC3564578 DOI: 10.1021/jp311116p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is considerable interest in determining amide-(15)N chemical shift anisotropy (CSA) tensors from biomolecules and understanding their variation for structural and dynamics studies using solution and solid-state NMR spectroscopy and also by quantum chemical calculations. Due to the difficulties associated with the measurement of CSA tensors from membrane proteins, NMR-based structural studies heavily relied on the CSA tensors determined from model systems, typically single crystals of model peptides. In the present study, the principal components of backbone amide-(15)N CSA tensors have been determined using density functional theory for a 16.7 kDa membrane-bound paramagnetic heme containing protein, cytochrome-b(5) (cytb(5)). All the calculations were performed by taking residues within 5 Å distance from the backbone amide-(15)N nucleus of interest. The calculated amide-(15)N CSA spans agree less well with our solution NMR data determined for an effective internuclear distance r(N-H) = 1.023 Å and a constant angle β = 18° that the least shielded component (δ(11)) makes with the N-H bond. The variation of amide-(15)N CSA span obtained using quantum chemical calculations is found to be smaller than that obtained from solution NMR measurements, whereas the trends of the variations are found to be in close agreement. We believe that the results reported in this study will be useful in studying the structure and dynamics of membrane proteins and heme-containing proteins, and also membrane-bound protein-protein complexes such as cytochromes-b5-P450.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
10
|
Pandey MK, Vivekanandan S, Ahuja S, Pichumani K, Im SC, Waskell L, Ramamoorthy A. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy. J Phys Chem B 2012; 116:7181-9. [PMID: 22620865 PMCID: PMC3381076 DOI: 10.1021/jp3049229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | | | - Shivani Ahuja
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | - Kumar Pichumani
- Advanced Imaging Research Center, University of Texas southwestern Medical Center, 2201 Inwood Road, Dallas, Texas 75390-8568
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, Michigan 48105
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
11
|
Zheng A, Liu SB, Deng F. 13C shielding tensors of crystalline amino acids and peptides: Theoretical predictions based on periodic structure models. J Comput Chem 2009; 30:222-35. [DOI: 10.1002/jcc.21118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Lesage A. Recent advances in solid-state NMR spectroscopy of spin I = 1/2 nuclei. Phys Chem Chem Phys 2009; 11:6876-91. [DOI: 10.1039/b907733m] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Brouwer DH. A structure refinement strategy for NMR crystallography: an improved crystal structure of silica-ZSM-12 zeolite from 29Si chemical shift tensors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:136-146. [PMID: 18656402 DOI: 10.1016/j.jmr.2008.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 05/26/2023]
Abstract
A strategy for performing crystal structure refinements with NMR chemical shift tensors is described in detail and implemented for the zeolite silica-ZSM-12 (framework type code MTW). The 29Si chemical shift tensors were determined from a slow magic-angle spinning spectrum obtained at an ultrahigh magnetic field of 21.1T. The Si and O atomic coordinate parameters were optimized to give the best agreement between experimentally measured and ab initio calculated principal components of the 29Si chemical shift tensors, with the closest Si-O, O-O, and Si-Si distances restrained to correspond with the distributions of the distances found in a set of single-crystal X-ray diffraction (XRD) structures of high-silica zeolites. An improved structure for the silica-ZSM-12 zeolite, compared to a prior structure derived from powder XRD data, is obtained in which the agreement between the experimental and calculated 29Si chemical shift tensors is dramatically improved, the Si-O, O-O, and Si-Si distances correspond to the expected distributions, while the calculated powder XRD pattern remains in good agreement with the experimental powder XRD data. It is anticipated that this "NMR crystallography" structure refinement strategy will be an important tool for the accurate structure determination of materials that are difficult to fully characterize by traditional diffraction methods.
Collapse
Affiliation(s)
- Darren H Brouwer
- Steacie Institute for Molecular Science, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada.
| |
Collapse
|
14
|
Casabianca LB, de Dios AC. Ab initiocalculations of NMR chemical shifts. J Chem Phys 2008; 128:052201. [DOI: 10.1063/1.2816784] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Czinki E, Császár AG, Magyarfalvi G, Schreiner PR, Allen WD. Secondary Structures of Peptides and Proteins via NMR Chemical-Shielding Anisotropy (CSA) Parameters. J Am Chem Soc 2007; 129:1568-77. [PMID: 17284001 DOI: 10.1021/ja065461k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complete nuclear magnetic resonance (NMR) chemical-shielding tensors, sigma, have been computed at different levels of density-functional theory (DFT), within the gauge-including atomic orbital (GIAO) formalism, for the atoms of the peptide model For-L-Ala-NH2 as a function of the backbone dihedral angles phi and psi by employing a dense grid of 10 degrees. A complete set of rigorously orthogonal symmetric tensor invariants, {sigma iso, rho, tau}, is introduced, where sigma iso is the usual isotropic chemical shielding, while the newly introduced rho and tau parameters describe the magnitude and the orientation/shape of the chemical-shielding anisotropy (CSA), respectively. The set {sigma iso, rho, tau} is unaffected by unitary transformations of the symmetric part of the shielding tensor. The mathematically and physically motivated {rho, tau} anisotropy pair is easily connected to more traditional shielding anisotropy measures, like span (Omega) and skew (kappa). The effectiveness of the different partitions of the CSA information in predicting conformations of peptides and proteins has been tested throughout the Ramachandran space by generating theoretical NMR anisotropy surfaces for our For-L-Ala-NH2 model. The CSA surfaces, including Omega(phi, psi), kappa(phi, psi), rho(phi, psi), and tau(phi, psi) are highly structured. Individually, none of these surfaces is able to distinguish unequivocally between the alpha-helix and beta-strand secondary structural types of proteins. However, two- and three-dimensional correlated plots, including Omega versus kappa, rho versus tau, and sigma iso versus rho versus tau, especially for 13Calpha, have considerable promise in distinguishing among all four of the major secondary structural elements.
Collapse
Affiliation(s)
- Eszter Czinki
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
| | | | | | | | | |
Collapse
|
16
|
Schaller T, Büchele UP, Klärner FG, Bläser D, Boese R, Brown SP, Spiess HW, Koziol F, Kussmann J, Ochsenfeld C. Structure of Molecular Tweezer Complexes in the Solid State: NMR Experiments, X-ray Investigations, and Quantum Chemical Calculations. J Am Chem Soc 2007; 129:1293-303. [PMID: 17263413 DOI: 10.1021/ja0666351] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of supramolecular complexes formed by a naphthalene-spaced tweezer molecule as host and 1,4-dicyanobenzene (DCNB), 1,2,4,5-tetracyanobenzene (TCNB), and 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) as aromatic, electron-deficient guests is investigated by solid-state NMR and X-ray diffraction measurements. Quantum chemical calculations using linear scaling methods are applied to predict and to assign the 1H NMR chemical shifts of the complexes. By combining experiment and theory, insights into intra- and intermolecular effects influencing the proton chemical shifts of the host-guest system are provided in the solid state.
Collapse
Affiliation(s)
- Torsten Schaller
- Universität Duisburg-Essen, Institut für Organische Chemie, D-45117 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Benzi C, Barone V, Tarroni R, Zannoni C. Order parameters of alpha,omega-diphenylpolyenes in a nematic liquid crystal from an integrated computational and 13C NMR spectroscopic approach. J Chem Phys 2006; 125:174904. [PMID: 17100476 DOI: 10.1063/1.2363994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The orientational order parameters and conformational behavior of five relatively large rodlike molecules, biphenyl, trans-stilbene, 1,3-diphenyl-butadiene, 1,3,5-diphenyl-hexatriene, and 1,3,5,7-diphenyl-octatetraene, dissolved in the thermotropic liquid crystal ZLI-1167, have been studied using an integrated approach combining (13)C NMR measurements and quantum mechanical computations of carbon chemical shift tensors. Besides biphenyl, the phenyl moiety of all structures has been found to have a high rotational mobility in the temperature range of the present experiments. The rank-two order parameter <P(2)> in the nematic phase is found to increase steadily from the shortest to the longest term of the series at any temperature within the nematic range. The molecular biaxiality order parameter <D(02) (2)> is found to be small and essentially constant with temperature, giving further support to the common assumption of effective uniaxiality for these probes.
Collapse
Affiliation(s)
- Caterina Benzi
- Dipartimento di Chimica, Università Federico II, Complesso Monte S. Angelo, Via Cintia, I-80126 Naples, Italy.
| | | | | | | |
Collapse
|
18
|
Gee BA. Vanadium-51 solid-state NMR electric field gradient tensors: a DFT-embedded ion and isolated cluster study of crystalline vanadium oxides. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2006; 30:171-81. [PMID: 17023147 DOI: 10.1016/j.ssnmr.2006.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/22/2006] [Accepted: 08/31/2006] [Indexed: 05/12/2023]
Abstract
Density functional theory (DFT) calculations (6-311+G(2d,p)/B3LYP level of theory) of (51)V electric field gradient (EFG) tensor elements are performed for embedded and isolated cluster models of orthovanadates. The structural models used to calculate the EFGs of (51)V are (I) an isolated H(4)VO(4)(+) cluster, (II) an isolated H(n)VO(4)(n-3) cluster (n=number of next-neighbor cations) (III) an isolated orthovanadate anion, VO(4)(-x), and (IV) a VO(4)(-x) ion embedded in a finite point-charge array whose electrostatic potential, at the embedded ion, is equivalent to that of the infinite lattice. For models III and IV, a charge x is assigned estimating the covalence of the system. Models III and IV provide results in good agreement with the experiment. Calculations, employing the embedded and isolated VO(4)(-x) models, are used to discuss site assignments for AlVO(4). Correlations between quadrupole coupling parameters and deviations of the orthovanadate structure from ideal tetrahedral symmetry are shown.
Collapse
Affiliation(s)
- Becky A Gee
- Department of Chemistry and Biochemistry, 1 University Plaza, Long Island University, Brooklyn Campus, Brooklyn, NY 11201, USA.
| |
Collapse
|
19
|
Webster A, Osifo PO, Neomagus HWJP, Grant DM. A comparison of glycans and polyglycans using solid-state NMR and X-ray powder diffraction. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2006; 30:150-61. [PMID: 16935479 DOI: 10.1016/j.ssnmr.2006.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/15/2006] [Accepted: 07/17/2006] [Indexed: 05/11/2023]
Abstract
Individual polyglycans and their corresponding monomers have been studied separately for several decades. Attention has focused primarily on the modifications of these polyglycans instead of the simple relationship between the polyglycans themselves and their corresponding monomers. Two polyglycans, chitin and chitosan, were examined along with their respective monomeric units, N-acetyl-D-glucosamine (GlcNAc) and (+)D-glucosamine (GlcN) using solid-state proton decoupling Magic Angle Turning (MAT) techniques and X-Ray Powder Diffraction (XRPD). A down-field shift in isotropic (13)C chemical shifts was observed for both polymers in Cross Polarization/Magic Angle Spinning (CP/MAS) spectra. An explanation of misleading peak assignments in previous NMR studies for these polyglycans was determined by comparing sideband patterns of the polymers with their corresponding monomers generated in a 2D FIve pi REplicated Magic Angle Turning (FIREMAT) experiment processed by Technique for Importing Greater Evolution Resolution (TIGER). Structural changes in the crystalline framework were supported by XRPD diffraction data.
Collapse
Affiliation(s)
- Athena Webster
- Chemistry Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
20
|
Strohmeier M, Barich DH, Grant DM, Miller JS, Pugmire RJ, Simons J. Solid-State NMR Spectra and Long Intradimer Bonds in the π-[TCNE]22- Dianion. J Phys Chem A 2006; 110:7962-9. [PMID: 16789786 DOI: 10.1021/jp061920s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The principal (13)C chemical-shift values for the pi-[TCNE](2)(2-) dimer anion within an array of counterions have been measured to understand better the electronic structure of these atypical chemical species in several related TCNE-based structures. The structure of pi-[TCNE](2)(2-) is unusual as it contains two very long C-C bond lengths (ca. 2.9 Angstroms) between the two monomeric units and has been found to exist as a singlet state, suggestive of a (1)A(1g) (b(2u)(2)b(1g)(0)) electronic configuration. A systematic study of several oxidation states of [TCNE](n) (n = 0, 1-, 2-) was conducted to determine how the NMR chemical-shift tensor values change as a function of electronic structure and to understand the interactions that lead to spin-pairing of the monomer units. The density functional theory (DFT) calculated nuclear shielding tensors are correlated with the experimentally determined principal chemical-shift values. Such theoretical methods provide information on the tensor magnitudes and orientations of their principal tensor components with respect to the molecular frame. Both theoretical and experimental ethylenic chemical-shielding tensors reveal high sensitivity in the component, delta(perpendicular), lying in the monomer molecular plane and perpendicular to the pi-electron plane. This largest shift dependence on charge density is observed to be about -111 ppm/e(-) for delta(perpendicular). The component in the molecular plane but parallel to the central C=C bond, delta(parallel), exhibits a sensitivity of approximately -43 ppm/e(-). However, the out-of-plane component delta'(perpendicular) shows a minimal dependence of -2.6 ppm/e(-) on the oxidation state (n) of [TCNE](n). These relative values support the claim that it is changes within the ethylenic pi-electrons and not the sigma-electrons that best account for the dramatic variations in bonding and shift tensors in this series of compounds. Concerning the intraion bonding, relatively weak Wiberg bond orders between the two monomeric components of the dimer correlate with the long bonds linking the two [TCNE(*)](-) monomers. The chemical-shift tensors for the cyano group, compared to the ethylene shifts, exhibit a reduced sensitivity on the TCNE oxidation state. The experimental principal chemical-shift components agree (within typical errors) with the calculated quantum mechanical shieldings used to correlate the bonding. The embedded ion model (EIM) was used to investigate the typically large electrostatic lattice potential in these ionic materials. Chemical-shielding principal values calculated with the EIM model differ from experiment by +/-3.82 ppm on average, whereas in the absence of an electrostatic field model, the experimental and theoretical results agree by +/-4.42 ppm, which is only a modest increase in error considering the overall ionic magnitudes associated with the tensor variations. Apparently, the effects of the sizable long-range electrostatic fields cancel when the shifts are computed because of lattice symmetry.
Collapse
Affiliation(s)
- Mark Strohmeier
- Department of Chemistry, University of Utah, Salt Lake City, 84112-0850, USA
| | | | | | | | | | | |
Collapse
|
21
|
Smith JR, Xu W, Raftery D. Analysis of Conformational Polymorphism in Pharmaceutical Solids Using Solid-State NMR and Electronic Structure Calculations. J Phys Chem B 2006; 110:7766-76. [PMID: 16610872 DOI: 10.1021/jp056195k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed analysis of molecular structure in three polymorphic forms of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile is made using a combination of multidimensional solid-state NMR (SSNMR) experiments and molecular modeling via electronic structure calculations. These compounds, collectively referred to as ROY because of their red, orange, and yellow colors, share a similar molecular structure with the exception of the dihedral angle between the phenyl and thiophene rings. The ROY materials make it possible to study the influence of nearly a single degree of freedom on the associated NMR spectra. Using the 2D PASS (Antzutkin et al. J. Magn. Reson. A 1995, 115, 7) experiment, spectral editing techniques, and DFT-based calculations of the local fields, an analysis is made of the sensitivity of all carbon and nitrogen sites to changing molecular conformation. Chemical shift and dipolar coupling information obtained from these experiments vary noticeably between forms and are subsequently used to quantitatively determine aspects of molecular structure in these materials, including the coplanar angle between the phenyl and thiophene rings. The influence of motion on the methyl and nitro chemical shifts is also investigated. The accuracy of the information obtained from local field analysis and the model structure calculation demonstrates the capabilities of SSNMR as a quantitative structural method.
Collapse
Affiliation(s)
- Jay R Smith
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
22
|
Smurnyy Y, Opella SJ. Calculating protein structures directly from anisotropic spin interaction constraints. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:283-93. [PMID: 16477675 DOI: 10.1002/mrc.1761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein structure determination by solid-state NMR of aligned samples relies on the fundamental characteristics of the anisotropic nuclear spin interactions present in isotopically labeled proteins. Progress in the implementation of algorithms that calculate protein structures from the orientational constraints in the chemical shift and heteronuclear dipolar coupling interactions is described using both simulated and experimental data.
Collapse
Affiliation(s)
- Yegor Smurnyy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307, USA
| | | |
Collapse
|
23
|
Harris RK, Ghi PY, Hammond RB, Ma CY, Roberts KJ, Yates JR, Pickard CJ. Solid-state NMR and computational studies of 4-methyl-2-nitroacetanilide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:325-33. [PMID: 16477682 DOI: 10.1002/mrc.1779] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies on the solid-state structure of two polymorphs of 4-methyl-2-nitroacetanilide (MNA) were conducted using magic-angle spinning (13)C, (15)N and (1)H NMR spectroscopy, together with first-principles computations of NMR shielding (including use of a program that takes explicit account of the translational symmetry inherent in crystalline structures). The effects on (13)C chemical shifts of side-chain rotations have been explored. Information derived from these studies was then incorporated within a systematic space-search methodology for elucidation of trial crystallographic structures from powder XRD.
Collapse
Affiliation(s)
- Robin K Harris
- Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, UK.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yates JR, Pham TN, Pickard CJ, Mauri F, Amado AM, Gil AM, Brown SP. An Investigation of Weak CH···O Hydrogen Bonds in Maltose Anomers by a Combination of Calculation and Experimental Solid-State NMR Spectroscopy. J Am Chem Soc 2005; 127:10216-20. [PMID: 16028932 DOI: 10.1021/ja051019a] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional (1)H-(13)C MAS-J-HMQC solid-state NMR spectra of the two anomeric forms of maltose at natural abundance are presented. The experimental (1)H chemical shifts of the CH and CH(2) protons are assigned using first-principles chemical shift calculations that employ a plane-wave pseudopotential approach. Further calculations show that the calculated change in the (1)H chemical shift when comparing the full crystal and an isolated molecule is a quantitative measure of intermolecular C-H...O weak hydrogen bonding. Notably, a clear correlation between a large chemical shift change (up to 2 ppm) and both a short H...O distance (<2.7 A) and a CHO bond angle greater than 130 degrees is observed, thus showing that directionality is important in C-H...O hydrogen bonding.
Collapse
Affiliation(s)
- Jonathan R Yates
- TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Waddell KW, Chekmenev EY, Wittebort RJ. Single-Crystal Studies of Peptide Prolyl and Glycyl 15N Shielding Tensors. J Am Chem Soc 2005; 127:9030-5. [PMID: 15969580 DOI: 10.1021/ja044204h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
15N shielding tensors were determined for the central peptide groups in GGV, AGG, and APG by single-crystal NMR. We find that the angle between the downfield component (delta11) and the N-H or the N-C(delta) (pro) bonds is in the range of 20-23 degrees and in accord with previous solid-state NMR measurements. However, AGG, unlike APG or GGV, has a distorted peptide plane, and delta11 lies approximately in the plane of N, C(alpha), and H rather than in the peptide plane defined by heavy atoms. Accurate orientations of delta22 and delta33 were determined, and the usual assumption that delta22 is along the peptide normal was found only in APG which has a highly nonaxial tensor. More generally, delta22 and delta33 are rotated about the delta11 axis (36 degrees in GGV). These results are compared with DFT calculations to gain a structural understanding of the effects of intermolecular interactions on shielding tensor principal components and orientations. Trimeric clusters containing H-bonded neighbors predict the orientations of the principal components within 2-3 degrees, but calculated principal components are less quantitative. Possible reasons for this disagreement are explored.
Collapse
Affiliation(s)
- Kevin W Waddell
- Department of Chemistry, 2320 South Brook Street, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
26
|
Wi S, Sun H, Oldfield E, Hong M. Solid-State NMR and Quantum Chemical Investigations of 13Cα Shielding Tensor Magnitudes and Orientations in Peptides: Determining φ and ψ Torsion Angles. J Am Chem Soc 2005; 127:6451-8. [PMID: 15853353 DOI: 10.1021/ja042935b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.
Collapse
Affiliation(s)
- Sungsool Wi
- Department of Chemistry, Iowa State University, Gilman Hall 0108, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
27
|
Zheng A, Yang M, Yue Y, Ye C, Deng F. 13C NMR shielding tensors of carboxyl carbon in amino acids calculated by ONIOM method. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.09.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Jolibois F, Soubias O, Réat V, Milon A. Understanding Sterol-Membrane Interactions Part I: Hartree-Fock versus DFT Calculations of13C and1H NMR Isotropic Chemical Shifts of Sterols in Solution and Analysis of Hydrogen-Bonding Effects. Chemistry 2004; 10:5996-6004. [PMID: 15497135 DOI: 10.1002/chem.200400245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
1H and 13C NMR chemical shifts are exquisitely sensitive probes of the local environment of the corresponding nuclei. Ultimately, direct determination of the chemical shifts of sterols in their membrane environment has the potential to reveal their molecular interactions and dynamics, in particular concerning the hydrogen-bonding partners of their OH groups. However, this strategy requires an accurate and efficient means to quantify the influence of the various interactions on chemical shielding. Herein the validity of Hartree-Fock and DFT calculations of the 13C and 1H NMR chemical shifts of cholesterol and ergosterol are compared with one another and with experimental chemical shifts measured in solution at 500 MHz. A computational strategy (definition of basis set, simpler molecular models for the sterols themselves and their molecular complexes) is proposed and compared with experimental data in solution. It is shown in particular that the effects of hydrogen bonding with various functional groups (water as a hydrogen-bond donor and acceptor, acetone) on NMR chemical shifts in CDCl3 solution can be accurately reproduced with this computational approach.
Collapse
Affiliation(s)
- Franck Jolibois
- Laboratoire de Physique Quantique, UMR 5626, IRSAMC, University P. Sabatier, 118 rte de Narbonne, Toulouse, France
| | | | | | | |
Collapse
|
29
|
Poon A, Birn J, Ramamoorthy A. How Does an Amide-N Chemical Shift Tensor Vary in Peptides? J Phys Chem B 2004; 108:16577-16585. [PMID: 18449362 PMCID: PMC2361394 DOI: 10.1021/jp0471913] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study addresses a void in the existing literature on the amide-(15)N chemical shift anisotropy (CSA) tensor of peptides: a systematic investigation of how the tensor varies in different peptides. Amide-(15)N CSA tensors for several dipeptides are obtained using quantum chemical calculations, as well as for a series of model Ala-X and X-Ala sequences in both α-helical and β-sheet conformations (where X is one of the naturally occurring amino acids). The calculated values show a significant variation in both isolated and extended peptide structures. Hydrogen bonding at both the carbonyl group and the N-H bond of the peptide plane is shown to affect the principal values of the tensor. Calculations on model peptides indicate that the amide-(15)N CSA tensor is dependent on atoms located within a distance of five bonds. Consequently, the tensor of a given peptide residue is unaffected by residues other than those adjacent to it, which implies that the amide-(15)N CSA tensor should be considered in the context of tripeptide sequences. This further suggests that the amide-(15)N CSA tensor of the second residue of a given tripeptide sequence may be extrapolated to the same sequence in any other polypeptide or protein, given the same backbone conformation and intermolecular environment. These conclusions will facilitate future NMR structural studies of proteins.
Collapse
Affiliation(s)
- Alan Poon
- Biophysics Research Division, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055
| | | | | |
Collapse
|
30
|
Bernard GM, Miskolzie M, Kotovych G, Wasylishen RE. A solid-state NMR investigation of orexin-B. CAN J CHEM 2004. [DOI: 10.1139/v04-131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some key aspects of the secondary structure of solid orexin-B, a 28 amino-acid peptide, have been investigated by solid-state NMR spectroscopy. The 13C15N dipolar coupling between the carbonyl carbon of Leu11 and the nitrogen of Leu15, as determined by rotational echo double resonance (REDOR) experiments, is 35 Hz, indicating that these nuclei are separated by approximately 4.5 Å. This distance is consistent with the α-helical structure determined for this segment of orexin-B by solution NMR measurements. REDOR measurements of the dipolar coupling between the carbonyl carbon of Ala17 and the nitrogen of Ala22 support the contention in an earlier solution NMR study that a bend exists between the two α helices of orexin-B. However, in the solid state the internuclear distance (6.4 Å) is significantly greater than that observed for orexin-B in aqueous solution. In addition to the distance measurements, the principal components of the amide carbonyl carbon chemical shift (CS) tensors for Leu11 and Ala17 and of the amide nitrogen CS tensors for Leu15 and Ala22 are reported. There are only minor differences between the amide carbonyl carbon CS tensors for Leu11 and Ala17 and between the nitrogen CS tensors for Leu15 and Ala22.Key words: orexin-B, solid-state NMR, REDOR, chemical shift tensors.
Collapse
|
31
|
Birn J, Poon A, Mao Y, Ramamoorthy A. Ab initio study of (13)C(alpha) chemical shift anisotropy tensors in peptides. J Am Chem Soc 2004; 126:8529-34. [PMID: 15238010 PMCID: PMC1477785 DOI: 10.1021/ja049879z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports magnitudes and the orientation of the (13)C(alpha) chemical shift anisotropy (CSA) tensors of peptides obtained using quantum chemical calculations. The dependency of the CSA tensor parameters on the energy optimization of hydrogen atom positions and hydrogen bonding effects and the use of zwitterionic peptides in the calculations are examined. Our results indicate that the energy optimization of the hydrogen atom positions in crystal structures is necessary to obtain accurate CSA tensors. The inclusion of intermolecular effects such as hydrogen bonding in the calculations provided better agreement between the calculated and experimental values; however, the use of zwitterionic peptides in calculations, with or without the inclusion of hydrogen bonding, did not improve the results. In addition, our calculated values are in good agreement with tensor values obtained from solid-state NMR experiments on glycine-containing tripeptides. In the case of peptides containing an aromatic residue, calculations on an isolated peptide yielded more accurate isotropic shift values than the calculations on extended structures of the peptide. The calculations also suggested that the presence of an aromatic ring in the extended crystal peptide structure influences the magnitude of the delta(22) which the present level of ab initio calculations are unable to reproduce.
Collapse
Affiliation(s)
- Jeff Birn
- Biophysics Research Division and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|