1
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Wang Z, Zhang H, Zhang P, Di K, Zhao J, Wang B, Qu J, Ye S, Yang D. Stepwise Reduction of Redox Noninnocent Nitrosobenzene to Aniline via a Rare Phenylhydroxylamino Intermediate on a Thiolate-Bridged Dicobalt Scaffold. J Am Chem Soc 2024; 146:19737-19747. [PMID: 39008833 DOI: 10.1021/jacs.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitrosobenzene (PhNO) and phenylhydroxylamine (PhNHOH) are of paramount importance because of their involvement as crucial intermediates in the biological metabolism and catalytic transformation of nitrobenzene (PhNO2) to aniline (PhNH2). However, a complete reductive transformation cycle of PhNO to PhNH2 via the PhNHOH intermediate has not been reported yet. In this context, we design and construct a new thiolate-bridged dicobalt scaffold that can accomplish coordination activation and reductive transformation of PhNO. Notably, an unprecedented reversible ligand-based redox sequence PhNO0 ↔ PhNO•- ↔ PhNO2- can be achieved on this well-defined {CoIII(μ-SPh)2CoIII} functional platform. Further detailed reactivity investigations demonstrate that the PhNO0 and PhNO•- complexes cannot react with the usual hydrogen and hydride donors to afford the corresponding phenylhydroxylamino (PhNHO-) species. However, the double reduced PhNO2- complex can readily undergo N-protonation with an uncommon weak proton donor PhSH to selectively yield a stable dicobalt PhNHO- bridged complex with a high pKa value of 13-16. Cyclic voltammetry shows that there are two successive reduction events at E1/2 = -0.075 V and Ep = -1.08 V for the PhNO0 complex, which allows us to determine both bond dissociation energy (BDEN-H) of 59-63 kcal·mol-1 and thermodynamic hydricity (ΔGH-) of 71-75 kcal·mol-1 of the PhNHO- complex. Both values indicate that the PhNO•- complex is not a potent hydrogen abstractor and the PhNO0 complex is not an efficient hydride acceptor. In the presence of BH3 as a combination of protons and electrons, facile N-O bond cleavage of the coordinated PhNHO- group can be realized to generate PhNH2 and a dicobalt hydroxide-bridged complex. Overall, we present the first stepwise reductive sequence, PhNO0 ↔ PhNO•- ↔ PhNO2- ↔ PhNHO- → PhNH2.
Collapse
Affiliation(s)
- Zhijie Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Haoyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kai Di
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Bioreactor Engineering, Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Wang H, Dekel DR, Abruña HD. Unraveling the Mechanism of Ammonia Electrooxidation by Coupled Differential Electrochemical Mass Spectrometry and Surface-Enhanced Infrared Absorption Spectroscopic Studies. J Am Chem Soc 2024; 146:15926-15940. [PMID: 38820130 DOI: 10.1021/jacs.4c02621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ammonia electrooxidation has received considerable attention in recent times due to its potential application in direct ammonia fuel cells, ammonia sensors, and denitrification of wastewater. In this work, we used differential electrochemical mass spectrometry (DEMS) coupled with attenuated total reflection-surface-enhanced infrared absorption (ATR-SEIRA) spectroscopy to study adsorbed species and solution products during the electrochemical ammonia oxidation reaction (AOR) on Pt in alkaline media, and to correlate the product distribution with the surface ad-species. Hydrazine electrooxidation, hydroxylamine electrooxidation/reduction, and nitrite electroreduction on Pt have also been studied to enhance the understanding of the AOR mechanism. NH3, NH2, NH, NO, and NO2 ad-species were identified on the Pt surface with ATR-SEIRA spectroscopy, while N2, N2O, and NO were detected with DEMS as products of the AOR. N2 is formed through the coupling of two NH ad-species and then subsequent further dehydrogenation, while the dimerization of HNOad leads to the formation of N2O. The NH-NH coupling is the rate-determining step (rds) at high potentials, while the first dehydrogenation step is the rds at low potentials. These new spectroscopic results about the AOR and insights could advance the search and design of more effective AOR catalysts.
Collapse
Affiliation(s)
- Hongsen Wang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Dario R Dekel
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
- The Wolfson Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Bollmeyer MM, Majer SH, Coleman RE, Lancaster KM. Outer coordination sphere influences on cofactor maturation and substrate oxidation by cytochrome P460. Chem Sci 2023; 14:8295-8304. [PMID: 37564409 PMCID: PMC10411619 DOI: 10.1039/d3sc02288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/12/2023] Open
Abstract
Product selectivity of ammonia oxidation by ammonia-oxidizing bacteria (AOB) is tightly controlled by metalloenzymes. Hydroxylamine oxidoreductase (HAO) is responsible for the oxidation of hydroxylamine (NH2OH) to nitric oxide (NO). The non-metabolic enzyme cytochrome (cyt) P460 also oxidizes NH2OH, but instead produces nitrous oxide (N2O). While both enzymes use a heme P460 cofactor, they selectively oxidize NH2OH to different products. Previously reported structures of Nitrosomonas sp. AL212 cyt P460 show that a capping phenylalanine residue rotates upon ligand binding, suggesting that this Phe may influence substrate and/or product binding. Here, we show via substitutions of the capping Phe in Nitrosomonas europaea cyt P460 that the bulky phenyl side-chain promotes the heme-lysine cross-link forming reaction operative in maturing the cofactor. Additionally, the Phe side-chain plays an important role in modulating product selectivity between N2O and NO during NH2OH oxidation under aerobic conditions. A picture emerges where the sterics and electrostatics of the side-chain in this capping position control the kinetics of N2O formation and NO binding affinity. This demonstrates how the outer coordination sphere of cyt P460 is tuned not only for selective NH2OH oxidation, but also for the autocatalytic cross-link forming reaction that imbues activity to an otherwise inactive protein.
Collapse
Affiliation(s)
- Melissa M Bollmeyer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Sean H Majer
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Rachael E Coleman
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| | - Kyle M Lancaster
- Baker Laboratory Department of Chemistry and Chemical Biology Cornell University 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
5
|
Su Q, Huang S, Zhang H, Wei Z, Ng HY. Abiotic transformations of sulfamethoxazole by hydroxylamine, nitrite and nitric oxide during wastewater treatment: Kinetics, mechanisms and pH effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130328. [PMID: 36402107 DOI: 10.1016/j.jhazmat.2022.130328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylamine (NH2OH), nitrite (NO2-) and nitric oxide (NO), intermediates enzymatically formed during biological nitrogen removal processes, can engage in chemical (abiotic) transformations of antibiotics. This study determined the kinetics, mechanisms and pathways of abiotic transformations of the antibiotic sulfamethoxazole (SMX) by NH2OH, NO2- and NO in a series of batch tests under different pH and oxygen conditions. While NH2OH was not able to directly transform SMX, NO2- (with HNO2 as the actual reactant) and NO can chemically transform SMX primarily through hydroxylation, nitration, deamination, nitrosation, cleavage of S-N, N-C and C-S bonds, and coupling reactions. There were substantial overlaps in transformation product formations during abiotic transformations by HNO2- and NO. The second order rate constants of SMX with NO2- and NO were determined in the range of 1.5 × 10-1 - 4.8 × 103 M-1 s-1 and 1.0 × 102 - 3.1 × 104 M-1 s-1, respectively, under varying pH (4 - 9) and anoxic or oxic conditions. Acidic pH significantly enhanced abiotic transformation kinetics, and facilitated nitration, nitrosation, and cleavage of S-N and N-C bonds. The findings advance our understanding of the fate of antibiotics during biological nitrogen removal, and highlight the role of enzymatically formed reactive nitrogen species in the antibiotic degradation.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
6
|
Abstract
Ammonia-oxidizing bacteria (AOB) convert ammonia (NH3) to nitrite (NO2-) as their primary metabolism and thus provide a blueprint for the use of NH3 as a chemical fuel. The first energy-producing step involves the homotrimeric enzyme hydroxylamine oxidoreductase (HAO), which was originally reported to oxidize hydroxylamine (NH2OH) to NO2-. HAO uses the heme P460 cofactor as the site of catalysis. This heme is supported by seven other c hemes in each monomer that mediate electron transfer. Heme P460 cofactors are c-heme-based cofactors that have atypical protein cross-links between the peptide backbone and the porphyrin macrocycle. This cofactor has been observed in both the HAO and cytochrome (cyt) P460 protein families. However, there are differences; specifically, HAO uses a single tyrosine residue to form two covalent attachments to the macrocycle whereas cyt P460 uses a lysine residue to form one. In Nitrosomonas europaea, which expresses both HAO and cyt P460, these enzymes achieve the oxidation of NH2OH and were both originally reported to produce NO2-. Each can inspire means to effect controlled release of chemical energy.Spectroscopically studying the P460 cofactors of HAO is complicated by the 21 non-P460 heme cofactors, which obscure the active site. However, monoheme cyt P460 is more approachable biochemically and spectroscopically. Thus, we have used cyt P460 to study biological NH2OH oxidation. Under aerobic conditions substoichiometric production of NO2- was observed along with production of nitrous oxide (N2O). Under anaerobic conditions, however, N2O was the exclusive product of NH2OH oxidation. We have advanced our understanding of the mechanism of this enzyme and have showed that a key intermediate is a ferric nitrosyl that can dissociate the bound nitric oxide (NO) molecule and react with O2, thus producing NO2- abiotically. Because N2O was the true product of one P460 cofactor-containing enzyme, this prompted us to reinvestigate whether NO2- is enzymatically generated from HAO catalysis. Like cyt P460, we showed that HAO does not produce NO2- enzymatically, but unlike cyt P460, its final product is NO, establishing it as an intermediate of nitrification. More broadly, NO can be recognized as a molecule common to the primary metabolisms of all organisms involved in nitrogen "defixation".Delving deeper into cyt P460 yielded insights broadly applicable to controlled biochemical redox processes. Studies of an inactive cyt P460 from Nitrosomonas sp. AL212 showed that this enzyme was unable to oxidize NH2OH because it lacked a glutamate residue in its secondary coordination sphere that was present in the active N. europaea cyt P460 variant. Restoring the Glu residue imbued activity, revealing that a second-sphere base is Nature's key to controlled oxidation of NH2OH. A key lesson of bioinorganic chemistry is reinforced: the polypeptide matrix is an essential part of dictating function. Our work also exposed some key functional contributions of noncanonical heme-protein cross-links. The heme-Lys cross-link of cyt P460 enforces the relative position of the cofactor and second-sphere residues. Moreover, the cross-link prevents the dissociation of the axial histidine residue, which stops catalysis, emphasizing the importance of this unique post-translational modification.
Collapse
Affiliation(s)
- Rachael E. Coleman
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M. Lancaster
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
7
|
Stroka JR, Kandemir B, Matson EM, Bren KL. Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jesse R. Stroka
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Banu Kandemir
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
8
|
Zsombor-Pindera J, Effaty F, Escomel L, Patrick B, Kennepohl P, Ottenwaelder X. Five Nitrogen Oxidation States from Nitro to Amine: Stabilization and Reactivity of a Metastable Arylhydroxylamine Complex. J Am Chem Soc 2020; 142:19023-19028. [PMID: 33124796 DOI: 10.1021/jacs.0c09300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex. While hydroxylamines typically disproportionate or decompose in the presence of transition metal ions, the reactivity of this metastable species is arrested by the presence of an intramolecular hydrogen bond. Two-electron oxidation yields a copper(II)-(arylnitrosyl radical) complex that can dissociate to a copper(I) species with uncoordinated arylnitroso. This combination of ligand redox noninnocence and hemilability provides opportunities in catalysis for two-electron chemistry via a one-electron copper(I/II) shuttle, as exemplified with an aerobic alcohol oxidation.
Collapse
Affiliation(s)
- Joseph Zsombor-Pindera
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Léon Escomel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Brian Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
Ashoka A, Ali F, Tiwari R, Kumari R, Pramanik SK, Das A. Recent Advances in Fluorescent Probes for Detection of HOCl and HNO. ACS OMEGA 2020; 5:1730-1742. [PMID: 32039308 PMCID: PMC7003195 DOI: 10.1021/acsomega.9b03420] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/24/2019] [Indexed: 05/04/2023]
Abstract
It is known that reactive oxygen (ROS) and nitrogen (RNS) species play a diverse role in various biological processes, such as inflammation, signal transduction, and neurodegenerative injury, apart from causing various diseases caused by oxidative and nitrosative stresses, respectively, by ROS and RNS. Thus, it is very important to quantify the concentration level of ROS and RNS in live cells, tissues, and organisms. Various small-molecule-based fluorescent/chemodosimetric probes are reported to quantify and map the effective distribution of ROS/RNS under in vitro/in vivo conditions with a great spatial and temporal resolution. Such reagents are now appreciated as an excellent tool for aiding breakthroughs in modern redox biology. This mini-review is a brief, but all-inclusive, account of such molecular probes that have been developed recently.
Collapse
Affiliation(s)
- Anila
Hoskere Ashoka
- Laboratoire
de Bioimagerie et Pathologies, UMR 7021 CNRS, Facultéde Pharmacie, Universitéde Strasbourg, Strasbourg, CS 60024, France
| | - Firoj Ali
- CSIR
- Central Institute of Mining and Fuel Research, Barwa Road, CIMFR Colony, Dhanbad, Jharkhand 826015, India
| | - Rajeshwari Tiwari
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Rina Kumari
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Amitava Das
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
10
|
Kiernicki JJ, Norwine EE, Zeller M, Szymczak NK. Tetrahedral iron featuring an appended Lewis acid: distinct pathways for the reduction of hydroxylamine and hydrazine. Chem Commun (Camb) 2019; 55:11896-11899. [PMID: 31528878 PMCID: PMC6776999 DOI: 10.1039/c9cc05720j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present the preparation of a nitrogen-based bidentate ligand featuring an appended boron Lewis acid as well as its tetrahedral Fe2+ and Zn2+ complexes. These complexes act as platforms for hydrazine and hydroxylamine capture and reduction chemistry.
Collapse
Affiliation(s)
- John J Kiernicki
- University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA.
| | - Emily E Norwine
- University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA.
| | - Matthias Zeller
- H. C. Brown Laboratory, Purdue University, 560 Oval Dr, West Lafayette, IN 47907, USA
| | | |
Collapse
|
11
|
Labrum NS, Caulton KG. [Cr(pincer 2-)] 2 as an electron shuttle for reductively promoted hydrazine disproportionation. Dalton Trans 2019; 48:11642-11646. [PMID: 31310268 DOI: 10.1039/c9dt02300c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We describe here delivery of hydrazine to a reducing, low oxidation state chromium bound to a proton responsive ligand which has already been deprotonated. Reaction of PhHNNH2 at a 4 : 1 mole ratio with the bis-(pyrazolate)pyridyl pincer ligated reducing agent [CrIIL]2 gives prompt conversion to [CrL2(PhNH2)2(μ-PhHNN)], with release of NH3 and C6H6, a new disproportionation of the hydrazine, with trapping of PhHNN as its dianion, bridging the two chromium centers. The redox balance of the reaction is discussed, and participation by Brønsted basic sites on the bis-(pyrazolate)pyridyl pincer ligand L2- is suggested, but no hydrazine protons remain on the pincer in the product.
Collapse
|
12
|
Su Q, Domingo-Félez C, Jensen MM, Smets BF. Abiotic Nitrous Oxide (N 2O) Production Is Strongly pH Dependent, but Contributes Little to Overall N 2O Emissions in Biological Nitrogen Removal Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3508-3516. [PMID: 30816038 DOI: 10.1021/acs.est.8b06193] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hydroxylamine (NH2OH) and nitrite (NO2-), intermediates during the nitritation process, can engage in chemical (abiotic) reactions that lead to nitrous oxide (N2O) generation. Here, we quantify the kinetics and stoichiometry of the relevant abiotic reactions in a series of batch tests under different and relevant conditions, including pH, absence/presence of oxygen, and reactant concentrations. The highest N2O production rates were measured from NH2OH reaction with HNO2, followed by HNO2 reduction by Fe2+, NH2OH oxidation by Fe3+, and finally NH2OH disproportionation plus oxidation by O2. Compared to other examined factors, pH had the strongest effect on N2O formation rates. Acidic pH enhanced N2O production from the reaction of NH2OH with HNO2 indicating that HNO2 instead of NO2- was the reactant. In departure from previous studies, we estimate that abiotic N2O production contributes little (< 3% of total N2O production) to total N2O emissions in typical nitritation reactor systems between pH 6.5 and 8. Abiotic contributions would only become important at acidic pH (≤ 5). In consideration of pH effects on both abiotic and biotic N2O production pathways, circumneutral pH set-points are suggested to minimize overall N2O emissions from nitritation systems.
Collapse
Affiliation(s)
- Qingxian Su
- Department of Environmental Engineering , Technical University of Denmark , 2800 Lyngby , Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering , Technical University of Denmark , 2800 Lyngby , Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering , Technical University of Denmark , 2800 Lyngby , Denmark
| | - Barth F Smets
- Department of Environmental Engineering , Technical University of Denmark , 2800 Lyngby , Denmark
| |
Collapse
|
13
|
Izato YI, Koshi M, Miyake A. Initial Decomposition Pathways of Aqueous Hydroxylamine Solutions. J Phys Chem B 2017; 121:4502-4511. [DOI: 10.1021/acs.jpcb.6b10546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-ichiro Izato
- Institute of Advanced
Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku,
Yokohama 240-8501, Japan
| | - Mitsuo Koshi
- Institute of Advanced
Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku,
Yokohama 240-8501, Japan
| | - Atsumi Miyake
- Institute of Advanced
Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku,
Yokohama 240-8501, Japan
| |
Collapse
|
14
|
Frame CH, Lau E, Nolan EJ, Goepfert TJ, Lehmann MF. Acidification Enhances Hybrid N 2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms. Front Microbiol 2017; 7:2104. [PMID: 28119667 PMCID: PMC5220105 DOI: 10.3389/fmicb.2016.02104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 02/01/2023] Open
Abstract
Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2−), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2− produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2− was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2− each contributed N equally to N2O by a “hybrid-N2O” mechanism consistent with a reaction between NH2OH and NO2−, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0–34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15NH4+ and NO2−. However, the site preference of dissolved N2O here was low (4.9‰), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.
Collapse
Affiliation(s)
- Caitlin H Frame
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Evan Lau
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - E Joseph Nolan
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | | | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| |
Collapse
|
15
|
Subedi H, Brasch NE. Mechanistic studies of the reactions of the reduced vitamin B12 derivatives with the HNO donor Piloty's acid: further evidence for oxidation of cob(I)alamin by (H)NO. Dalton Trans 2016; 45:352-60. [PMID: 26618754 DOI: 10.1039/c5dt03459k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is accumulating evidence for the existence of HNO in biological systems. Compared with NO (˙NO), much less is known about the chemical and biochemical reactivity of HNO. Kinetic and mechanistic studies have been carried out on the reaction between the vitamin B12-derived radical complex cob(II)alamin (Cbl(II)˙, Cbl(II)) with the widely used HNO donor Piloty's acid (PA). A stoichiometry of 1 : 2 Cbl(II) : PA was obtained and PA decomposition to HNO and benzenesulfinate (C6H5SO2(-)) is the rate-determining step. No evidence was found for nitrite (Griess assay), ammonia (Nessler's test) or NH2OH (indooxine test) in the product solution, and it is likely that HNO is instead reduced to N2. A mechanism is proposed in which reduction of Cbl(II) by (H)NO results in formation of cob(I)alamin (Cbl(I)(-)) and ˙NO. The Cbl(I)(-) intermediate is subsequently oxidized back to Cbl(II) by a second (H)NO molecule, and Cbl(II) reacts rapidly with ˙NO to form nitroxylcobalamin (NOCbl). Separate studies on the reaction between Cbl(I)(-) and PA shows that this system involves an additional step in which Cbl(I)(-) is first oxidized by (H)NO to Cbl(II), which reacts further with (H)NO to form NOCbl, with an overall stoichiometry of 1 : 3 Cbl(I)(-) : PA. Experiments in the presence of nitrite for both systems support the involvement of a Cbl(I)(-) intermediate in the Cbl(II)/PA reaction. These systems provide the second example of oxidation of cob(I)alamin by (H)NO.
Collapse
Affiliation(s)
- Harishchandra Subedi
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA and Division of Science, Mathematics, and Physical Education, Western Nebraska Community College, Scottsbluff, Nebraska 69361, USA
| | - Nicola E Brasch
- School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
|
17
|
Subedi H, Brasch NE. Studies on the Reaction of Reduced Vitamin B12Derivatives with the Nitrosyl Hydride (HNO) Donor Angeli's Salt: HNO Oxidizes the Transition-Metal Center of Cob(I)alamin. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Youngblut M, Pauly DJ, Stein N, Walters D, Conrad JA, Moran GR, Bennett B, Pacheco AA. Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force. Biochemistry 2014; 53:2136-44. [PMID: 24645742 DOI: 10.1021/bi401705d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.
Collapse
Affiliation(s)
- Matthew Youngblut
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53211, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Porter TR, Mayer JM. Radical Reactivity of the Fe(III)/(II) Tetramesitylporphyrin Couple: Hydrogen Atom Transfer, Oxyl Radical Dissociation, and Catalytic Disproportionation of a Hydroxylamine. Chem Sci 2014; 5:372-380. [PMID: 24729854 PMCID: PMC3981745 DOI: 10.1039/c3sc52055b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemistry of low-valent iron porphyrin complexes with oxyl radical reagents has been explored. (Meso-tetramesityl porphyrinato) iron(III) hydroxide, (TMP)FeIII(OH) reacts with the hydroxylamine TEMPO-H (1-hydroxy-2,2,6,6-tetramethylpiperdine) to yield the ferrous porphyrin, (TMP)FeII, together with H2O and TEMPO. This reaction has a second order rate constant k1 = 76 ± 5 M-1 1 s-1 and likely occurs by concerted e-/H+ transfer. Hydrazines PhNHNHPh and PhNHNH2 similarly yield (TMP)FeII. A subsequent reaction between TEMPO (2,2,6,6-tetramethylpiperdinyl radical) and (TMP)FeII is observed to reversibly form the TEMPO-ligated ferric porphyrin, (TMP)FeIII(TEMPO). A combination of 1H NMR and optical spectroscopies were used to determine the thermodynamic parameters for TEMPO binding: K4 (25°C) = 535 ± 20 M-1, ΔH°4 = -7.0 ± 1.5 kcal mol-1, ΔS°4= -11 ± 5 cal mol-1 K-1, ΔG‡4(235K) = 21.3 ± 0.5 kcal mol-1, ΔG‡-4(235K) = 16.9 ± 0.5 kcal mol-1. The Fe-O bond is remarkably weak. The stable phenoxyl radical 2,4,6- t Bu3C6H2O• (ArO•) forms a stronger bond to (TMP)FeII to irreversibly make a similar FeIII(OR) complex. Both (TMP)FeII and (TMP)FeIII(OH) are catalysts for the disproportionation of excess TEMPO-H to TEMPO and TEMP-H (2,2,6,6-tetramethylpiperdine). The lack of reactivity between (TMP)FeII and the alkylated TEMPO-H analogue, TEMPO-CH3, suggests that the disproportionation involves a hydrogen atom transfer step. These results highlight the importance and versatility of the heme FeIII/II couple that is often overshadowed by its higher-valent counterparts.
Collapse
Affiliation(s)
| | - James M. Mayer
- Department of Chemistry, University of Washington, Seattle, WA
98195-1700
| |
Collapse
|
20
|
McQuarters AB, Goodrich LE, Goodrich CM, Lehnert N. Disproportionation of O-Benzylhydroxylamine Catalyzed by a Ferric Bis-Picket Fence Porphyrin Complex. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Schreiber F, Wunderlin P, Udert KM, Wells GF. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 2012; 3:372. [PMID: 23109930 PMCID: PMC3478589 DOI: 10.3389/fmicb.2012.00372] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022] Open
Abstract
Nitrous oxide (N(2)O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N(2)O is formed biologically from the oxidation of hydroxylamine (NH(2)OH) or the reduction of nitrite (NO(-) (2)) to NO and further to N(2)O. Our review of the biological pathways for N(2)O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO(-) (2) to NO and the further reduction of NO to N(2)O, while N(2)O formation from NH(2)OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N(2)O formation due to the reactivity of NO(-) (2), NH(2)OH, and nitroxyl (HNO). Moreover, biological N(2)O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N(2)O build-up are key to understand mechanisms of N(2)O release. Here, we discuss novel technologies that allow experiments on NO and N(2)O formation at high temporal resolution, namely NO and N(2)O microelectrodes and the dynamic analysis of the isotopic signature of N(2)O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N(2)O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N(2)O build-up.
Collapse
Affiliation(s)
- Frank Schreiber
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Dübendorf, Switzerland ; Department of Environmental Systems Sciences, Eidgenössische Technische Hochschule Zurich, Switzerland
| | | | | | | |
Collapse
|
22
|
Montenegro AC, Bari SE, Olabe JA. Reactivity of iron(II)-bound nitrosyl hydride (HNO, nitroxyl) in aqueous solution. J Inorg Biochem 2012; 118:108-14. [PMID: 23153690 DOI: 10.1016/j.jinorgbio.2012.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
The reactivity of coordinated nitroxyl (HNO) has been explored with the [Fe(II)(CN)(5)HNO](3-) complex in aqueous medium, pH 6. We discuss essential biorelevant issues as the thermal and photochemical decompositions, the reactivity toward HNO dissociation, the electrochemical behavior, and the reactions with oxidizing and reducing agents. The spontaneous decomposition in the absence of light yielded a two-electron oxidized species, the nitroprusside anion, [Fe(II)(CN)(5)NO](2-), and a negligible quantity of N(2)O, with k(obs)≈5×10(-7)s(-1), at 25.0°C. The value of k(obs) represents an upper limit for HNO release, comparable to values reported for other structurally related L ligands in the [Fe(II)(CN)(5)L](n-) series. These results reveal that the FeN bond is strong, suggesting a significant σ-π interaction, as already postulated for other HNO-complexes. The [Fe(II)(CN)(5)HNO](3-) ion showed a quasi-reversible oxidation wave at 0.32 V (vs normal hydrogen electrode), corresponding to the [Fe(II)(CN)(5)HNO](3-)/[Fe(II)(CN)(5)NO](3-),H(+) redox couple. Hexacyanoferrate(III), methylviologen and the nitroprusside ion have been selected as potential oxidants. Only the first reactant achieved a complete oxidation process, initiated by a proton-coupled electron transfer reaction at the HNO ligand, with nitroprusside as a final oxidation product. Dithionite acted as a reductant of [Fe(II)(CN)(5)HNO](3-), in a 4-electron process, giving NH(3). The high stability of bound HNO may resemble the properties in related Fe(II) centers of redox active enzymes. The very minor release of N(2)O shows that the redox conversions may evolve without disruption of the FeN bonds, under competitive conditions with the dissociation of HNO.
Collapse
Affiliation(s)
- Andrea C Montenegro
- Departamento de Química Inorgánica, Analítica y Química Física, and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | | | | |
Collapse
|
23
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Nucleophilic Addition Reactions of the Nitroprusside Ion – The Case of
O
‐Methylhydroxylamine. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María M. Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| | - José A. Olabe
- Department of Inorganic, Analytical and Physical Chemistry and INQUIMAE/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Valentín T. Amorebieta
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina, http://www.mdp.edu.ar
| |
Collapse
|
24
|
Plymale NT, Dassanayake RS, Hassanin HA, Brasch NE. Kinetic and Mechanistic Studies on the Reactions of the Reduced Vitamin B12 Complex Cob(I)alamin with Nitrite and Nitrate. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Gutiérrez MM, Olabe JA, Amorebieta VT. Disproportionation of O-methylhydroxylamine catalyzed by aquapentacyanoferrate(II). Inorg Chem 2011; 50:8817-25. [PMID: 21859073 DOI: 10.1021/ic2007155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(•)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(•), thus establishing a radical path leading to N-methoxyamino ((•)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(•), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.
Collapse
Affiliation(s)
- María M Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata B7602AYL, Argentina
| | | | | |
Collapse
|
26
|
Montenegro AC, Dabrowski SG, Gutiérrez MM, Amorebieta VT, Bari SE, Olabe JA. Catalytic oxidation of hydroxyurea to bound NO+/ NO2- mediated by pentacyano(L)ferrates. Characterization of the nitroxide radical, bound C-nitrosoformamide and NO as reaction intermediates. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Quiroga SL, Almaraz AE, Amorebieta VT, Perissinotti LL, Olabe JA. Addition and Redox Reactivity of Hydrogen Sulfides (H2S/HS−) with Nitroprusside: New Chemistry of Nitrososulfide Ligands. Chemistry 2011; 17:4145-56. [DOI: 10.1002/chem.201002322] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/16/2010] [Indexed: 12/25/2022]
|
28
|
Wang Q, Wei C, Pérez LM, Rogers WJ, Hall MB, Mannan MS. Thermal Decomposition Pathways of Hydroxylamine: Theoretical Investigation on the Initial Steps. J Phys Chem A 2010; 114:9262-9. [DOI: 10.1021/jp104144x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingsheng Wang
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| | - Chunyang Wei
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| | - Lisa M. Pérez
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| | - William J. Rogers
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| | - Michael B. Hall
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| | - M. Sam Mannan
- Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, and Laboratory for Molecular Simulation, Texas A&M University, College Station, Texas 77842-3012
| |
Collapse
|
29
|
Montenegro A, Amorebieta V, Slep L, Martín D, Roncaroli F, Murgida D, Bari S, Olabe J. Three Redox States of Nitrosyl: NO+, NO., and NO−/HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform. Angew Chem Int Ed Engl 2009; 48:4213-6. [DOI: 10.1002/anie.200806229] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Montenegro A, Amorebieta V, Slep L, Martín D, Roncaroli F, Murgida D, Bari S, Olabe J. Three Redox States of Nitrosyl: NO+, NO., and NO−/HNO Interconvert Reversibly on the Same Pentacyanoferrate(II) Platform. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Gutiérrez MM, Alluisetti GB, Gaviglio C, Doctorovich F, Olabe JA, Amorebieta VT. Catalytic disproportionation of N-alkylhydroxylamines bound to pentacyanoferrates. Dalton Trans 2009:1187-94. [PMID: 19322490 DOI: 10.1039/b812173g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substituted hydroxylamines, CH(3)N(H)OH (N-methylhydroxylamine) and (CH(3))(2)NOH (N,N-dimethylhydroxylamine), disproportionate catalytically to the corresponding alkylamines and oxidation products, only in the presence of [Fe(CN)(5)H(2)O](3-). Substitution kinetic measurements suggest an initial coordination step to Fe(ii). Two parallel N- and O-coordination modes are considered with the subsequent formation of Fe(iii), free aminyl (RNCH(3)) and nitroxide (RN(CH(3))O) radicals (R = H, CH(3)). With CH(3)N(H)OH, bound nitrosomethane, CH(3)NO, has been characterized by UV-visible and IR spectroscopies. The mechanism is discussed on the basis of common and differential features with respect to the disproportionation of hydroxylamine catalyzed by the same Fe-fragment.
Collapse
Affiliation(s)
- María M Gutiérrez
- Department of Chemistry, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes y Roca, Mar del Plata, B7602AYL, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Gaviglio C, Doctorovich F. Hydrogen-Free Homogeneous Catalytic Reduction of Olefins in Aqueous Solutions. J Org Chem 2008; 73:5379-84. [DOI: 10.1021/jo800302v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carina Gaviglio
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 3, (C1428EHA) Buenos Aires, Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Piso 3, (C1428EHA) Buenos Aires, Argentina
| |
Collapse
|
33
|
Kostera J, Youngblut MD, Slosarczyk JM, Pacheco AA. Kinetic and product distribution analysis of NO* reductase activity in Nitrosomonas europaea hydroxylamine oxidoreductase. J Biol Inorg Chem 2008; 13:1073-83. [PMID: 18553112 DOI: 10.1007/s00775-008-0393-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/25/2008] [Indexed: 10/22/2022]
Abstract
Hydroxylamine oxidoreductase (HAO) from the ammonia-oxidizing bacterium Nitrosomonas europaea normally catalyzes the four-electron oxidation of hydroxylamine to nitrite, which is the second step in ammonia-dependent respiration. Here we show that, in the presence of methyl viologen monocation radical (MV(red)), HAO can catalyze the reduction of nitric oxide to ammonia. The process is analogous to that catalyzed by cytochrome c nitrite reductase, an enzyme found in some bacteria that use nitrite as a terminal electron acceptor during anaerobic respiration. The availability of a reduction pathway to ammonia is an important factor to consider when designing in vitro studies of HAO, and may also have some physiological relevance. The reduction of nitric oxide to ammonia proceeds in two kinetically distinct steps: nitric oxide is first reduced to hydroxylamine, and then hydroxylamine is reduced to ammonia at a tenfold slower rate. The second step was investigated independently in solutions initially containing hydroxylamine, MV(red), and HAO. Both steps show first-order dependence on nitric oxide and HAO concentrations, and zero-order dependence on MV(red) concentration. The rate constants governing each reduction step were found to have values of (4.7 +/- 0.3) x 10(5) and (2.06 +/- 0.04) x 10(4) M(-1) s(-1), respectively. A second reduction pathway, with second-order dependence on nitric oxide, may become available as the concentration of nitric oxide is increased. Such a pathway might lead to production of nitrous oxide. We estimate a maximum value of (1.5 +/- 0.05) x 10(10) M(-2) s(-1) for the rate constant of the alternative pathway, which is small and suggests that the pathway is not physiologically important.
Collapse
Affiliation(s)
- Joshua Kostera
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | |
Collapse
|
34
|
Fernández ML, Estrin DA, Bari SE. Theoretical insight into the hydroxylamine oxidoreductase mechanism. J Inorg Biochem 2008; 102:1523-30. [PMID: 18336913 DOI: 10.1016/j.jinorgbio.2008.01.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
The multiheme enzyme hydroxylamine oxidoreductase from the autotrophic bacteria Nitrosomonas europaea catalyzes the conversion of hydroxylamine to nitrite, with a complicate arrangement of heme groups in three subunits. As a distinctive feature, the protein has a covalent linkage between a tyrosyl residue of one subunit and a meso carbon atom of the heme active site of another. We studied the influence of this bond in the catalysis from a theoretical perspective through electronic structure calculations at the density functional theory level, starting from the crystal structure of the protein. Geometry optimizations of proposed reaction intermediates were used to calculate the dissociation energy of different nitrogen containing ligands, considering the presence and absence of the meso tyrosyl residue. The results indicate that the tyrosine residue enhances the binding of hydroxylamine, and increases the stability of a Fe(III)NO intermediate, while behaving indifferently in the Fe(II)NO form. The calculations performed on model systems including neighboring aminoacids revealed the probable formation of a bidentate hydrogen bond between the Fe(III)H(2)O complex and Asp 257, in a high-spin aquo complex as the resting state. Characterization of non-planar heme distortions showed that the meso-substituent induces significant ruffling in the evaluated intermediates.
Collapse
Affiliation(s)
- M Laura Fernández
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
| | | | | |
Collapse
|
35
|
Olabe JA. The coordination chemistry of nitrosyl in cyanoferrates. An exhibit of bioinorganic relevant reactions. Dalton Trans 2008:3633-48. [DOI: 10.1039/b803153c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Gutiérrez MM, Alluisetti GB, Olabe JA, Amorebieta VT. Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study. Dalton Trans 2008:5025-30. [DOI: 10.1039/b805329d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Roncaroli F, Videla M, Slep LD, Olabe JA. New features in the redox coordination chemistry of metal nitrosyls {M–NO+; M–NO; M–NO−(HNO)}. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2007.04.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Makarycheva-Mikhailova AV, Stanbury DM, McKee ML. Kinetic Isotope Effect and Extended pH-Dependent Studies of the Oxidation of Hydroxylamine by Hexachloroiridate(IV): ET and PCET. J Phys Chem B 2007; 111:6942-8. [PMID: 17388557 DOI: 10.1021/jp068990j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The oxidation of hydroxylamine by [IrCl6]2- has been studied spectrophotometrically in deoxygenated aqueous solutions in the range of pH 4-9 at 25 degrees C. The reaction is catalyzed by Cu2+, Fe2+, and impurities of aquochloroiridium complexes. Oxalate is a very effective inhibitor of catalysis by copper and iron ions. With excess hydroxylamine, the reaction follows pseudo-first-order kinetics, and the stoichiometric ratio (DeltanIr(IV)/Deltanhydroxylamine) is 1.05 at pH 5.9. Over the pH range 4.2-8.8, the empirical rate law is -d[IrCl(6)2-]/dt=k[IrCl6(2-)][NH2OH]tot, with k=k1Ka1/([H+]+Ka1)+k'Ka1/([H+]([H+]+Ka1)), where Ka1 is the dissociation constant of NH3OH+. Least-squares fitting yields k1=(17.05+/-0.47) M-1 s(-1) and k'=(2.59+/-0.09)x10(-6) s(-1) at ionic strength of 0.1 M (adjusted by NaClO4) and 25 degrees C. The kinetic isotope effects (KIE) (kH/kD) for k1 and k' are 4.4 and 9.8, correspondingly. A mechanism is inferred in which k1 corresponds to concerted proton-coupled electron transfer (PCET) and k' corresponds to electron transfer from NH2O-. In this mechanism, the large KIE for k' is due almost entirely to the equilibrium isotope effect for the pKa of NH2OH.
Collapse
|
39
|
Tang D, Zhu L, Qin S, Su Z, Hu C. A theoretical study on the mechanism of the oxidation of hydroxylamine by. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.theochem.2006.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Luzyanin KV, Kukushkin VY, Kuznetsov ML, Ryabov AD, Galanski MS, Haukka M, Tretyakov EV, Ovcharenko VI, Kopylovich MN, Pombeiro AJL. Kinetic and Thermodynamic Aspects of the Regioselective Addition of Bifunctional Hydroxylaminooxime-type HO-Nucleophiles to Pt-Complexed Nitriles. Inorg Chem 2006; 45:2296-306. [PMID: 16499396 DOI: 10.1021/ic051909r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coupling between coordinated propiononitriles in trans-[PtCln(EtCN)2] (n = 2, 4) and the 1,2-hydroxylaminooximes HON(H)CMe2C(R)=NOH (R = Ph 1, Me 2) proceeds smoothly in CHCl(3) at ca. 40-45 degrees C and gives trans-[PtCln{NH=C(Et)ON(H)CMe2C(R)=NOH}2] (n = 2, R = Ph 5, Me 6; n = 4, R = Ph 7, Me 8) in 80-85% isolated yields. The reaction is highly regioselective, and both spectroscopic (IR; FAB+-MS; 1D 1H, 13C{1H}, and 195Pt NMR; and 2D 1H,13C HMQC, 1H,13C HMBC, and 1H,15N HMQC NMR) and X-ray data for 6-8 suggest that the addition proceeds exclusively via the hydroxylamine moiety of the 1,2-hydroxylaminooxime species; the existence of an oxime group remote from the nucleophile was also confirmed. Heating of 6 in air leads to its conversion to the unusual nitrosoalkane complex [PtCl2{HON=C(Me)C(Me)2N=O}] (9), whereas in the case of 5, only the metal-free salt [H3NC(Me)2C(Ph)=NOH]2(NO3)Cl.H2O (10) was isolated. To compare the kinetic aspects and trends in the addition of both types of nucleophiles (oximes and hydroxylamines; for the latter, see our recent work: Inorg. Chem. 2005, 44, 2944) to coordinated nitriles, a kinetic study of the addition of HON=C(CH2Ph)2 to [Ph3PCH2Ph][PtCl5(EtCN)] (11) to give [Ph(3)PCH(2)Ph][PtCl(5){NH=C(Et)ON=C(CH2Ph)2}] (12) was performed. The calculated rate constant k2 of 3.9 x 10(-6) M(-1) s(-1) at -20 degrees C for the addition of the oxime indicates that the hydroxylamine is, by a factor 1.7 x 10(4), more reactive toward the addition to nitriles than the oxime. Results of the synthetic, kinetic, and theoretical (at the B3LYP level of theory) studies have demonstrated that the high regioselectivity of the reactions of the 1,2-hydroxylaminooximes with ligated nitriles is both kinetically and thermodynamically controlled.
Collapse
Affiliation(s)
- Konstantin V Luzyanin
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The product of one-electron oxidation of (or H-atom abstraction from) hydroxylamine is the H2NO* radical. H2NO* is a weak acid and deprotonates to form HNO-*; the pKa(H2NO*) value is 12.6+/-0.3. Irrespective of the protonation state, the second-order recombination of the aminoxyl radical yields N2 as the sole nitrogen-containing product. The following rate constants were determined: kr(2H2NO*)=1.4x10(8) M-1 s-1, kr(H2NO*+HNO-*)=2.5x10(9) M-1 s-1, and kr(2HNO-*)=4.5x10(8) M-1 s-1. The HNO-* radical reacts with O2 in an electron-transfer reaction to yield nitroxyl (HNO) and superoxide (O2-*), with a rate constant of ke(HNO-*+O2-->HNO+O2-*)=2.2x10(8) M-1 s-1. Both O2 and O2-* seem to react with deprotonated hydroxylamine (H2NO-) to set up an autoxidative chain reaction. However, closer analysis indicates that these reactions might not occur directly but are probably mediated by transition-metal ions, even in the presence of chelators, such as ethylenediamine tetraacetic acid (EDTA) or diethylenetriamine pentaacetic acid (DTPA). The following standard aqueous reduction potentials were derived: E degrees (H2NO*,2H+/H3NOH+)=1.25+/-0.01 V; E degrees (H2NO*,H+/H2NOH)=0.90+/-0.01 V; and E degrees (H2NO*/H2NO-)=0.09+/-0.01 V. In addition, we estimate the following: E degrees (H2NOH+*/H2NOH)=1.3+/-0.1 V, E degrees (HNO, H+/H2NO*)=0.52+/-0.05 V, and E degrees (HNO/HNO-*)=-0.22+/-0.05 V. From the data, we also estimate the gaseous O-H and N-H bond dissociation enthalpy (BDE) values in H2NOH, with BDE(H2NO-H)=75-77 kcal/mol and BDE(H-NHOH)=81-82 kcal/mol. These values are in good agreement with quantum chemical computations.
Collapse
Affiliation(s)
- Johan Lind
- The School of Chemistry, Royal Institute of Technology, S-10044, Stockholm, Sweden
| | | |
Collapse
|