1
|
Lacen A, Symasek A, Gunter A, Lee HT. Slow G-Quadruplex Conformation Rearrangement and Accessibility Change Induced by Potassium in Human Telomeric Single-Stranded DNA. J Phys Chem B 2024; 128:5950-5965. [PMID: 38875355 PMCID: PMC11216195 DOI: 10.1021/acs.jpcb.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
The guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na+ and K+ on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA. Our data showed that G4 formed through heating and slow cooling in K+ solution exhibited fewer conformational dynamics than G4 formed in Na+ solution, which is consistent with the higher thermal stability of G4 in K+. Monitoring cation exchange with real time smFRET at room temperature shows that Na+ and K+ can replace each other in G4. When encountering high K+ at room or body temperature, G4 undergoes a slow conformational rearrangement process which is mostly complete by 2 h. The slow conformational rearrangement ends with a stable G4 that is unable to be unfolded by a complementary strand. This study provides new insights into the accessibility of G4 forming sequences at different time points after introduction to a high K+ environment in cells, which may affect how the nascent telomeric overhang interacts with proteins and telomerase.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Andrew Symasek
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Alan Gunter
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| | - Hui-Ting Lee
- Department of Chemistry, University
of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United
States
| |
Collapse
|
2
|
Myres GJ, Kitt JP, Harris JM. Raman Scattering Reveals Ion-Dependent G-Quadruplex Formation in the 15-mer Thrombin-Binding Aptamer upon Association with α-Thrombin. Anal Chem 2023; 95:16160-16168. [PMID: 37870982 DOI: 10.1021/acs.analchem.3c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The discovery of DNA aptamers that bind biomolecular targets has enabled significant innovations in biosensing. Aptamers form secondary structures that exhibit selective high-affinity interactions with their binding partners. The binding of its target by an aptamer is often accompanied by conformational changes, and sensing by aptamers often relies on these changes to provide readout signals from extrinsic labels to detect target association. Many biosensing applications involve aptamers immobilized to surfaces, but methods to characterize conformations of immobilized aptamers and their in situ response have been lacking. To address this challenge, we have developed a structurally informative Raman spectroscopy method to determine conformations of the 15-mer thrombin-binding aptamer (TBA) immobilized on porous silica surfaces. The TBA is of interest because its binding of α-thrombin depends on the aptamer forming an antiparallel G-quadruplex, which is thought to drive signal changes that allow thrombin-binding to be detected. However, specific metal cations also stabilize the G-quadruplex conformation of the aptamer, even in the absence of its protein target. To develop a deeper understanding of the conformational response of the TBA, we utilize Raman spectroscopy to quantify the effects of the metal cations, K+ (stabilizing) and Li+ (nonstabilizing), on G-quadruplex versus unfolded populations of the TBA. In K+ or Li+ solutions, we then detect the association of α-thrombin with the immobilized aptamer, which can be observed in Raman scattering from the bound protein. The results show that the association of α-thrombin in K+ solutions produces no detectable change in aptamer conformation, which is found in the G-quadruplex form both before and after binding its target. In Li+ solutions, however, where the TBA is unfolded prior to α-thrombin association, protein binding occurs with the formation of a G-quadruplex by the aptamer.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
3
|
Tseng TY, Wang CL, Huang WC, Chang TC. Folding and Unfolding of Exogenous G-Rich Oligonucleotides in Live Cells by Fluorescence Lifetime Imaging Microscopy of o-BMVC Fluorescent Probe. Molecules 2021; 27:molecules27010140. [PMID: 35011378 PMCID: PMC8747072 DOI: 10.3390/molecules27010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/25/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich oligonucleotides (GROs) can self-associate to form G-quadruplex (G4) structures that have been extensively studied in vitro. To translate the G4 study from in vitro to in live cells, here fluorescence lifetime imaging microscopy (FLIM) of an o-BMVC fluorescent probe is applied to detect G4 structures and to study G4 dynamics in CL1-0 live cells. FLIM images of exogenous GROs show that the exogenous parallel G4 structures that are characterized by the o-BMVC decay times (≥2.4 ns) are detected in the lysosomes of live cells in large quantities, but the exogenous nonparallel G4 structures are hardly detected in the cytoplasm of live cells. In addition, similar results are also observed for the incubation of their single-stranded GROs. In the study of G4 formation by ssHT23 and hairpin WT22, the analyzed binary image can be used to detect very small increases in the number of o-BMVC foci (decay time ≥ 2.4 ns) in the cytoplasm of live cells. However, exogenous ssCMA can form parallel G4 structures that are able to be detected in the lysosomes of live CL1-0 cells in large quantities. Moreover, the photon counts of the o-BMVC signals (decay time ≥ 2.4 ns) that are measured in the FLIM images are used to reveal the transition of the G4 formation of ssCMA and to estimate the unfolding rate of CMA G4s with the addition of anti-CMA into live cells for the first time. Hence, FLIM images of o-BMVC fluorescence hold great promise for the study of G4 dynamics in live cells.
Collapse
|
4
|
|
5
|
Yang Y, Yang Y, Wang S, Li H, Chen DDY. Detecting the formation of human c-KIT oncogene promoter G-Quadruplex by Taylor dispersion analysis. Talanta 2021; 233:122533. [PMID: 34215036 DOI: 10.1016/j.talanta.2021.122533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
The formation of G-quadruplex (G4) structures in oncogenic G-rich promoter regions are implicated in their biological functions, especially the inhibition of transcription. The binding of cations is thought to contribute to the stabilization of the G4 formation and competition against the duplex formation in the genomic sequence. Furthermore, it might affect the recognition of DNA-binding proteins. Therefore, measuring the interaction between G4 DNA and cations in a free solution environment is critical for evaluating G4 DNA biological functions. However, how binding to cations (K+ and NH4+) affects the folding equilibrium of the G4 structure remains unclear. In this work, a Taylor dispersion analysis (TDA) method using a capillary electrophoresis (CE) instrument was established for the quantitative characterization of the cation-dependent G4 formation in the human c-KIT oncogene promoter region, as well as diffusivities and hydrodynamic radii of DNA variations before and after folding. Our results showed that both K+ and NH4+ can induce the random-coiled c-KIT DNA to unfold and form a more unstretched intermediate state and then fold into tightly structured G4s with smaller size. The G4 size induced by NH4+ was smaller than that induced by K+ ions, though these two cations induced the c-KIT G4 DNA formation with similar binding constants (order of magnitude around 106 M-1). The TDA method can be widely used for rapid structural analyses of trace amounts of DNA mixtures, which effectively differentiate DNA variations or DNA-ligand complex conformations.
Collapse
Affiliation(s)
- Yunhe Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shuangshuang Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Changzhou Institute of Innovation and Development, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Li C, Wu B, Chen S, Hao K, Yang J, Cao H, Yang S, Wu ZS, Shen Z. Structural requirement of G-quadruplex/aptamer-combined DNA macromolecule serving as efficient drug carrier for cancer-targeted drug delivery. Eur J Pharm Biopharm 2020; 159:221-227. [PMID: 33253890 DOI: 10.1016/j.ejpb.2020.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Photodynamic therapy (PDT) as a clinical cancer treatment method has been used to treat carcinomas in different organs, and G-quadruplex-based DNA nanocompartments serving as the carriers of cationic porphyrin photosensitizers, especially combined with cell-targeting aptamers, is considered to offer new opportunities for future cancer treatment. However, the structural features of G-quadruplex/aptamer complexes suitable for the capsulation of photosensitizers and target cell recognition is unexplored so far. In this study, unimolecular (UM), bimolecular (BM) and tetramolecular (TM) G-quadruplex structures were used as the drug loading compartments and grafted onto tumor cell-targeting aptamer Sgc8, constructing several targeting drug delivery vehicles (T-GMVs). Besides the binding affinity of resulting DNA architectures for target cells and cell recognition specificity were explored in a comparative fashion, the drug loading capability and cancer therapy efficacy were evaluated using TMPyP4 as the model porphyrin-based drug. The experimental results show that only TM G-quadruplex structure is suitable to combine with Sgc8 for the development of drug delivery vehicle and the as-prepared T-GMV- TMPyP4 complexes display the desirable cancer therapy efficacy, holding the potential application in the future cancer therapy. More importantly, T-GMV- TMPyP4 is expected to lay the scientific groundwork for the successful development of G-quadruplex-based photosensitizer drug delivery carriers for the targeted cancer therapy.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Biting Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Si Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaixuan Hao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jie Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongwen Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shulin Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
8
|
Antisense Oligonucleotides Used to Identify Telomeric G-Quadruplexes in Metaphase Chromosomes and Fixed Cells by Fluorescence Lifetime Imaging Microscopy of o-BMVC Foci. Molecules 2020; 25:molecules25184083. [PMID: 32906697 PMCID: PMC7570708 DOI: 10.3390/molecules25184083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023] Open
Abstract
Identification of the existence of G-quadruplex (G4) structure, from a specific G-rich sequence in cells, is critical to the studies of structural biology and drug development. Accumulating evidence supports the existence of G4 structure in vivo. Particularly, time-gated fluorescence lifetime imaging microscopy (FLIM) of a G4 fluorescent probe, 3,6-bis(1-methyl-2-vinylpyridinium) carbazole diiodide (o-BMVC), was used to quantitatively measure the number of G4 foci, not only in different cell lines, but also in tissue biopsy. Here, circular dichroism spectra and polyacrylamide gel electrophoresis assays show that the use of antisense oligonucleotides unfolds their G4 structures in different percentages. Using antisense oligonucleotides, quantitative measurement of the number of o-BMVC foci in time-gated FLIM images provides a method for identifying which G4 motifs form G4 structures in fixed cells. Here, the decrease of the o-BMVC foci number, upon the pretreatment of antisense sequences, (CCCTAA)3CCCTA, in fixed cells and at the end of metaphase chromosomes, allows us to identify the formation of telomeric G4 structures from TTAGGG repeats in fixed cells.
Collapse
|
9
|
Kinetics, conformation, stability, and targeting of G-quadruplexes from a physiological perspective. Biochem Biophys Res Commun 2020; 531:84-87. [PMID: 32331835 DOI: 10.1016/j.bbrc.2020.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023]
Abstract
The particular enrichment of G-quadruplex-forming sequences near transcription start sites signifies the involvement of G-quadruplexes in the regulation of transcription. The characterization of G-quadruplex formation, which holds the key to understand the function it plays in physiological and pathological processes, is mostly performed under simplified in vitro experimental conditions. Formation of G-quadruplexes in cells, however, occurs in an environment far different from the ones in which the in vitro studies on G-quadruplexes are normally carried out. Therefore, the characteristics of G-quadruplex structures obtained under the in vitro conditions may not faithfully reveal how the G-quadruplexes would behave in a physiologically relevant situation. In this mini-review, we attempt to briefly summarize the differences in a few important characteristics, including kinetics, conformation, and stability of G-quadruplex formation observed under the two conditions to illustrate how the intracellular environment might affect the behavior of G-quadruplexes largely based on the previous work carried out in the authors' laboratory. We also propose that unstable G-quadruplex variants may be better drug target candidates to improve selectivity and potency.
Collapse
|
10
|
Wang S, Liang L, Tang J, Cai Y, Zhao C, Fang S, Wang H, Weng T, Wang L, Wang D. Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. RSC Adv 2020; 10:27215-27224. [PMID: 35515777 PMCID: PMC9055465 DOI: 10.1039/d0ra05083k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Telomere sequences can spontaneously form G-quadruplexes (G4) in the presence of some cations. In view of their relevance to genetic processes and potential as therapeutic-targets, hitherto, a wealth of conventional techniques have been reported for interrogation of G4 conformation diversity and corresponding folding kinetics, most of which are limited in precision and sensitivity. This work introduces a label-free solid-state nanopore (SSN) approach for the determination of inter-, intra- and tandem molecular G4 with distinct base permutation in various cation buffers with a tailored aperture and meanwhile captures the single-molecule G4 folding process. SSN translocation properties elucidated that both inter- and intramolecular G4 generated higher current blockage with longer duration than flexible homopolymer nucleotide, and intramolecular G4 are structurally more stable with higher event frequency and longer blockage time than intermolecular ones; base arrangement played weak role in translocation behaviors; the same sequences with one, two and three G4 skeletons displayed an increase in current blockage and a gradual extension in dwell time with the increase of molecule size recorded in the same nanopore. We observed the conformation change of single-molecule G4 which indicated the existence of folding/unfolding equilibration in nanopore, and real-time test suggested a gradual formation of G4 with time. Our results could provide a continued and improved understanding of the underlying relevance of structural stability and G4 folding process by utilizing SSN platform which exhibits strategic potential advances over the other methods with high spatial and temporal resolution. Nanopore detection of single-molecule G-quadruplexes.![]()
Collapse
|
11
|
Ihmels H, Jiang S, Mahmoud MMA, Schönherr H, Wesner D, Zamrik I. Fluorimetric Detection of G-Quadruplex DNA in Solution and Adsorbed on Surfaces with a Selective Trinuclear Cyanine Dye. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11866-11877. [PMID: 30173518 DOI: 10.1021/acs.langmuir.8b02382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quadruplex DNA, which is a relevant target for anticancer therapies, may alter its conformation because of interactions with interfaces. In pursuit of a versatile methodology to probe adsorption-induced conformational changes, the interaction between a fluorescent [2.2.2]heptamethinecyanine dye and quadruplex DNA (G4-DNA) was studied in solution and on surfaces. In solution, the cyanine dye exhibits a strong light-up effect upon the association with G4-DNA without interference from double-stranded DNA. In addition, a terminal π-stacking as a binding mode between the cyanine dye and G4-DNA is concluded using NMR spectroscopy. To unravel the effects of adsorption on the conformation of quadruplex-DNA, G4-DNA, and double-stranded and single-stranded DNA were adsorbed to positively charged poly(allylamine) hydrochloride (PAH) surfaces, both in planar and in constrained 55 nm diameter aluminum oxide nanopore formats. All DNA forms showed a very strong affinity to the PAH surfaces as shown by surface plasmon resonance and reflectometric interference spectroscopy. The significant increase of the fluorescence emission intensity of the cyanine light-up probe observed exclusively for surface immobilized G4-DNA affords evidence for the adsorption of G4-DNA on PAH with retained quadruplex conformation.
Collapse
Affiliation(s)
- Heiko Ihmels
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Siyu Jiang
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Mohamed M A Mahmoud
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Imad Zamrik
- Department of Chemistry and Biology , University of Siegen, and Center of Micro- and Nanochemistry and Engineering (Cμ) , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|
12
|
Zheng XH, Nie X, Fang Y, Zhang Z, Xiao Y, Mao Z, Liu H, Ren J, Wang F, Xia L, Huang J, Zhao Y. A Cisplatin Derivative Tetra-Pt(bpy) as an Oncotherapeutic Agent for Targeting ALT Cancer. J Natl Cancer Inst 2017; 109:3752362. [PMID: 28521363 DOI: 10.1093/jnci/djx061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background In approximately 15% of human cancers, telomere length is maintained independently of telomerase by the homologous recombination (HR)-mediated alternative lengthening of telomeres (ALT) pathway. Whether the ALT pathway can be exploited for therapeutic treatment remains unknown. The purpose of this study is to develop oncotherapeutic agent to target ALT cancers. Methods Surface plasmon resonance assay, antibody to G-quadruplex, and fluorescence in situ hybridization (FISH) were used to discover Tetra-Pt(bpy), a cisplatin derivative that specifically targets telomeric G-quadruplex. We used immunofluorescence, FISH, C-circle assay, and chromosome orientation FISH to evaluate the inhibitory effect of Tetra-Pt(bpy) on ALT activity in human ALT cancers. The shortening of telomere length induced by Tetra-Pt(bpy) was determined by telomere restriction fragment or Q-FISH. Cell destination after Tetra-Pt(bpy) treatment was determined by β-gal staining or apoptosis assay. Nude mice (n = 4 per group) were injected with U2OS cells to evaluate the effects of Tetra-Pt(bpy) on tumor growth. All statistical tests were two-sided. Results Tetra-Pt(bpy) inhibits the strand invasion/annealing step of telomeric homologous recombination by selectively converting telomeric ssDNA to a G-quadruplex. ALT-cells treated with Tetra-Pt(bpy) show fewer ALT-associated promyelocytic leukemia bodies (untreated: mean±SD = 5.9±0.2 vs treated: mean±SD = 3.1±0.1, P < .001), fewer extrachromosomal C-circles (untreated: mean±SD = 100.5±1.6 vs treated: mean±SD = 18.0±1.7, P < .001), and reduced telomere sister chromatin exchanges (untreated: mean±SD = 25.2%±1.5% vs treated: mean±SD = 13.1%±1.9%, P < .001). Consequently, critically short telomeres accumulate after multiple population doublings (untreated: mean±SD = 18.9%±1.7% vs treated: mean±SD = 57.4%±2.2%, P < .001), resulting in cell death by apoptosis or senescence. In vivo, Tetra-Pt(bpy) severely inhibits the growth of ALT-cell xenograft tumors in mice (untreated: mean±SD = 57.1±3.7 mm 3 vs treated: mean±SD = 19.0±3.2 mm 3 , P < .001). Importantly, Tetra-Pt(bpy) exhibits no adverse effects on proliferation, gene expression, or telomere metabolism in normal cells. Conclusions These results reveal the potential of Tetra-Pt(bpy) as a novel oncotherapeutic agent for targeting ALT cancer cells.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Sun Yat-sen University, Guangzhou, P. R. China; Medical School, Shenzhen University, Shenzhen, P. R. China
| | - Xin Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiming Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yingnan Xiao
- School of basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, P. R. China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Ren
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, P. R. China
| | - Feng Wang
- School of basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Lixin Xia
- Sun Yat-sen University, Guangzhou, P. R. China; Medical School, Shenzhen University, Shenzhen, P. R. China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, P. R. China
| |
Collapse
|
13
|
Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S, Otyepka M. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim Biophys Acta Gen Subj 2016; 1861:1246-1263. [PMID: 27979677 DOI: 10.1016/j.bbagen.2016.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/04/2016] [Accepted: 12/11/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. SCOPE OF REVIEW We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. MAJOR CONCLUSIONS The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. GENERAL SIGNIFICANCE We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barira Islam
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
14
|
Hou X. Smart Gating Multi-Scale Pore/Channel-Based Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7049-64. [PMID: 27296766 DOI: 10.1002/adma.201600797] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/03/2016] [Indexed: 05/03/2023]
Abstract
Smart gating membranes are important and promising in membrane science and technology. Rapid progress in developing smart membranes is transforming technology in many different fields, from energy and environmental to the life sciences. How a specific smart behavior for controllable gating of porous membranes can be obtained, especially for nano- and micrometer-sized multi-scale pore/channel-based membrane systems is addressed.
Collapse
Affiliation(s)
- Xu Hou
- College of Chemistry and Chemical Engineering, Xiamen University, P. R. China
- School of Physics and Mechanical & Electrical Engineering, Xiamen University, P. R. China
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, P. R. China
| |
Collapse
|
15
|
Rawtani D, Kuntmal B, Agrawal Y. Charge transfer in DNA and its diverse modelling approaches. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1207570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Binal Kuntmal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| | - Y. Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhi Nagar, Gujarat, India
| |
Collapse
|
16
|
Mullins MR, Rajavel M, Hernandez-Sanchez W, de la Fuente M, Biendarra SM, Harris ME, Taylor DJ. POT1-TPP1 Binding and Unfolding of Telomere DNA Discriminates against Structural Polymorphism. J Mol Biol 2016; 428:2695-708. [PMID: 27173378 DOI: 10.1016/j.jmb.2016.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/17/2022]
Abstract
Telomeres are nucleoprotein complexes that reside at the ends of linear chromosomes and help maintain genomic integrity. Protection of telomeres 1 (POT1) and TPP1 are telomere-specific proteins that bind as a heterodimer to single-stranded telomere DNA to prevent illicit DNA damage responses and to enhance telomerase-mediated telomere extension. Telomere DNA is guanosine rich and, as such, can form highly stable secondary structures including G-quadruplexes. G-quadruplex DNA folds into different topologies that are determined by several factors including monovalent ion composition and the precise sequence and length of the DNA. Here, we explore the influence of DNA secondary structure on POT1-TPP1 binding. Equilibrium binding assays reveal that the POT1-TPP1 complex binds G-quadruplex structures formed in buffers containing Na(+) with an affinity that is fivefold higher than for G-quadruplex structures formed in the presence of K(+). However, the binding of the second heterodimer is insensitive to DNA secondary structure, presumably due to unfolding resulting from binding of the first POT1-TPP1. We further show that the rate constant for POT1-TPP1-induced unfolding of DNA secondary structure is substantially faster for G-quadruplex topologies formed in the presence of Na(+) ions. When bound to DNA, POT1-TPP1 forms complexes with similar CD spectra and enhances telomerase activity for all DNA substrates tested, regardless of the substrate secondary structure or solution monovalent ion composition. Together, these data indicate that binding of POT1-TPP1 unfolds telomere secondary structure to assist loading of additional heterodimers and to ensure efficient promotion of telomerase-mediated extension.
Collapse
Affiliation(s)
- Michael R Mullins
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Malligarjunan Rajavel
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Maria de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sherri M Biendarra
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Lin S, Yang C, Mao Z, He B, Wang YT, Leung CH, Ma DL. A G-pentaplex-based assay for Cs + ions in aqueous solution using a luminescent Ir(III) complex. Biosens Bioelectron 2016; 77:609-12. [DOI: 10.1016/j.bios.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
|
18
|
Bagheryan Z, Raoof J, Ojani R. Voltammetric characterization of human telomeric G-quadruplex: A label free method for anticancer drug detection. Bioelectrochemistry 2016; 107:25-9. [DOI: 10.1016/j.bioelechem.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/20/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023]
|
19
|
Leung KH, He B, Yang C, Leung CH, Wang HMD, Ma DL. Development of an Aptamer-Based Sensing Platform for Metal Ions, Proteins, and Small Molecules through Terminal Deoxynucleotidyl Transferase Induced G-Quadruplex Formation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24046-52. [PMID: 26449329 DOI: 10.1021/acsami.5b08314] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report a label-free, structure-independent luminescent-sensing platform for metal ions, proteins, and small molecules utilizing an Ir(III) complex, terminal deoxynucleotidyl transferase (TdT), and a structure-folding aptamer. A novel G-quadruplex-selective Ir(III) complex was identified to detect the nascent G-quadruplex motifs with an enhanced luminescence response. Unlike most label-free DNA-based assays reported in the literature, this sensing platform does not require a specific secondary structure of aptamer, thus greatly simplifying DNA design. The detection platform was demonstrated by the detection of K(+) ions, thrombin, and cocaine as representative examples of metal ions, proteins, and small molecules.
Collapse
Affiliation(s)
| | | | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao, China
| | - Hui-Min David Wang
- Graduate Institute of Natural Products, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | | |
Collapse
|
20
|
Mendoza O, Elezgaray J, Mergny JL. Kinetics of quadruplex to duplex conversion. Biochimie 2015; 118:225-33. [DOI: 10.1016/j.biochi.2015.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023]
|
21
|
Wang M, He B, Lu L, Leung CH, Mergny JL, Ma DL. Label-free luminescent detection of LMP1 gene deletion using an intermolecular G-quadruplex-based switch-on probe. Biosens Bioelectron 2015; 70:338-44. [DOI: 10.1016/j.bios.2015.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/14/2015] [Accepted: 03/20/2015] [Indexed: 12/27/2022]
|
22
|
Lee D, Kim M, Kim SY, Shin H, Kim SW, Park I. Investigation of the nanoviscosity effect of a G-quadruplex and single-strand DNA using fluorescence correlation spectroscopy. J Chem Phys 2015; 142:025101. [PMID: 25591385 DOI: 10.1063/1.4905113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanine (G)-quadruplexes are of interest because of their presence in the telomere sequence and the oncogene promoter region. Their diffusion and change of structure, especially in high viscosity solutions, are important for understanding their dynamics. G-quadruplexes may have less effective viscosity (nanoviscosity) when they are smaller than the solvent molecules. In this paper, we report the difference in the diffusion dynamics of the G-rich DNA sequences of single-strand DNA (ssDNA) and the G-quadruplex in aqueous, sucrose, and polyethylene glycol (PEG) solutions. From experiments with aqueous and sucrose solutions, we confirm that a simple diffusion model according to the viscosity is appropriate. In the PEG experiments, the nanoviscosity effect is observed according to PEG's molecular weight. In the PEG 200 solution, both the ssDNA and the G-quadruplex possess macroviscosity. In the PEG 10,000 solution, the G-quadruplex possesses nanoviscosity and the ssDNA possesses macroviscosity, whereas, in the PEG 35,000 solution, both ssDNA and the G-quadruplex possess nanoviscosity. The experimental results are consistent with the theoretical predictions.
Collapse
Affiliation(s)
- Dongkeun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Minjung Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Soo Yong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Hyosup Shin
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Sok Won Kim
- Department of Physics, University of Ulsan, Ulsan 680-749, South Korea
| | - Inho Park
- Department of Physics, University of Incheon, Incheon 406-772, South Korea
| |
Collapse
|
23
|
Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proc Natl Acad Sci U S A 2014; 111:14325-31. [PMID: 25225404 DOI: 10.1073/pnas.1415944111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human telomeric DNA consists of tandem repeats of the sequence 5'-TTAGGG-3' that can fold into various G-quadruplexes, including the hybrid, basket, and propeller folds. In this report, we demonstrate use of the α-hemolysin ion channel to analyze these subtle topological changes at a nanometer scale by providing structure-dependent electrical signatures through DNA-protein interactions. Whereas the dimensions of hybrid and basket folds allowed them to enter the protein vestibule, the propeller fold exceeds the size of the latch region, producing only brief collisions. After attaching a 25-mer poly-2'-deoxyadenosine extension to these structures, unraveling kinetics also were evaluated. Both the locations where the unfolding processes occur and the molecular shapes of the G-quadruplexes play important roles in determining their unfolding profiles. These results provide insights into the application of α-hemolysin as a molecular sieve to differentiate nanostructures as well as the potential technical hurdles DNA secondary structures may present to nanopore technology.
Collapse
|
24
|
Ma DL, Lin S, Leung KH, Zhong HJ, Liu LJ, Chan DSH, Bourdoncle A, Mergny JL, Wang HMD, Leung CH. An oligonucleotide-based label-free luminescent switch-on probe for RNA detection utilizing a G-quadruplex-selective iridium(III) complex. NANOSCALE 2014; 6:8489-8494. [PMID: 24816304 DOI: 10.1039/c4nr00541d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(iii) complex for the construction of an oligonucleotide-based, label-free, rapid and convenient luminescent RNA detection platform.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
You H, Zeng X, Xu Y, Lim CJ, Efremov AK, Phan AT, Yan J. Dynamics and stability of polymorphic human telomeric G-quadruplex under tension. Nucleic Acids Res 2014; 42:8789-95. [PMID: 25013179 PMCID: PMC4117794 DOI: 10.1093/nar/gku581] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As critical DNA structures capping the human chromosome ends, the stability and structural polymorphism of human telomeric G-quadruplex (G4) have drawn increasing attention in recent years. This work characterizes the equilibrium transitions of single-molecule telomeric G4 at physiological K+ concentration. We report three folded states of telomeric G4 with markedly different lifetime and mechanical stability. Our results show that the kinetically favored folding pathway is through a short-lived intermediate state to a longer-lived state. By examining the force dependence of transition rates, the force-dependent transition free energy landscape for this pathway is determined. In addition, an ultra-long-lived form of telomeric G4 structure with a much stronger mechanical stability is identified.
Collapse
Affiliation(s)
- Huijuan You
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xiangjun Zeng
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yue Xu
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Ci Ji Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, 117546, Singapore
| | - Artem K Efremov
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, 117546, Singapore Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
| |
Collapse
|
26
|
Li Y, Liu C, Feng X, Xu Y, Liu BF. Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G-Quadruplex. Anal Chem 2014; 86:4333-9. [DOI: 10.1021/ac500112d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzhi Xu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics − Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
27
|
Mironov GG, Okhonin V, Khan N, Clouthier CM, Berezovski MV. Conformational Dynamics of DNA G-Quadruplex in Solution Studied by Kinetic Capillary Electrophoresis Coupled On-line with Mass Spectrometry. ChemistryOpen 2014; 3:58-64. [PMID: 24808992 PMCID: PMC4000168 DOI: 10.1002/open.201400002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 12/03/2022] Open
Abstract
G-quadruplex-forming DNA/RNA sequences play an important role in the regulation of biological functions and development of new anticancer and anti-aging drugs. In this work, we couple on-line kinetic capillary electrophoresis with mass spectrometry (KCE-MS) to study conformational dynamics of DNA G-quadruplexes in solution. We show that peaks shift and its widening in KCE can be used for measuring rate and equilibrium constants for DNA–metal affinity interactions and G-quadruplex formation; and ion mobility mass spectrometry (IM-MS) provides information about relative sizes, absolute molecular masses and stoichiometry of DNA complexes. KCE-MS separates a thrombin-binding aptamer d[GGTTGGTGTGGTTGG] from mutated sequences based on affinity to potassium, and reveals the apparent equilibrium folding constant (KF≈150 μm), folding rate constant (kon≈1.70×103 s−1 m−1), unfolding rate constant (koff≈0.25 s−1), half-life time of the G-quadruplex (t1/2≈2.8 s), and relaxation time (τ≈3.9 ms at physiological 150 mm [K+]). In addition, KCE-MS screens for a GQ-stabilizing/-destabilizing effect of DNA binding dyes and an anticancer drug, cisplatin.
Collapse
Affiliation(s)
- Gleb G Mironov
- Department of Chemistry, University of Ottawa 10 Marie Curie, Ottawa K1N 6N5 (Canada)
| | - Victor Okhonin
- Department of Chemistry, University of Ottawa 10 Marie Curie, Ottawa K1N 6N5 (Canada)
| | - Nasrin Khan
- Department of Chemistry, University of Ottawa 10 Marie Curie, Ottawa K1N 6N5 (Canada)
| | | | - Maxim V Berezovski
- Department of Chemistry, University of Ottawa 10 Marie Curie, Ottawa K1N 6N5 (Canada)
| |
Collapse
|
28
|
Closa F, Gosse C, Jullien L, Lemarchand A. Identification of two-step chemical mechanisms and determination of thermokinetic parameters using frequency responses to small temperature oscillations. J Chem Phys 2014; 138:244109. [PMID: 23822229 DOI: 10.1063/1.4811288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased focus on kinetic signatures in biology, coupled with the lack of simple tools for chemical dynamics characterization, lead us to develop an efficient method for mechanism identification. A small thermal modulation is used to reveal chemical dynamics, which makes the technique compatible with in cellulo imaging. Then, the detection of concentration oscillations in an appropriate frequency range followed by a judicious analytical treatment of the data is sufficient to determine the number of chemical characteristic times, the reaction mechanism, and the full set of associated rate constants and enthalpies of reaction. To illustrate the scope of the method, dimeric protein folding is chosen as a biologically relevant example of nonlinear mechanism with one or two characteristic times.
Collapse
Affiliation(s)
- F Closa
- Université Pierre et Marie Curie-Paris 6, Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 LPTMC, 4 place Jussieu, case courrier 121, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
29
|
Bagheryan Z, Raoof JB, Ojani R, Rezaei P. Development of a new biosensor based on functionalized SBA-15 modified screen-printed graphite electrode as a nano-reactor for Gquadruplex recognition. Talanta 2014; 119:24-33. [DOI: 10.1016/j.talanta.2013.09.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022]
|
30
|
Li Y, Xu F, Liu C, Xu Y, Feng X, Liu BF. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction. Analyst 2013; 138:4475-82. [PMID: 23785706 DOI: 10.1039/c3an00521f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinetic measurement of biomacromolecular interaction plays a significant role in revealing the underlying mechanisms of cellular activities. Due to the small diffusion coefficient of biomacromolecules, it is difficult to resolve the rapid kinetic process with traditional analytical methods such as stopped-flow or laminar mixers. Here, we demonstrated a unique continuous-flow laminar mixer based on microfluidic dual-hydrodynamic focusing to characterize the kinetics of DNA-protein interactions. The time window of this mixer for kinetics observation could cover from sub-milliseconds to seconds, which made it possible to capture the folding process with a wide dynamic range. Moreover, the sample consumption was remarkably reduced to <0.55 μL min⁻¹, over 1000-fold saving in comparison to those reported previously. We further interrogated the interaction kinetics of G-quadruplex and the single-stranded DNA binding protein, indicating that this novel micromixer would be a useful approach for analyzing the interaction kinetics of biomacromolecules.
Collapse
Affiliation(s)
- Ying Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
31
|
Hirt BV, Wattis JAD, Preston SP. Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs. J Math Biol 2013; 68:1521-52. [PMID: 23620229 PMCID: PMC3975128 DOI: 10.1007/s00285-013-0678-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/20/2013] [Indexed: 12/13/2022]
Abstract
Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available.
Collapse
Affiliation(s)
- Bartholomäus V Hirt
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK,
| | | | | |
Collapse
|
32
|
Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 2013; 773:9-23. [PMID: 23561902 DOI: 10.1016/j.aca.2012.12.040] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA-NA, NA-protein, NA-small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Hana Šípová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic.
| |
Collapse
|
33
|
Lannan FM, Mamajanov I, Hud NV. Human Telomere Sequence DNA in Water-Free and High-Viscosity Solvents: G-Quadruplex Folding Governed by Kramers Rate Theory. J Am Chem Soc 2012; 134:15324-30. [DOI: 10.1021/ja303499m] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ford M. Lannan
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| | - Irena Mamajanov
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| | - Nicholas V. Hud
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
34
|
Shim J, Gu LQ. Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods 2012; 57:40-6. [PMID: 22487183 DOI: 10.1016/j.ymeth.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 01/01/2023] Open
Abstract
This review article introduces the nanopore single-molecule method for the study of G-quadruplex nucleic acid structures. Single G-quadruplexes can be trapped into a 2 nm protein pore embedded in the lipid bilayer membrane. The trapped G-quadruplex specifically blocks the current through the nanopore, creating a signature event for quantitative analysis of G-quadruplex properties, from cation-determined folding and unfolding kinetics to the interactions with the protein ligand. The nanopore single-molecule method is simple, accurate, and requires no labels. It can be used to evaluate G-quadruplex mechanisms and it may have applications in G-quadruplex-based biosensors, nanomachines, and nanostructure assembly.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
35
|
Schlachter C, Lisdat F, Frohme M, Erdmann VA, Konthur Z, Lehrach H, Glökler J. Pushing the detection limits: the evanescent field in surface plasmon resonance and analyte-induced folding observation of long human telomeric repeats. Biosens Bioelectron 2011; 31:571-4. [PMID: 22152989 DOI: 10.1016/j.bios.2011.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 12/17/2022]
Abstract
Conventional analysis of molecular interactions by surface plasmon resonance is achieved by the observation of optical density changes due to analyte binding to the ligand on the surface. Low molecular weight interaction partners are normally not detected. However, if a macromolecule such as DNA can extend beyond the evanescent field and analyte interaction results in a large-scale contraction, then the refractive index changes due to the increasing amount of macromolecules close to the surface. In our proof-of-principle experiment we could observe the direct folding of long, human telomeric repeats induced by the small analyte potassium using surface plasmon resonance spectroscopy. This work demonstrates the feasibility of new evanescent field-based biosensors that can specifically observe small molecule interactions.
Collapse
Affiliation(s)
- Constanze Schlachter
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 2011; 3:782-7. [PMID: 21941250 DOI: 10.1038/nchem.1126] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/25/2011] [Indexed: 01/20/2023]
Abstract
Ligands that stabilize the formation of telomeric DNA G-quadruplexes have potential as cancer treatments, because the G-quadruplex structure cannot be extended by telomerase, an enzyme over-expressed in many cancer cells. Understanding the kinetic, thermodynamic and mechanical properties of small-molecule binding to these structures is therefore important, but classical ensemble assays are unable to measure these simultaneously. Here, we have used a laser tweezers method to investigate such interactions. With a force jump approach, we observe that pyridostatin promotes the folding of telomeric G-quadruplexes. The increased mechanical stability of pyridostatin-bound G-quadruplex permits the determination of a dissociation constant K(d) of 490 ± 80 nM. The free-energy change of binding obtained from a Hess-like process provides an identical K(d) for pyridostatin and a K(d) of 42 ± 3 µM for a weaker ligand RR110. We anticipate that this single-molecule platform can provide detailed insights into the mechanical, kinetic and thermodynamic properties of liganded bio-macromolecules, which have biological relevance.
Collapse
|
37
|
Lane AN. The stability of intramolecular DNA G-quadruplexes compared with other macromolecules. Biochimie 2011; 94:277-86. [PMID: 21854828 DOI: 10.1016/j.biochi.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
DNA quadruplexes are often conceived as very stable structures. However, most of the free energy of stabilization derives from specific ion binding via inner sphere coordination of the GO6 of the guanine residues comprising the basic quartet. When compared with other nucleic acid structures such as DNA or RNA duplexes and hairpins, or proteins of the same number of atoms, metal-coordinated intramolecular quadruplexes are found to be of comparable or lower thermodynamic stability under similar solution conditions. Furthermore, intramolecular quadruplexes are actually less stable kinetically, than DNA duplexes or hairpins of the same size. Although the literature is incomplete, it is clear that polyelectrolyte ion effects, the influence of solvation and steric crowding on stability are qualitatively different between intramolecular quadruplexes and DNA duplexes. For example, decreasing water activity destabilizes DNA duplexes, whereas quadruplexes are stabilized. The variety of folded conformations accessible to a single sequence further implies strong sensitivity of the conformational ensemble to the solution conditions, compared with DNA duplexes or small single domain proteins. These considerations may have relevance to the conditions prevailing inside cell nuclei and therefore the structures that potentially might form in vivo.
Collapse
Affiliation(s)
- Andrew N Lane
- JG Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
38
|
Amemiya Y, Furunaga Y, Iida K, Tera M, Nagasawa K, Ikebukuro K, Nakamura C. Analysis of the unbinding force between telomestatin derivatives and human telomeric G-quadruplex by atomic force microscopy. Chem Commun (Camb) 2011; 47:7485-7. [PMID: 21547284 DOI: 10.1039/c0cc05781a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The force analysis between a macrocyclic hexazole (6OTD) monomer/dimer and telomeric DNA using atomic force microscopy revealed the difference in their binding modes. The 6OTD dimer bound to the G-quadruplex more strongly than the monomer by sandwiching the G-quadruplex.
Collapse
Affiliation(s)
- Yosuke Amemiya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang Q, Ma L, Hao YH, Tan Z. Folding equilibrium constants of telomere G-quadruplexes in free state or associated with proteins determined by isothermal differential hybridization. Anal Chem 2010; 82:9469-75. [PMID: 21028832 DOI: 10.1021/ac102168m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine rich (G-rich) nucleic acids form G-quadruplex structures that are implicated in many biological processes, pharmaceutical applications, and molecular machinery. The folding equilibrium constant (K(F)) of the G-quadruplex not only determines its stability and competition against duplex formation in genomic DNA but also defines its recognition by proteins and drugs and technical specifications. The K(F) is most conveniently derived from thermal melting analysis that has so far yielded extremely diversified results for the human telomere G-quadruplex. Melting analysis cannot be used for nucleic acids associated with proteins, thus has difficulty to study how protein association affects the folding equilibrium of G-quadruplex structure. In this work, we established an isothermal differential hybridization (IDH) method that is able to determine the K(F) of G-quadruplex, either alone or associated with proteins. Using this method, we studied the folding equilibrium of the core sequence G(3)(T(2)AG(3))(3) from vertebrate telomere in K(+) and Na(+) solutions and how it is affected by proteins associated at its adjacent regions. Our results show that the K(F) obtained for the free G-quadruplex is within 1 order of magnitude of most of those obtained by melting analysis and protein binding beside a G-quadruplex can dramatically destabilize the G-quadruplex.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | |
Collapse
|
40
|
Jin Y, Li H, Liu P. Label-free electrochemical selection of G-quadruplex-binding ligands based on structure switching. Biosens Bioelectron 2010; 25:2669-74. [DOI: 10.1016/j.bios.2010.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
|
41
|
Wang XD, Ou TM, Lu YJ, Li Z, Xu Z, Xi C, Tan JH, Huang SL, An LK, Li D, Gu LQ, Huang ZS. Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives. J Med Chem 2010; 53:4390-8. [PMID: 20481493 DOI: 10.1021/jm100445e] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human bcl-2 gene is an apoptosis-related oncogene containing a GC-rich sequence which is located upstream from P1 promoter and has the potential to form G-quadruplex structures. However, the regulatory role of the quadruplex and the effect of its ligands on bcl-2 have not been clarified. Here, we demonstrated that the G-quadruplex structure was disrupted when partial mutation of G --> A was made, resulting in a 2-fold increase in basal transcriptional activity of bcl-2 promoter. Quindoline derivatives, the highly active G-quadruplex ligands developed by our group, could significantly suppress bcl-2 transcriptional activation but had less effect on mutated bcl-2 transcription. These results provided direct evidence that G-quadruplex structure formed in bcl-2 promoter region could function as a transcriptional repressor element, and G-quadruplex specific ligands could regulate the transcription of bcl-2 through stabilization of quadruplex structure. The results further indicated that quindoline derivatives could induce apoptosis of HL-60 tumor cells.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kendrick S, Hurley LH. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. ACTA ACUST UNITED AC 2010; 82:1609-1621. [PMID: 21796223 DOI: 10.1351/pac-con-09-09-29] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nature of DNA has captivated scientists for more than fifty years. The discovery of the double-helix model of DNA by Watson and Crick in 1953 not only established the primary structure of DNA, but also provided the mechanism behind DNA function. Since then, researchers have continued to further the understanding of DNA structure and its pivotal role in transcription. The demonstration of DNA secondary structure formation has allowed for the proposal that the dynamics of DNA itself can function to modulate transcription. This review presents evidence that DNA can exist in a dynamic equilibrium between duplex and secondary conformations. In addition, data demonstrating that intracellular proteins as well as small molecules can shift this equilibrium in either direction to alter gene transcription will be discussed, with a focus on the modulation of proto-oncogene expression.
Collapse
|
43
|
Dailey MM, Miller MC, Bates PJ, Lane AN, Trent JO. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res 2010; 38:4877-88. [PMID: 20348136 PMCID: PMC2919704 DOI: 10.1093/nar/gkq166] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Hongwei Xia
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yi Hou
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - To Ngai
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Guangzhao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China, and Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
45
|
Huang J, Wang M, Zhou Y, Weng X, Shuai L, Zhou X, Zhang D. Visual observation of G-quadruplex DNA with the label-free fluorescent probe silole with aggregation-induced emission. Bioorg Med Chem 2009; 17:7743-8. [DOI: 10.1016/j.bmc.2009.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 11/26/2022]
|
46
|
Zheng KW, Chen Z, Hao YH, Tan Z. Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acids Res 2009; 38:327-38. [PMID: 19858105 PMCID: PMC2800236 DOI: 10.1093/nar/gkp898] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Large numbers of guanine-rich sequences with potential to form G-quadruplexes have been identified in genomes of various organisms. Such sequences are constrained at both ends by long DNA duplex with a complementary strand in close proximity to compete for duplex formation. G-quadruplex/duplex competition in long double-stranded DNA has rarely been studied. In this work, we used DMS footprinting and gel electrophoresis to study G-quadruplex formation in long double-stranded DNA derived from human genome under both dilute and molecular crowding condition created by PEG. G-quadruplex formation was observed in the process of RNA transcription and after heat denaturation/renaturation under molecular crowding condition. Our results showed that the heat denaturation/renaturation treatment followed by gel electrophoresis could provide a simple method to quantitatively access the ability of G-quadruplex formation in long double-stranded DNA. The effect of K+ and PEG concentration was investigated and we found that stable G-quadruplexes could only form under the crowding condition with PEG at concentrations near the physiological concentration of biomass in living cells. This observation reveals a physical basis for the formation of stable G-quadruplexes in genome and supports its presence under the in vivo molecular crowding condition.
Collapse
Affiliation(s)
- Ke-wei Zheng
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan, PR China
| | | | | | | |
Collapse
|
47
|
Cheng X, Liu X, Bing T, Zhao R, Xiong S, Shangguan D. Specific DNA G-quadruplexes bind to ethanolamines. Biopolymers 2009; 91:874-83. [PMID: 19582835 DOI: 10.1002/bip.21272] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A significant number of G-quadruplex-forming sequences have been revealed in human genome by bioinformatic searches, implying that G-quadruplexes may be involved in important biological processes and may be new chemotherapeutic targets. Therefore, it is important to discover the potential interactions of G-quadruplexes with other molecules or groups. Here we describe a class of G-quadruplexes, which can bind to ethanolamine groups that widely exist in biomolecules and drug molecules. The specific interaction of these G-quadruplexes with ethanolamine groups was identified by high performance affinity chromatography (HPAC) using immobilized ethanolamine and diethanolamine as stationary phase reagents. The circular dichroism (CD) spectra and native polyacrylamide gel electrophoresis (PAGE) show that these ethanolamine binding quadruplexes adopt an intramolecularly parallel structure. The relationship of ethanolamine binding and G-quadruplexe structure provides new clues for the G-quadruplex-related studies as well as for the molecular designs of therapeutic reagents.
Collapse
Affiliation(s)
- Xiaohong Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
48
|
Lynch S, Baker H, Byker SG, Zhou D, Sinniah K. Single molecule force spectroscopy on G-quadruplex DNA. Chemistry 2009; 15:8113-6. [PMID: 19603437 DOI: 10.1002/chem.200901390] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Susanna Lynch
- Chemistry & Biochemistry, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546, USA
| | | | | | | | | |
Collapse
|
49
|
Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L. A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. J Am Chem Soc 2009; 131:7800-5. [DOI: 10.1021/ja901574c] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Hou
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Wei Guo
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Fan Xia
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Fu-Qiang Nie
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Dong
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Ye Tian
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Liping Wen
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Lin Wang
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Liuxuan Cao
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Yang Yang
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Jianming Xue
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Yanlin Song
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Yugang Wang
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Dongsheng Liu
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| | - Lei Jiang
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, National Center for Nanoscience and Nanotechnology, Beijing 100190, People’s Republic of China, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
50
|
Shim JW, Tan Q, Gu LQ. Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 2009; 37:972-82. [PMID: 19112078 PMCID: PMC2647319 DOI: 10.1093/nar/gkn968] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/12/2008] [Accepted: 11/16/2008] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature blocks in the nanopore revealed that the G-quadruplex formation is cation-selective. The selectivity sequence is K(+) > NH(4)(+) approximately Ba(2+) > Cs(+) approximately Na(+) > Li(+), and G-quadruplex was not detected in Mg(2+) and Ca(2+). Ba(2+) can form a long-lived G-quadruplex with TBA. However, the capability is affected by the cation-DNA interaction. The cation-selective formation of the G-quadruplex is correlated with the G-quadruplex volume, which varies with cation species. The high formation capability of the K(+)-induced G-quadruplex is contributed largely by the slow unfolding reaction. Although the Na(+)- and Li(+)-quadruplexes feature similar equilibrium properties, they undergo radically different pathways. The Na(+)-quadruplex folds and unfolds most rapidly, while the Li(+)-quadruplex performs both reactions at the slowest rates. Understanding these ion-regulated properties of oligonucleotides is beneficial for constructing fine-tuned biosensors and nano-structures. The methodology in this work can be used for studying other quadruplexes and protein-aptamer interactions.
Collapse
Affiliation(s)
| | | | - Li-Qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|