1
|
Kiy Z, Chaud J, Xu L, Brandhorst E, Kamali T, Vargas C, Keller S, Hong H, Specht A, Cambridge S. Towards a Light-mediated Gene Therapy for the Eye using Caged Ethinylestradiol and the Inducible Cre/lox System. Angew Chem Int Ed Engl 2024; 63:e202317675. [PMID: 38127455 DOI: 10.1002/anie.202317675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Increasingly, retinal pathologies are being treated with virus-mediated gene therapies. To be able to target viral transgene expression specifically to the pathological regions of the retina with light, we established an in vivo photoactivated gene expression paradigm for retinal tissue. Based on the inducible Cre/lox system, we discovered that ethinylestradiol is a suitable alternative to Tamoxifen as ethinylestradiol is more amenable to modification with photosensitive protecting compounds, i.e., "caging." Identification of ethinylestradiol as a ligand for the mutated human estradiol receptor was supported by in silico binding studies showing the reduced binding of caged ethinylestradiol. Caged ethinylestradiol was injected into the eyes of double transgenic GFAP-CreERT2 mice with a Cre-dependent tdTomato reporter transgene followed by irradiation with light of 450 nm. Photoactivation significantly increased retinal tdTomato expression compared to controls. We thus demonstrated a first step towards the development of a targeted, light-mediated gene therapy for the eyes.
Collapse
Affiliation(s)
- Zoe Kiy
- Heidelberg University, 69120, Heidelberg, Germany
| | - Juliane Chaud
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Liang Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Eric Brandhorst
- Sektion Endokrinologie, Medizinische Fakultät Mannheim, 68167, Mannheim, Germany
| | - Tschackad Kamali
- Heidelberg Engineering GmbH, Max-Jarecki-Straße 8, 69115, Heidelberg, Germany
| | - Carolyn Vargas
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Alexandre Specht
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, CNRS, CAMB UMR 7199, 67000, Strasbourg, France
| | - Sidney Cambridge
- Heidelberg University, 69120, Heidelberg, Germany
- Institute for Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt am Main, 60590, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Chang JW, Mu Y, Armaou A, Rioux RM. Direct Determination of High-Affinity Binding Constants by Continuous Injection Isothermal Titration Calorimetry. J Phys Chem B 2023; 127:10833-10842. [PMID: 38084387 DOI: 10.1021/acs.jpcb.3c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Isothermal titration calorimetry (ITC) is a method to determine thermodynamic values (ΔG, ΔH, and ΔS) for ligand-receptor binding in biological and abiological systems. It is challenging to directly determine subnanomolar dissociation constants using a standard incremental injection approach ITC (IIA-ITC) measurement. We recently demonstrated a continuous injection approach ITC (CIA-ITC) [ J. Phys. Chem. B 2021, 125, 8075-8087]enables the estimation of thermodynamic parameters in situ. In this work, we demonstrate a label-free and surface modification-free CIA-ITC to determine the complete binding thermodynamics of a ligand with a subnanomolar dissociation constant KD. The KD for desthiobiotin (DTB)-avidin binding was determined to be 6.5 pM with respect to the ligand by CIA-ITC, a quantity unsuccessfully measured with IIA-ITC and surface plasmon resonance spectroscopy (SPR). This value compares well with literature-reported spectroscopic determination of DTB-avidin binding. Criteria with respect to the concentration of the ligand and receptor and flow rate for obtaining true equilibrium dissociation constants without displacement titration are presented.
Collapse
Affiliation(s)
- Ji Woong Chang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si Gyeongsangbuk-do 39177, South Korea
| | - Yanyu Mu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Antonios Armaou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Steigenberger J, Verleysen Y, Geudens N, Madder A, Martins JC, Heerklotz H. Complex electrostatic effects on the selectivity of membrane-permeabilizing cyclic lipopeptides. Biophys J 2023; 122:950-963. [PMID: 35927958 PMCID: PMC10111218 DOI: 10.1016/j.bpj.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic lipopeptides (CLiPs) have many biological functions, including the selective permeabilization of target membranes, and technical and medical applications. We studied the anionic CLiP viscosin from Pseudomonas along with a neutral analog, pseudodesmin A, and the cationic viscosin-E2K to better understand electrostatic effects on target selectivity. Calcein leakage from liposomes of anionic phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) is measured in comparison with net-neutral phosphatidylcholine by time-resolved fluorescence. By contrast to the typical selectivity of cationic peptides against anionic membranes, we find viscosin more active against PG/PE at 30 μM lipid than viscosin-E2K. At very low lipid concentration, the selectivity is reversed. An equi-activity analysis reveals the reciprocal partition coefficients, 1/K, and the CLiP-to-lipid mole ratio within the membrane as leakage after 1 h reaches 50%, Re50. As expected, 1/K to PG/PE is much lower (higher affinity) for viscosin-E2K (3 μM) than viscosin (15 μM). However, the local damage to the PG/PE membrane caused by a viscosin molecule is much stronger than that of viscosin-E2K. This can be explained by the strong membrane expansion due to PG/viscosin repulsion inducing asymmetry stress between the two leaflets and, ultimately, transient limited leakage at Re50 = 0.08. PG/viscosin-E2K attraction opposes expansion and leakage starts only as the PG charges in the outer leaflet are essentially compensated by the cationic peptide (Re50 = 0.32). In the high-lipid regime (at lipid concentrations cL ≫ 1/K), virtually all CLiP is membrane bound anyway and Re50 governs selectivity, favoring viscosin. In the low-lipid regime at cL ≪ 1/K, virtually all CLiP is in solution, 1/K becomes important and the "cation attacks anionic membrane" selectivity gets restored. Overall, activity and selectivity data can only properly be interpreted if the lipid regime is known and predictions for other lipid concentrations or cell counts require knowledge of 1/K and Re50.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium; Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Jana R, Ahmed SA, Seth D. Interaction between Cucurbit[7]uril and Bile Salts: An Isothermal Titration Calorimetry Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rabindranath Jana
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Sayeed Ashique Ahmed
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Debabrata Seth
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| |
Collapse
|
5
|
Chang JW, Armaou A, Rioux RM. Continuous Injection Isothermal Titration Calorimetry for In Situ Evaluation of Thermodynamic Binding Properties of Ligand-Receptor Binding Models. J Phys Chem B 2021; 125:8075-8087. [PMID: 34259524 DOI: 10.1021/acs.jpcb.1c01821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We utilize a continuous injection approach (CIA) rather than the traditional incremental injection approach (IIA) to deliver ligand (or receptor) to the calorimeter cell to evaluate thermodynamic binding parameters for three common ligand-receptor binding models-single independent, competitive, and two independent binding sites-using isothermal titration calorimetry (ITC). A general mathematical expression for the binding isotherm for any binding stoichiometry under continuous delivery of ligand (or receptor) resulting in an analytical solution for the thermodynamic binding parameters is presented. The advantages of CIA include reduction in experimental time, estimation of thermodynamic binding parameter values, and automation of the experiment since thermodynamic parameters are estimated in situ. We demonstrate the inherent advantages of CIA over IIA for the three binding models. For the single independent site model, we utilized the binding of Ba2+ ions to ethylenediaminetetraacetic acid (EDTA), while competitive binding was captured by titration of Ca2+ ions into a buffered solution of Ba2+ and EDTA. We experimentally simulated a two independent binding site system by injecting Ca2+ into a solution of EDTA and 1,3-diaminopropane-N,N,N',N'-tetraacetic acid (DPTA). The results demonstrate estimation of thermodynamic parameters with greater confidence and simultaneous reduction in the experimental time of 83% and titrating reagent of 50%, as compared to IIA.
Collapse
Affiliation(s)
- Ji Woong Chang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongsangbuk-do 39177, South Korea
| | - Antonios Armaou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,FORTH Institute of Chemical Engineering Sciences, Rio 26504, Greece
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Azouz M, Therrien A, Buré C, Tokarski C, Lecomte S, Lafleur M. Lipid selectivity in detergent extraction from bilayers. Biochem Biophys Res Commun 2020; 531:140-143. [PMID: 32782150 DOI: 10.1016/j.bbrc.2020.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Despite numerous studies on detergent-induced solubilization of membranes and on the underlying mechanisms associated with this process, very little is known regarding the selectivity of detergents for lipids during their extraction from membranes. To get insights about this phenomenon, solubilization of model bilayers prepared from binary lipid mixtures by different detergents was examined. Three commonly used detergents were used: the non-ionic Triton X-100 (TX), the negatively-charged sodium dodecylsulfate (SDS), and the positively-charged n-dodecyltrimethylammonium chloride (DTAC). Two model membranes were used in order to identify if specific intermolecular interactions can lead to lipid selectivity: bilayers made of a binary mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and of a binary mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). Therefore, it was possible to describe systems presenting a combination of detergents bearing different charges with bilayers with different polymorphic propensities and charge. In conditions for which partial solubilization was observed, the composition of the extracted lipid phase was quantified with Liquid Chromatography coupled to Mass Spectrometry to elucidate whether a lipid selectivity occurred in the solubilization process. On one hand, it is found that repulsive or attractive electrostatic interactions did not lead to any lipid selectivity. On the other hand, POPE was systematically less extracted than POPC, regardless of the detergent nature. We propose that this lipid selectivity is inherent to the molecular shape of POPE unsuited for micelles curvature properties.
Collapse
Affiliation(s)
- Mehdi Azouz
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada; Institute of Chemistry and Biology of Membranes and Nano-Objects, B14, Allée Geoffroy Saint Hilaire, Pessac, France
| | - Alexandre Therrien
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | - Corinne Buré
- Institute of Chemistry and Biology of Membranes and Nano-Objects, B14, Allée Geoffroy Saint Hilaire, Pessac, France
| | - Caroline Tokarski
- Institute of Chemistry and Biology of Membranes and Nano-Objects, B14, Allée Geoffroy Saint Hilaire, Pessac, France
| | - Sophie Lecomte
- Institute of Chemistry and Biology of Membranes and Nano-Objects, B14, Allée Geoffroy Saint Hilaire, Pessac, France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
7
|
Dietel L, Kalie L, Heerklotz H. Lipid Scrambling Induced by Membrane-Active Substances. Biophys J 2020; 119:767-779. [PMID: 32738218 DOI: 10.1016/j.bpj.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
The functional roles of the lipid asymmetry of biomembranes are attracting increasing attention. This study characterizes the activity of surfactants to induce transmembrane flip-flop of lipids and thus "scramble" this asymmetry. Detergent-induced lipid scrambling of liposomes mimicking the charge asymmetry of bacterial membranes with 20 mol % of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol in the outer leaflet only was quantified by ζ-potential measurements for octaethylene glycol dodecyl ether (C12EO8), octyl glucoside (OG), and dodecyl maltoside. Membrane leakage was separately measured by the fluorescence lifetime-based calcein leakage assay and the onset of the membrane-to-micelle transition by isothermal titration calorimetry. Partition coefficients and partial molar areas were obtained as well. For the quickly membrane-permeant C12EO8 and OG, leakage proceeds at a rather sharp threshold content in the membrane, which is well below the onset of solubilization and little dependent on incubation time; it is accompanied by fast lipid scrambling. However, unlike leakage, flip-flop is a relaxation process that speeds up gradually from taking weeks in the detergent-free membrane to minutes or less in the leaking membrane. Hence, after 24 h of incubation, 10 mol % of C12EO8 or 50 mol % of OG in the membrane suffice for virtually complete lipid scrambling, whereas leakage remains below 10% for up to 14 mol % of C12EO8 and 88 mol % of OG. There is thus a concentration window in which lipid scrambling proceeds without leakage. This implies that lipid scrambling must be considered a possible mode of action of antimicrobial peptides and other membrane-active drugs or biomolecules. A related, detergent-based protocol for scrambling the lipid asymmetry of liposomes and maybe cells without compromising their overall integrity would be a very valuable tool to study functions of lipid asymmetry.
Collapse
Affiliation(s)
- Lisa Dietel
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Louma Kalie
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Stulz A, Breitsamer M, Winter G, Heerklotz H. Primary and Secondary Binding of Exenatide to Liposomes. Biophys J 2020; 118:600-611. [PMID: 31972156 PMCID: PMC7002983 DOI: 10.1016/j.bpj.2019.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The interactions of exenatide, a Trp-containing peptide used as a drug to treat diabetes, with liposomes were studied by isothermal titration calorimetry (ITC), tryptophan (Trp) fluorescence, and microscale thermophoresis measurements. The results are not only important for better understanding the release of this specific drug from vesicular phospholipid gel formulations but describe a general scenario as described before for various systems. This study introduces a model to fit these data on the basis of primary and secondary peptide-lipid interactions. Finally, resolving apparent inconsistencies between different methods aids the design and critical interpretation of binding experiments in general. Our results show that the net cationic exenatide adsorbs electrostatically to liposomes containing anionic diacyl phosphatidylglycerol lipids (PG); however, the ITC data could not properly be fitted by any established model. The combination of electrostatic adsorption of exenatide to the membrane surface and its self-association (Kd = 46 μM) suggested the possibility of secondary binding of peptide to the first, primarily (i.e., lipid-) bound peptide layer. A global fit of the ITC data validated this model and suggested one peptide to bind primarily per five PG molecules with a Kd ≈ 0.2 μM for PC/PG 1:1 and 0.6 μM for PC/PG 7:3 liposomes. Secondary binding shows a weaker affinity and a less exothermic or even endothermic enthalpy change. Depending on the concentration of liposomes, secondary binding may also lead to liposomal aggregation as detected by dynamic light-scattering measurements. ITC quantifies primary and secondary binding separately, whereas microscale thermophoresis and Trp fluorescence represent a summary or average of both effects, possibly with the fluorescence data showing somewhat greater weighting of primary binding. Systems with secondary peptide-peptide association within the membrane are mathematically analogous to the adsorption discussed here.
Collapse
Affiliation(s)
- Anja Stulz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Michaela Breitsamer
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerhard Winter
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Zhang N, Qi R, Li H, Guan B, Liu Y, Han Y, Wang Y. Interaction of phospholipid vesicles with gemini surfactants of different lysine spacer lengths. SOFT MATTER 2019; 15:9458-9467. [PMID: 31742300 DOI: 10.1039/c9sm02040c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptide surfactants have shown many potential applications in biology and medicine; however, the mechanism of their interactions with biomembranes is still unclear. This work has studied the interactions of cationic peptide gemini surfactants based on lysine spacers (12-(Lys)n-12, n = 2, 4, and 6) with model biological membranes, which are represented by the vesicles separately formed by zwitterionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic unsaturated phospholipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG, sodium salt) and the DOPC/DOPG (1 : 1) mixture. The experiment results show that the presence of negatively charged DOPG slightly affects the interaction manners of 12-(Lys)n-12 with the vesicles, while the interaction of 12-(Lys)2-12 with the phospholipid vesicles is significantly different from that of 12-(Lys)4-12 and 12-(Lys)6-12 with the vesicles. The binding strength decreases in the order of 12-(Lys)4-12 > 12-(Lys)6-12 > 12-(Lys)2-12. The 12-(Lys)4-12 surfactant solubilizes the DOPC vesicles, and makes the DOPC molecules join the surfactant stiff fibers and changes them into long and flexible wormlike micelles, while the 12-(Lys)6-12 and 12-(Lys)2-12 aggregates are disassembled by the DOPC vesicles, and the surfactant molecules join the DOPC vesicles and convert the unilamellar vesicles into multilamellar vesicles. This work should be helpful in understanding the interaction of peptide surfactants with phospholipid membranes.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Guan
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Liu
- Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchun Han
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yilin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
The effects of SDS at subsolubilizing concentrations on the planar lipid bilayer permeability: Two kinds of current fluctuations. Chem Phys Lipids 2019; 218:10-15. [DOI: 10.1016/j.chemphyslip.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
|
11
|
Li W, Ivanov S, Mozaffari S, Shanaiah N, Karim AM. Palladium Acetate Trimer: Understanding Its Ligand-Induced Dissociation Thermochemistry Using Isothermal Titration Calorimetry, X-ray Absorption Fine Structure, and 31P Nuclear Magnetic Resonance. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | | | |
Collapse
|
12
|
Zhang N, Qi R, Chen Y, Ji X, Han Y, Wang Y. Partition of Glutamic Acid-Based Single-Chain and Gemini Amphiphiles into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13652-13661. [PMID: 30350992 DOI: 10.1021/acs.langmuir.8b02627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the interactions of amphiphile molecules with biological membranes is very important to many practical applications. Amino acid amphiphiles are a kind of mild surfactants and have many unique performances. However, their interactions with phospholipid membranes have scarcely been studied. This work has studied the interactions of glutamic acid-based gemini amphiphile C12(Glu)2C12 and single-chain amphiphile C12Glu with the model biomembrane formed by the phospholipid 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC). The partition coefficients of C12(Glu)2C12 and C12Glu into the DOPC vesicles were derived from the observed enthalpy curves obtained by isothermal titration calorimetry at temperatures of 25.0 and 37.0 °C, and pHs of 5.6 and 7.4, corresponding to the skin surface and human physiological conditions. The results from cryogenic transmission electron microscopy, dynamic light scattering, and zeta potential measurements show that the amphiphile molecules form different aggregates, which make the amphiphile molecules exhibit different partition abilities to the DOPC vesicles. For C12Glu, the molecules form shorter wormlike micelles with a lower surface charge at all the pHs and temperatures used, and the partition coefficient of C12Glu into the DOPC vesicles does not change with temperature and pH. Differently, the C12(Glu)2C12 molecules form fibers with a larger negative charge and belts with a smaller negative charge at pHs 7.4 and 5.6, respectively, no matter what temperature is used. As a result, the partitions of C12(Glu)2C12 into the DOPC vesicles are markedly different at these two pH values, and the belts at pH 7.4 exhibit a stronger partition ability than the fibrils at pH 5.6. Moreover, at any temperature and pH, C12(Glu)2C12 shows a stronger partition ability than C12Glu. This work can help to understand the relationship between the molecular structure and aggregate structure of amino acid amphiphiles and their partition abilities into the biomembranes.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Chen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xiuling Ji
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
13
|
Duša F, Chen W, Witos J, Wiedmer SK. Nanoplasmonic Sensing and Capillary Electrophoresis for Fast Screening of Interactions between Phosphatidylcholine Biomembranes and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5889-5900. [PMID: 29715032 PMCID: PMC6150717 DOI: 10.1021/acs.langmuir.8b01074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Nanoplasmonic sensing (NPS), based on localized surface plasmon resonance, with sensors composed of glass covered with golden nanodisks and overlaid with a SiO2 coating was applied in this study. Egg phosphatidylcholine (eggPC), being an easily accessible membrane-forming lipid, was used for preparation of biomimicking membranes. Small unilamellar vesicles with an approximate hydrodynamic diameter of 30 nm, formed by sonication in 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid buffer, were adsorbed within 10 min on the sensor surface either as intact vesicles or as a planar bilayer. The adsorbed biomembrane systems were further utilized for interaction studies with four different well-known surfactants (negatively and positively charged, zwitterionic, and nonionic) and each surfactant was tested at concentrations below and above the critical micelle concentration (CMC). Our results allowed the evaluation of different NPS patterns for every particular supported membrane system, surfactant, and its concentration. The most significant effect on the membrane was achieved upon the introduction of zwitterionic surfactant micelles, which in fact completely solubilized and removed the lipid membranes from the sensor surface. Other surfactant micelles interacted with the membranes and formed mixed structures remaining on the sensor surface. The studies performed at the concentrations below the CMCs of the surfactants showed that different mixed systems were formed. Depending on the supported membrane system and the type of surfactant, the mixed systems indicated different formation kinetics. Additionally, the final water rinse revealed the stability of the formed systems. To investigate the effect of the studied surfactants on the overall surface charge of the biomembrane, capillary electrophoresis (CE) experiments were carried out in parallel with the NPS analysis. The electroosmotic flow mobility of an eggPC-coated fused silica capillary was used to measure the total surface charge of the biomembrane after its treatment with the surfactants. Our results indicated in general good correlation between CE and NPS data. However, some discrepancies were seen while applying either zwitterionic or positively charged surfactants. This confirmed that CE analysis was able to provide additional data about the investigated systems. Taken together, the combination of NPS and CE proved to be an efficient way to describe the nature of interactions between biomimicking membranes and amphiphilic molecules.
Collapse
Affiliation(s)
- Filip Duša
- Institute
of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech
Republic
| | - Wen Chen
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Joanna Witos
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FIN-00076 Espoo, Finland
| | - Susanne K. Wiedmer
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Abdul-quadir MS, van der Westhuizen R, Welthagen W, Ferg EE, Tshentu ZR, Ogunlaja AS. Adsorptive denitrogenation of fuel over molecularly imprinted poly-2-(1H-imidazol-2-yl)-4-phenol microspheres. NEW J CHEM 2018. [DOI: 10.1039/c8nj02818d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecularly imprinted poly 2-(1H-imidazol-2-yl)-4-phenol prepared by suspension polymerization of 2-(1H-imidazol-2-yl)-4-vinylphenol in the presence of selected nitrogen containing compounds showed adsorption selectivity for target nitrogen-containing compounds in fuel oil.
Collapse
Affiliation(s)
- M. S. Abdul-quadir
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | | | - W. Welthagen
- Analytical Technology
- Sasol Technology (Pty) Limited
- Sasolburg 1947
- South Africa
| | - E. E. Ferg
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | - Z. R. Tshentu
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| | - A. S. Ogunlaja
- Department of Chemistry
- Nelson Mandela University
- Port Elizabeth 6031
- South Africa
| |
Collapse
|
15
|
Chen Y, Qiao F, Fan Y, Han Y, Wang Y. Interactions of Phospholipid Vesicles with Cationic and Anionic Oligomeric Surfactants. J Phys Chem B 2017; 121:7122-7132. [PMID: 28686026 DOI: 10.1021/acs.jpcb.7b05297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work studied the interactions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with cationic ammonium surfactants and anionic sulfate or sulfonate surfactants of different oligomeric degrees, including cationic monomeric DTAB, dimeric C12C3C12Br2, and trimeric DDAD as well as anionic monomeric SDS, dimeric C12C3C12(SO3)2, and trimeric TED-(C10SO3Na)3. The partition coefficient P of these surfactants between the DOPC vesicles and water was determined with isothermal titration microcalorimetry (ITC) by titrating concentrated DOPC solution into the monomer solution of these surfactants. It was found that the P value increases with the increase of the surfactant oligomeric degree. Moreover, the enthalpy change and the Gibbs free energy for the transition of these surfactants from water into the DOPC bilayer become more negative with increasing the oligomeric degree. Meanwhile, the calcein release experiment proves that the surfactant with a higher oligomeric degree shows stronger ability of changing the permeability of the DOPC vesicles. Furthermore, the solubilization of the DOPC vesicles by these oligomeric surfactants was studied by ITC, turbidity, and dynamic light scattering, and thus the phase boundaries for the surfactant/lipid mixtures have been determined. The critical surfactant to lipid ratios for the onset and end of the solubilization for the DOPC vesicles derived from the phase boundaries decrease remarkably with increasing the oligomeric degree. Overall, the surfactant with a larger oligomerization degree shows stronger ability in incorporating into the lipid bilayer, altering the membrane permeability and solubilizing lipid vesicles, which provides comprehensive understanding about the effects of structure and shape of oligomeric surfactant molecules on lipid-surfactant interactions.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Fulin Qiao
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yaxun Fan
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
16
|
Yoon BK, Jackman JA, Kim MC, Sut TN, Cho NJ. Correlating Membrane Morphological Responses with Micellar Aggregation Behavior of Capric Acid and Monocaprin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2750-2759. [PMID: 28263610 DOI: 10.1021/acs.langmuir.6b03944] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interaction of single-chain lipid amphiphiles with phospholipid membranes is relevant to many scientific fields, including molecular evolution, medicine, and biofuels. Two widely studied compounds within this class are the medium-chain saturated fatty acid, capric acid, and its monoglyceride derivative, monocaprin. To date, most studies about these compounds have involved in vitro evaluation of their biological activities, while mechanistic details of how capric acid and monocaprin interact with phospholipid bilayers remain elusive. Herein, we investigated the effect of these two compounds on the morphological and fluidic properties of prefabricated, supported lipid bilayers (SLBs). The critical micelle concentration (CMC) of each compound was determined by fluorescence spectroscopy measurements. At or above its CMC, capric acid induced the formation of elongated tubules protruding from the SLB, as determined by quartz crystal microbalance-dissipation and fluorescence microscopy experiments. By contrast, monocaprin induced the formation of elongated tubules or membrane buds below and above its CMC, respectively. Fluorescence recovery after photobleaching (FRAP) experiments indicated that capric acid increased bilayer fluidity only above its CMC, whereas monocaprin increased bilayer fluidity both above and below its CMC. We discuss these findings in the context of the two compounds' structural properties, including net charge, molecular length and hydrogen-bonding capacity. Collectively, the findings demonstrate that capric acid and monocaprin differentially affect the morphological and fluidic properties of SLBs, and that the aggregation state of the compounds plays a critical role in modulating their interactions with phospholipid membranes.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Tun Naw Sut
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
17
|
Scheidt HA, Klingler J, Huster D, Keller S. Structural Thermodynamics of myr-Src(2-19) Binding to Phospholipid Membranes. Biophys J 2016; 109:586-94. [PMID: 26244740 DOI: 10.1016/j.bpj.2015.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022] Open
Abstract
Many proteins are anchored to lipid bilayer membranes through a combination of hydrophobic and electrostatic interactions. In the case of the membrane-bound nonreceptor tyrosine kinase Src from Rous sarcoma virus, these interactions are mediated by an N-terminal myristoyl chain and an adjacent cluster of six basic amino-acid residues, respectively. In contrast with the acyl modifications of other lipid-anchored proteins, the myristoyl chain of Src does not match the host lipid bilayer in terms of chain conformation and dynamics, which is attributed to a tradeoff between hydrophobic burial of the myristoyl chain and repulsion of the peptidic moiety from the phospholipid headgroup region. Here, we combine thermodynamic information obtained from isothermal titration calorimetry with structural data derived from (2)H, (13)C, and (31)P solid-state nuclear magnetic resonance spectroscopy to decipher the hydrophobic and electrostatic contributions governing the interactions of a myristoylated Src peptide with zwitterionic and anionic membranes made from lauroyl (C12:0) or myristoyl (C14:0) lipids. Although the latter are expected to enable better hydrophobic matching, the Src peptide partitions more avidly into the shorter-chain lipid analog because this does not require the myristoyl chain to stretch extensively to avoid unfavorable peptide/headgroup interactions. Moreover, we find that Coulombic and intrinsic contributions to membrane binding are not additive, because the presence of anionic lipids enhances membrane binding more strongly than would be expected on the basis of simple Coulombic attraction.
Collapse
Affiliation(s)
- Holger A Scheidt
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Leipzig, Germany
| | - Johannes Klingler
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Leipzig, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
18
|
Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, Choi H, Park YG, Park JY, Hubbert A, McCue M, Vassallo S, Bakh N, Frosch MP, Wedeen VJ, Seung HS, Chung K. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems. Cell 2016; 163:1500-14. [PMID: 26638076 DOI: 10.1016/j.cell.2015.11.025] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 01/25/2023]
Abstract
Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels.
Collapse
Affiliation(s)
- Evan Murray
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Goodwin
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA
| | - Taeyun Ku
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sung-Yon Kim
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Gyun Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeong-Yoon Park
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Austin Hubbert
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret McCue
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Vassallo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Naveed Bakh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory of Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Van J Wedeen
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - H Sebastian Seung
- Simons Center for Data Analysis, 160 Fifth Avenue, 8th Floor, New York, NY 10010, USA; Princeton Neuroscience Institute and Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Membrane interactions of proline-rich antimicrobial peptide, Chex1-Arg20, multimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1236-43. [PMID: 26926423 DOI: 10.1016/j.bbamem.2016.02.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
The increasing prevalence of antibiotic-resistant pathogens requires the development of new antibiotics. Proline-rich antimicrobial peptides (PrAMPs), including native apidaecins, Bac7, and oncocins or designed A3APO, show multi-modal actions against pathogens together with immunostimulatory activities. The interactions of the designed PrAMP, Chex1-Arg20, and its dimeric and tetrameric oligomers with different model membranes were investigated by circular dichroism spectroscopy, dynamic light scattering, zeta potential, differential scanning calorimetry, and dye leakage. Chex1-Arg20 oligomers showed stronger affinity and preferential binding to negatively charged phospholipid bilayers and led to lipid aggregation and neutralization. Fluorescence microscopy of negatively charged giant unilamellar vesicles with AlexFluor-647-labeled Chex1-Arg20 dimers and tetramers displayed aggregation at a peptide/lipid low ratio of 1:200 and at higher peptide concentrations (1:100/1:50) for Chex1-Arg20 monomer. Such interactions, aggregation, and neutralization of PrAMP oligomers additionally showed the importance of interactions of PrAMPs with negatively charged membranes.
Collapse
|
20
|
Textor M, Keller S. Calorimetric Quantification of Cyclodextrin-Mediated Detergent Extraction for Membrane-Protein Reconstitution. Methods Enzymol 2016; 567:129-56. [DOI: 10.1016/bs.mie.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Ogunlaja AS, Hosten E, Betz R, Tshentu ZR. Selective removal of isoquinoline and quinoline from simulated fuel using 1,1′-binaphthyl-2,2′-diol (BINOL): crystal structure and evaluation of the adduct electronic properties. RSC Adv 2016. [DOI: 10.1039/c6ra03854a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,1′-Binaphthyl-2,2′-diol/quinoline (BINOL/QUN) and 1,1′-binaphthyl-2,2′-diol/isoquinoline (BINOL/ISOQUN) adducts were successfully synthesized. Isothermal titration calorimetry (ITC) involving 1,1′-binaphthyl-2,2′-diol (BINOL) and isoquinoline confirming interaction.
Collapse
Affiliation(s)
- Adeniyi S. Ogunlaja
- Department of Chemistry
- Nelson Mandela Metropolitan University
- Port-Elizabeth 6031
- South Africa
| | - Eric Hosten
- Department of Chemistry
- Nelson Mandela Metropolitan University
- Port-Elizabeth 6031
- South Africa
| | - Richard Betz
- Department of Chemistry
- Nelson Mandela Metropolitan University
- Port-Elizabeth 6031
- South Africa
| | - Zenixole R. Tshentu
- Department of Chemistry
- Nelson Mandela Metropolitan University
- Port-Elizabeth 6031
- South Africa
| |
Collapse
|
22
|
Vargas C, Arenas RC, Frotscher E, Keller S. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. NANOSCALE 2015; 7:20685-96. [PMID: 26599076 DOI: 10.1039/c5nr06353a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.
Collapse
Affiliation(s)
- Carolyn Vargas
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
23
|
Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochim Biophys Acta Gen Subj 2015; 1860:999-1016. [PMID: 26459003 DOI: 10.1016/j.bbagen.2015.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/23/2015] [Accepted: 10/07/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Isothermal titration calorimetry (ITC) is a general technique that allows for precise and highly sensitive measurements. These measurements may provide a complete and accurate thermodynamic description of association processes in complex systems such as colloidal mixtures. SCOPE OF THE REVIEW This review will address uses of ITC for studies of surfactant aggregation to form micelles, with emphasis on the thermodynamic studies of homologous surfactant series. We will also review studies on surfactant association with polymers of different molecular characteristics and with colloidal particles. GENERAL SIGNIFICANCE ITC studies on the association of different homologous series of surfactants provide quantitative information on independent contribution from their apolar hydrocarbon chains and polar headgroups to the different thermodynamic functions associated with micellization (Gibbs energy, enthalpy and entropy). Studies on surfactant association to polymers by ITC provide a comprehensive description of the association process, including examples in which particular features revealed by ITC were elucidated by using ancillary techniques such as light or X-ray scattering measurements. Examples of uses of ITC to follow surfactant association to biomolecules such as proteins or DNA, or nanoparticles are also highlighted. Finally, recent theoretical models that were proposed to analyze ITC data in terms of binding/association processes are discussed. MAJOR CONCLUSIONS This review stresses the importance of using direct calorimetric measurements to obtain and report accurate thermodynamic data, even in complex systems. These data, whenever possible, should be confirmed and associated with other ancillary techniques that allow elucidation of the nature of the transformations detected by calorimetric results, providing a complete description of the process under scrutiny.
Collapse
|
24
|
Yoon BK, Jackman JA, Kim MC, Cho NJ. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10223-32. [PMID: 26325618 DOI: 10.1021/acs.langmuir.5b02088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses.
Collapse
Affiliation(s)
| | | | | | - Nam-Joon Cho
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
25
|
Scheinpflug K, Krylova O, Nikolenko H, Thurm C, Dathe M. Evidence for a novel mechanism of antimicrobial action of a cyclic R-,W-rich hexapeptide. PLoS One 2015; 10:e0125056. [PMID: 25875357 PMCID: PMC4398456 DOI: 10.1371/journal.pone.0125056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
Abstract
The development of antimicrobial peptides as new class of antibiotic agents requires structural characterisation and understanding of their diverse mechanisms of action. As the cyclic hexapeptide cWFW (cyclo(RRRWFW)) does not exert its rapid cell killing activity by membrane permeabilisation, in this study we investigated alternative mechanisms of action, such as peptide translocation into the cytoplasm and peptide interaction with components of the phospholipid matrix of the bacterial membrane. Using fluorescence microscopy and an HPLC-based strategy to analyse peptide uptake into the cells we could confirm the cytoplasmic membrane as the major peptide target. However, unexpectedly we observed accumulation of cWFW at distinct sites of the membrane. Further characterisation of peptide-membrane interaction involved live cell imaging to visualise the distribution of the lipid cardiolipin (CL) and isothermal titration calorimetry to determine the binding affinity to model membranes with different bacterial lipid compositions. Our results demonstrate a distribution of the cyclic peptide similar to that of cardiolipin within the membrane and highly preferred affinity of cWFW for CL-rich phosphatidylethanolamine (POPE) matrices. These observations point to a novel mechanism of antimicrobial killing for the cyclic hexapeptide cWFW which is neither based on membrane permeabilisation nor translocation into the cytoplasm but rather on preferred partitioning into particular lipid domains. As the phospholipids POPE/CL play a key role in the dynamic organisation of bacterial membranes we discuss the consequences of this peptide-lipid-interaction and outline the impact on antimicrobial peptide research.
Collapse
Affiliation(s)
- Kathi Scheinpflug
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Oxana Krylova
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Nikolenko
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Charley Thurm
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Margitta Dathe
- Department of Chemical Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail:
| |
Collapse
|
26
|
Textor M, Vargas C, Keller S. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution. Methods 2015; 76:183-193. [DOI: 10.1016/j.ymeth.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022] Open
|
27
|
Frotscher E, Danielczak B, Vargas C, Meister A, Durand G, Keller S. Ein fluoriertes Detergens für Membranprotein-Anwendungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Frotscher E, Danielczak B, Vargas C, Meister A, Durand G, Keller S. A Fluorinated Detergent for Membrane-Protein Applications. Angew Chem Int Ed Engl 2015; 54:5069-73. [DOI: 10.1002/anie.201412359] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/22/2015] [Indexed: 11/06/2022]
|
29
|
Synthesis and Characterization of Some Nonionic Bolaamphiphiles. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Stangl M, Unger S, Keller S, Schneider D. Sequence-specific dimerization of a transmembrane helix in amphipol A8-35. PLoS One 2014; 9:e110970. [PMID: 25347769 PMCID: PMC4210147 DOI: 10.1371/journal.pone.0110970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
As traditional detergents might destabilize or even denature membrane proteins, amphiphilic polymers have moved into the focus of membrane-protein research in recent years. Thus far, Amphipols are the best studied amphiphilic copolymers, having a hydrophilic backbone with short hydrophobic chains. However, since stabilizing as well as destabilizing effects of the Amphipol belt on the structure of membrane proteins have been described, we systematically analyze the impact of the most commonly used Amphipol A8-35 on the structure and stability of a well-defined transmembrane protein model, the glycophorin A transmembrane helix dimer. Amphipols are not able to directly extract proteins from their native membranes, and detergents are typically replaced by Amphipols only after protein extraction from membranes. As Amphipols form mixed micelles with detergents, a better understanding of Amphipol-detergent interactions is required. Therefore, we analyze the interaction of A8-35 with the anionic detergent sodium dodecyl sulfate and describe the impact of the mixed-micelle-like system on the stability of a transmembrane helix dimer. As A8-35 may highly stabilize and thereby rigidify a transmembrane protein structure, modest destabilization by controlled addition of detergents and formation of mixed micellar systems might be helpful to preserve the function of a membrane protein in Amphipol environments.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University, Mainz, Germany
| | - Sebastian Unger
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
31
|
Collins MD, Gordon SE. Short-chain phosphoinositide partitioning into plasma membrane models. Biophys J 2014; 105:2485-94. [PMID: 24314079 DOI: 10.1016/j.bpj.2013.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/20/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022] Open
Abstract
Phosphoinositides are vital for many cellular signaling processes, and therefore a number of approaches to manipulating phosphoinositide levels in cells or excised patches of cell membranes have been developed. Among the most common is the use of "short-chain" phosphoinositides, usually dioctanoyl phosphoinositol phosphates. We use isothermal titration calorimetry to determine partitioning of the most abundant phosphoinositol phosphates, PI(4)P and PI(4,5)P2 into models of the intracellular and extracellular facing leaflets of neuronal plasma membranes. We show that phosphoinositide mole fractions in the lipid membrane reach physiological levels at equilibrium with reasonable solution concentrations. Finally we explore the consequences of our results for cellular electrophysiology. In particular, we find that TRPV1 is more selective for PI(4,5)P2 than PI(4)P and activated by extremely low membrane mole fractions of PIPs. We conclude by discussing how the logic of our work extends to other experiments with short-chain phosphoinositides. For delayed rectifier K(+) channels, consideration of the membrane mole fraction of PI(4,5)P2 lipids with different acyl chain lengths suggests a different mechanism for PI(4,5)P2 regulation than previously proposed. Inward rectifier K(+) channels apparent lack of selectivity for certain short-chain PIPs may require reinterpretation in view of the PIPs different membrane partitioning.
Collapse
Affiliation(s)
- Marcus D Collins
- University of Washington School of Medicine, Department of Physiology and Biophysics, Seattle, WA
| | | |
Collapse
|
32
|
Membrane partitioning and translocation studied by isothermal titration calorimetry. Methods Mol Biol 2014; 1033:253-71. [PMID: 23996182 DOI: 10.1007/978-1-62703-487-6_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The ability to bind to and translocate across lipid bilayers is of paramount importance for the extracellular administration of intracellularly active compounds in cell biology, medicinal chemistry, and drug development. A combination of the so-called uptake and release experiments performed by high-sensitivity isothermal titration calorimetry provides a powerful and universally applicable tool for measuring membrane binding and translocation of various compound classes in a label-free manner in solution. The protocol presented here is designed for a quantitative analysis of microcalorimetric uptake and release titrations. In contrast with simpler approaches described previously, it is applicable also to electrically charged solutes, such as peptides and proteins, experimentally and clinically relevant surfactants, drugs, metal ions, and other ionic compounds.
Collapse
|
33
|
Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2306-12. [PMID: 24631665 DOI: 10.1016/j.bbamem.2014.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/21/2014] [Indexed: 11/24/2022]
Abstract
The effective charge of membrane-active molecules such as the fungicidal lipopeptide surfactin (SF) is a crucial property governing solubility, membrane partitioning, and membrane permeability. We present zeta potential measurements of liposomes to measure the effective charge as well as membrane partitioning of SF by utilizing what we call an equi-activity analysis of several series of samples with different lipid concentrations. We observe an effective charge of -1.0 for SF at pH8.5 and insignificantly lower at pH7.4, illustrating that the effective charge may deviate strongly from the nominal value (-2 for 1 Asp, 1 Glu). The apparent partition coefficient decreases from roughly 100 to 20/mM with increasing membrane content of SF in agreement with the literature. Finally, by comparing zeta potentials measured soon after the addition of peptide to liposomes with those measured after a heat treatment to induce transmembrane equilibration of SF, we quantified the asymmetry of partitioning between the outer and inner leaflets. At very low concentration, SF binds exclusively to the outer leaflet. The onset of partial translocation to the inner leaflet occurs at about 5mol-% SF in the membrane. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
|
34
|
Abraham T, Prenner EJ, Lewis RNAH, Mant CT, Keller S, Hodges RS, McElhaney RN. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1420-9. [PMID: 24388950 DOI: 10.1016/j.bbamem.2013.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 11/28/2022]
Abstract
GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely β-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.
Collapse
Affiliation(s)
- Thomas Abraham
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elmar J Prenner
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrodinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Robert S Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Ronald N McElhaney
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
35
|
Jahnke N, Krylova OO, Hoomann T, Vargas C, Fiedler S, Pohl P, Keller S. Real-time monitoring of membrane-protein reconstitution by isothermal titration calorimetry. Anal Chem 2013; 86:920-7. [PMID: 24354292 PMCID: PMC3886389 DOI: 10.1021/ac403723t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Phase diagrams offer a wealth of
thermodynamic information on aqueous
mixtures of bilayer-forming lipids and micelle-forming detergents,
providing a straightforward means of monitoring and adjusting the
supramolecular state of such systems. However, equilibrium phase diagrams
are of very limited use for the reconstitution of membrane proteins
because of the occurrence of irreversible, unproductive processes
such as aggregation and precipitation that compete with productive
reconstitution. Here, we exemplify this by dissecting the effects
of the K+ channel KcsA on the process of bilayer self-assembly
in a mixture of Escherichia coli polar lipid extract
and the nonionic detergent octyl-β-d-glucopyranoside.
Even at starting concentrations in the low micromolar range, KcsA
has a tremendous impact on the supramolecular organization of the
system, shifting the critical lipid/detergent ratios at the onset
and completion of vesicle formation by more than 2-fold. Thus, equilibrium
phase diagrams obtained for protein-free lipid/detergent mixtures
would be misleading when used to guide the reconstitution process.
To address this issue, we demonstrate that, even under such nonequilibrium
conditions, high-sensitivity isothermal titration calorimetry can
be exploited to monitor the progress of membrane-protein reconstitution
in real time, in a noninvasive manner, and at high resolution to yield
functional proteoliposomes with a narrow size distribution for further
downstream applications.
Collapse
Affiliation(s)
- Nadin Jahnke
- Molecular Biophysics, University of Kaiserslautern , Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen C, Jiang C, Tripp CP. Molecular dynamics of the interaction of anionic surfactants with liposomes. Colloids Surf B Biointerfaces 2013; 105:173-9. [DOI: 10.1016/j.colsurfb.2012.12.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/26/2012] [Accepted: 12/19/2012] [Indexed: 11/28/2022]
|
37
|
Krainer G, Broecker J, Vargas C, Fanghänel J, Keller S. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry. Anal Chem 2012; 84:10715-22. [PMID: 23130786 DOI: 10.1021/ac3025575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.
Collapse
Affiliation(s)
- Georg Krainer
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
38
|
Schaal J, Dekowski B, Wiesner B, Eichhorst J, Marter K, Vargas C, Keller S, Eremina N, Barth A, Baumann A, Eisenhardt D, Hagen V. Coumarin-based octopamine phototriggers and their effects on an insect octopamine receptor. Chembiochem 2012; 13:1458-64. [PMID: 22674503 DOI: 10.1002/cbic.201200110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Indexed: 11/07/2022]
Abstract
We have developed and characterized efficient caged compounds of the neurotransmitter octopamine. For derivatization, we introduced [6-bromo-8-(diethylaminomethyl)-7-hydroxycoumarin-4-yl]methoxycarbonyl (DBHCMOC) and {6-bromo-7-hydroxy-8-[(piperazin-1-yl)methyl]coumarin-4-yl}methoxycarbonyl (PBHCMOC) moieties as novel photo-removable protecting groups. The caged compounds were functionally inactive when applied to heterologously expressed octopamine receptors (AmOctα1R). Upon irradiation with UV-visible or IR light, bioactive octopamine was released and evoked Ca2+ signals in AmOctα1R-expressing cells. The pronounced water solubility of compounds 2-4 in particular holds great promise for these substances as excellent phototriggers of this important neurotransmitter.
Collapse
Affiliation(s)
- Janina Schaal
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nazari M, Kurdi M, Heerklotz H. Classifying surfactants with respect to their effect on lipid membrane order. Biophys J 2012; 102:498-506. [PMID: 22325272 DOI: 10.1016/j.bpj.2011.12.029] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/04/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
We propose classifying surfactants with respect to their effect on membrane order, which is derived from the time-resolved fluorescence anisotropy of DPH. This may help in understanding why certain surfactants, including biosurfactants such as antimicrobial lipopeptides and saponins, often show a superior performance to permeabilize and lyse membranes and/or a better suitability for membrane protein solubilization. Micelle-forming surfactants induce curvature stress in membranes that causes disordering and, finally, lysis. Typical detergents such as C(12)EO(8), octyl glucoside, SDS, and lauryl maltoside initiate membrane lysis after reaching a substantial, apparently critical extent of disordering. In contrast, the fungicidal lipopeptides surfactin, fengycin, and iturin from Bacillus subtilis QST713 as well as digitonin, CHAPS, and lysophosphatidylcholine solubilize membranes without substantial, overall disordering. We hypothesize they disrupt the membrane locally due to a spontaneous segregation from the lipid and/or packing defects and refer to them as heterogeneously perturbing. This may account for enhanced activity, selectivity, and mutual synergism of antimicrobial biosurfactants and reduced destabilization of membrane proteins by CHAPS or digitonin. Triton shows the pattern of a segregating surfactant in the presence of cholesterol.
Collapse
Affiliation(s)
- Mozhgan Nazari
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Junkes C, Harvey RD, Bruce KD, Dölling R, Bagheri M, Dathe M. Cyclic antimicrobial R-, W-rich peptides: the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:515-28. [PMID: 21286704 DOI: 10.1007/s00249-011-0671-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/07/2010] [Accepted: 01/03/2011] [Indexed: 11/25/2022]
Abstract
This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E. coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E. coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E. coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.
Collapse
Affiliation(s)
- Christof Junkes
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Raudino A, Sarpietro MG, Pannuzzo M. The thermodynamics of simple biomembrane mimetic systems. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:15-38. [PMID: 21430953 PMCID: PMC3053513 DOI: 10.4103/0975-7406.76462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 10/09/2010] [Accepted: 12/15/2010] [Indexed: 11/04/2022] Open
Abstract
Insight into the forces governing a system is essential for understanding its behavior and function. Thermodynamic investigations provide a wealth of information that is not, or is hardly, available from other methods. This article reviews thermodynamic approaches and assays to measure collective properties such as heat adsorption / emission and volume variations. These methods can be successfully applied to the study of lipid vesicles (liposomes) and biological membranes. With respect to instrumentation, differential scanning calorimetry, pressure perturbation calorimetry, isothermal titration calorimetry, dilatometry, and acoustic techniques aimed at measuring the isothermal and adiabatic processes, two- and three-dimensional compressibilities are considered. Applications of these techniques to lipid systems include the measurement of different thermodynamic parameters and a detailed characterization of thermotropic, barotropic, and lyotropic phase behavior. The membrane binding and / or partitioning of solutes (proteins, peptides, drugs, surfactants, ions, etc.) can also be quantified and modeled. Many thermodynamic assays are available for studying the effect of proteins and other additives on membranes, characterizing non-ideal mixing, domain formation, bilayer stability, curvature strain, permeability, solubilization, and fusion. Studies of membrane proteins in lipid environments elucidate lipid-protein interactions in membranes. Finally, a plethora of relaxation phenomena toward equilibrium thermodynamic structures can be also investigated. The systems are described in terms of enthalpic and entropic forces, equilibrium constants, heat capacities, partial volume changes, volume and area compressibility, and so on, also shedding light on the stability of the structures and the molecular origin and mechanism of the structural changes.
Collapse
Affiliation(s)
- Antonio Raudino
- University of Catania, Department of Chemistry, Viale A. Doria 6-95125, Catania, Italy
| | | | - Martina Pannuzzo
- University of Catania, Department of Chemistry, Viale A. Doria 6-95125, Catania, Italy
| |
Collapse
|
42
|
Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Antimicrob Agents Chemother 2010; 55:788-97. [PMID: 21098244 DOI: 10.1128/aac.01098-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The activity of cyclo-RRRWFW (c-WFW) against Escherichia coli has been shown to be modulated by the aromatic motif and the lipopolysaccharides (LPS) in the bacterial outer membrane. To identify interaction sites and to elucidate the mode of c-WFW action, peptides were synthesized by the replacement of tryptophan (W) with analogs having altered hydrophobicity, dipole and quadrupole moments, hydrogen-bonding ability, amphipathicity, and ring size. The peptide activity against Bacillus subtilis and erythrocytes increased with increasing hydrophobicity, whereas the effect on E. coli revealed a more complex pattern. Although they had no effect on the E. coli inner membrane even at concentrations higher than the MIC, peptides permeabilized the outer membrane according to their antimicrobial activity pattern, suggesting a major role of LPS in peptide transport across the wall. For isothermal titration calorimetry (ITC) studies of peptide-lipid bilayer interaction, we used POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline), either alone or in mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG), to mimic the charge properties of eukaryotic and bacterial membranes, respectively, as well as in mixtures with lipid A, rough LPS, and smooth LPS as models of the outer membrane of E. coli. Peptide accumulation was determined by both electrostatic and hydrophobic interactions. The susceptibility of the lipid systems followed the order of POPC-smooth LPS >> POPC-rough LPS > POPC-lipid A = POPC-POPG > POPC. Low peptide hydrophobicity and enhanced flexibility reduced binding. The influence of the other properties on the free energy of partitioning was low, but an enhanced hydrogen-bonding ability and dipole moment resulted in remarkable variations in the contribution of enthalpy and entropy. In the presence of rough and smooth LPS, the binding-modulating role of these parameters decreased. The highly differentiated activity pattern against E. coli was poorly reflected in peptide binding to LPS-containing membranes. However, stronger partitioning into POPC-smooth LPS than into POPC-rough LPS uncovered a significant role of O-antigen and outer core oligosaccharides in peptide transport and the permeabilization of the outer membrane and the anti-E. coli activity of the cyclic peptides.
Collapse
|
43
|
Inhomogeneities in sodium decylsulfate doped 1,2-dipalmitoylphosphatidylcholine bilayer. J Colloid Interface Sci 2010; 343:401-7. [DOI: 10.1016/j.jcis.2009.11.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/17/2022]
|
44
|
Abstract
We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.
Collapse
|
45
|
Abstract
Assessing the ability of biomolecules or drugs to overcome lipid membranes in a receptor-independent way is of great importance in both basic research and applications involving the use of liposomes. A combination of uptake, release, and dilution experiments performed by steady-state fluorescence spectroscopy provides a powerful, straightforward, and inexpensive way of monitoring membrane translocation of fluorescent compounds. This is particularly true for peptides and proteins carrying intrinsic tryptophan residues, which eliminates the need for attaching extrinsic labeling moieties to the compound of interest. The approach encompasses three different kinds of fluorescence titrations and some simple calculations that can be carried out in a spreadsheet program. A complete set of experiments and data analyses can typically be completed within two days.
Collapse
Affiliation(s)
- Jana Broecker
- Leibniz Institute of Molecular Pharmacology FMP, Berlin, Germany
| | | |
Collapse
|
46
|
Bagheri M. Synthesis and thermodynamic characterization of small cyclic antimicrobial arginine and tryptophan-rich peptides with selectivity for Gram-negative bacteria. Methods Mol Biol 2010; 618:87-109. [PMID: 20094860 DOI: 10.1007/978-1-60761-594-1_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One promising strategy to combat the proliferation of bacteria resistance toward current antibiotics is the development of peptide-based drug. Among these compounds is a group of small cyclic peptides rich in arginine (Arg) and tryptophan (Trp) residues with selective toxicity toward Gram-negative bacteria. The small size of these peptides with improved toxicity toward Gram-negative bacteria makes them an interesting candidate to understand the forces responsible for their selectivity and paves the way to develop new therapeutics with potent activity toward multi-resistant Gram-negative bacteria. To reach this goal, isothermal titration calorimetry (ITC) is a useful technique which may provide the complete set of thermodynamic parameters of the interaction of peptides with lipid bilayers mimicking the properties of bacterial membranes within a few hours. The purpose of this chapter is to describe the synthesis of this group of small synthetic antimicrobial peptides together with the application of ITC to study their interaction with lipid membranes.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Leibniz Institute of Molecular Pharmacology (FMP), Berlin, Germany
| |
Collapse
|
47
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
48
|
Moreno MJ, Bastos M, Velazquez-Campoy A. Partition of amphiphilic molecules to lipid bilayers by isothermal titration calorimetry. Anal Biochem 2009; 399:44-7. [PMID: 19925773 DOI: 10.1016/j.ab.2009.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/28/2022]
Abstract
The partition of the amphiphile sodium dodecyl sulfate (SDS) between an aqueous solution and a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer was followed by isothermal titration calorimetry (ITC) as a function of the total concentration of SDS. It was found that the obtained partition coefficient is strongly affected by the ligand concentration, even after correction for the charge imposed in the bilayer by the bound SDS. The partition coefficient decreased as the total concentration of SDS increased, with this effect being significant for local concentrations of SDS in the lipid bilayer above 5 molar%. At those high local concentrations, the properties of the lipid bilayer are strongly affected, leading to nonideal behavior and concentration-dependent apparent partition coefficients. It is shown that with the modern ITC instruments available, the concentrations of SDS can be drastically reduced while maintaining a good signal-to-noise ratio. The intrinsic parameters of the interaction with unperturbed membranes can be obtained from the asymptotic behavior of the apparent parameters as a function of the ligand concentration for both nonionic and ionic solutes. A detailed analysis is performed, and a spreadsheet is provided to obtain the interaction parameters with and without correction for electrostatics.
Collapse
Affiliation(s)
- Maria João Moreno
- Biological Chemistry Group, Department of Chemistry-FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal.
| | | | | |
Collapse
|
49
|
Monitoring detergent-mediated solubilization and reconstitution of lipid membranes by isothermal titration calorimetry. Nat Protoc 2009; 4:686-97. [PMID: 19373233 DOI: 10.1038/nprot.2009.35] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The solubilization and reconstitution of biological or liposomal membranes by detergents and biomolecules with detergent-like properties play a major role for technical applications (e.g., the isolation of membrane proteins) and biological phenomena (of, e.g., amphiphilic peptides). It is therefore important to know and understand the amounts of a given detergent required for the onset and completion of membrane solubilization and the detergent-lipid interactions in general. Lipid-detergent systems can form a variety of aggregate structures, which can be grouped into two pseudophases (lamellae and micelles) so that solubilization can be approximately described as a phase transition. Here we present a protocol for establishing the phase diagram and a detailed thermodynamic description of a lipid-detergent system based on isothermal titration calorimetry (ITC). The protocol can also be used to detect additive-induced membrane destabilization, permeabilization, domain formation and lipid-dependent transitions between rod-like and spherical micelles. A minimal protocol consisting of all sample preparation procedures and a single solubilization experiment can be accomplished within 2 days; a more extensive series comprising both solubilization and reconstitution experiments requires several days to a few weeks, depending on the number of titrations performed.
Collapse
|
50
|
Abstract
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Collapse
|