1
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
2
|
Karmakar K, Roy A, Dhibar S, Majumder S, Bhattacharjee S, Rahaman SKM, Saha R, Chatterjee P, Ray SJ, Saha B. Exploration of a wide bandgap semiconducting supramolecular Mg(II)-metallohydrogel derived from an aliphatic amine: a robust resistive switching framework for brain-inspired computing. Sci Rep 2023; 13:22318. [PMID: 38102201 PMCID: PMC10724216 DOI: 10.1038/s41598-023-48936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A rapid metallohydrogelation strategy has been developed of magnesium(II)-ion using trimethylamine as a low molecular weight gelator in water medium at room temperature. The mechanical property of the synthesized metallohydrogel material is established through the rheological analysis. The nano-rose like morphological patterns of Mg(II)-metallohydrogel are characterized through field emission scanning electron microscopic study. The energy dispersive X-ray elemental mapping analysis confirms the primary gel forming elements of Mg(II)-metallohydrogel. The possible metallohydrogel formation strategy has been analyzed through FT-IR spectroscopic study. In this work, magnesium(II) metallohydrogel (Mg@TMA) based metal-semiconductor-metal structures have been developed and charge transport behaviour is studied. Here, it is confirmed that the magnesium(II) metallohydrogel (Mg@TMA) based resistive random access memory (RRAM) device is showing bipolar resistive switching behaviour at room temperature. We have also explored the mechanism of resistive switching behaviour using the formation (rupture) of conductive filaments between the metal electrodes. This RRAM devices exhibit excellent switching endurance over 10,000 switching cycles with a large ON/OFF ratio (~ 100). The easy fabrication techniques, robust resistive switching behaviour and stability of the present system makes these structures preferred candidate for applications in non-volatile memory design, neuromorphic computing, flexible electronics and optoelectronics etc.
Collapse
Affiliation(s)
- Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| | - Shantanu Majumder
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal, 713303, India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
| | - Priyajit Chatterjee
- University Science Instrumentation Centre, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India.
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
3
|
Dhibar S, Pal S, Karmakar K, Hafiz SA, Bhattacharjee S, Roy A, Rahaman SKM, Ray SJ, Dam S, Saha B. Two novel low molecular weight gelator-driven supramolecular metallogels efficient in antimicrobial activity applications. RSC Adv 2023; 13:32842-32849. [PMID: 38025858 PMCID: PMC10630960 DOI: 10.1039/d3ra05019j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
A remarkable ultrasonication technique was successfully employed to create two novel metallogels using citric acid as a low molecular weight gelator, in combination with cadmium(ii)-acetate and mercury(ii)-acetate dissolved in N,N-dimethyl formamide at room temperature and under ambient conditions. The mechanical properties of the resulting Cd(ii)- and Hg(ii)-metallogels were rigorously examined through rheological analyses, which revealed their robust mechanical stability under varying angular frequencies and shear strains. Detailed characterization of the chemical constituents within these metallogels was accomplished through EDX mapping experiments, while microstructural features were visualized using field emission scanning electron microscope (FESEM) images. Additionally, FT-IR spectroscopic analysis was employed to elucidate the metallogel formation mechanism. Significantly, the antimicrobial efficacy of these novel metallogels was assessed against a panel of bacteria, including Gram-positive strains such as Bacillus subtilis and Staphylococcus epidermidis, as well as Gram-negative species like Escherichia coli and Pseudomonas aeruginosa. The results demonstrated substantial antibacterial activity, highlighting the potential of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels as effective agents against a broad spectrum of bacteria. In conclusion, this study provides a comprehensive exploration of the synthesis, characterization, and antimicrobial properties of Cd(ii) and Hg(ii)-based citric acid-mediated metallogels, shedding light on their promising applications in combating both Gram-positive and Gram-negative bacterial infections. These findings open up exciting prospects for the development of advanced materials with multifaceted industrial and biomedical uses.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Kripasindhu Karmakar
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Sk Abdul Hafiz
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University Asansol-713303 West Bengal India
| | - Arpita Roy
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - S K Mehebub Rahaman
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna Bihar-801106 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan Burdwan-713104 West Bengal India
| | - Bidyut Saha
- Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India +91 7001575909 +91 9476341691
| |
Collapse
|
4
|
Wang SC, Du ST, Hashmi S, Cui SM, Li L, Handschuh-Wang S, Zhou X, Stadler FJ. Understanding Gel-Powers: Exploring Rheological Marvels of Acrylamide/Sodium Alginate Double-Network Hydrogels. Molecules 2023; 28:4868. [PMID: 37375423 DOI: 10.3390/molecules28124868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigates the rheological properties of dual-network hydrogels based on acrylamide and sodium alginate under large deformations. The concentration of calcium ions affects the nonlinear behavior, and all gel samples exhibit strain hardening, shear thickening, and shear densification. The paper focuses on systematic variation of the alginate concentration-which serves as second network building blocks-and the Ca2+-concentration-which shows how strongly they are connected. The precursor solutions show a typical viscoelastic solution behavior depending on alginate content and pH. The gels are highly elastic solids with only relatively small viscoelastic components, i.e., their creep and creep recovery behavior are indicative of the solid state after only a very short time while the linear viscoelastic phase angles are very small. The onset of the nonlinear regime decreases significantly when closing the second network (alginate) upon adding Ca2+, while at the same time the nonlinearity parameters (Q0, I3/I1, S, T, e3/e1, and v3/v1) increase significantly. Further, the tensile properties are significantly improved by closing the alginate network by Ca2+ at intermediate concentrations.
Collapse
Affiliation(s)
- Shi-Chang Wang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Shu-Tong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Saud Hashmi
- Department of Polymer & Petrochemical Engineering, NED University of Engineering & Technology, Karachi 75270, Pakistan
| | - Shu-Ming Cui
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Ling Li
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- The International School of Advanced Materials, School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
5
|
A novel citric acid facilitated supramolecular Zinc(II)-metallogel: Toward semiconducting device applications. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Dhibar S, Pal B, Karmakar K, Kundu S, Bhattacharjee S, Sahoo R, Mehebub Rahaman SK, Dey D, Pratim Ray P, Saha B. Exploring a supramolecular gel to
in‐situ
crystal fabrication from the low molecular weight gelators: a crystal engineering approach towards microelectronic device application. ChemistrySelect 2023. [DOI: 10.1002/slct.202204214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
A Transparent Self-Healable Multistimuli-Responsive novel Supramolecular Co(II)-Metallogel derived from Adipic Acid: Effective Hole Transport Layer for Polymer Solar Cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Dhibar S, Ojha SK, Mohan A, Prabhakaran SPC, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B. A multistimulus-responsive self-healable supramolecular copper( ii)-metallogel derived from l-(+) tartaric acid: an efficient Schottky barrier diode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A low molecular weight gelator l-(+) tartaric acid- based self-healing supramolecular Cu(ii)-metallogel offers an electronic device of Schottky barrier diode at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Saurav Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | | | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol-713303, West Bengal, India
| | - Kripasindhu Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Priya Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | - Animesh Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
9
|
A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review discusses, in brief, the various synthetic methods of two widely-used nanofillers; phyllosilicate and graphene. Both are 2D fillers introduced into hydrogel matrices to achieve mechanical robustness and water uptake behavior. Both the fillers are inserted by physical and chemical gelation methods where most of the chemical gelation, i.e., covalent approaches, results in better physical properties compared to their physical gels. Physical gels occur due to supramolecular assembly, van der Waals interactions, electrostatic interactions, hydrophobic associations, and H-bonding. For chemical gelation, in situ radical triggered gelation mostly occurs.
Collapse
|
10
|
Roy Chowdhury S, Nandi SK, Mondal S, Kumar S, Haldar D. White-Light-Emitting Supramolecular Polymer Gel Based on β-CD and NDI Host-Guest Inclusion Complex. Polymers (Basel) 2021; 13:polym13162762. [PMID: 34451301 PMCID: PMC8400613 DOI: 10.3390/polym13162762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Supramolecular polymer formed by non-covalent interactions between complementary building blocks entraps solvents and develops supramolecular polymer gel. A supramolecular polymer gel was prepared by the heating-cooling cycle of β-cyclodextrin (β-CD) and naphthalenedimide (NDI) solution in N,N-dimethylformamide (DMF). The host-guest inclusion complex of β-CD and NDI 1 containing dodecyl amine forms the supramolecular polymer and gel in DMF. However, β-CD and NDI 2, having glutamic acid, fail to form the supramolecular polymer and gel under the same condition. X-ray crystallography shows that the alkyl chains of NDI 1 are complementary to the hydrophobic cavity of the two β-CD units. From rheology, the storage modulus was approximately 1.5 orders of magnitude larger than the loss modulus, which indicates the physical crosslink and elastic nature of the thermo-responsive gel. FE-SEM images of the supramolecular polymer gel exhibit flake-like morphology and a dense flake network. The flakes developed from the assembly of smaller rods. Photophysical studies show that the host-guest complex formation and gelation have significantly enhanced emission intensity with a new hump at 550 nm. Upon excitation by a 366 nm UV-light, NDI 1 and β-CD gel in DMF shows white light emission. The gel has the potential for the fabrication of organic electronic devices.
Collapse
|
11
|
Xing JY, Li S, Ma LJ, Gao HM, Liu H, Lu ZY. Understanding of supramolecular emulsion interfacial polymerization in silico. J Chem Phys 2021; 154:184903. [PMID: 34241008 DOI: 10.1063/5.0047824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The composition and structure of a membrane determine its functionality and practical application. We study the supramolecular polymeric membrane prepared by supramolecular emulsion interfacial polymerization (SEIP) on the oil-in-water droplet via the computer simulation method. The factors that may influence its structure and properties are investigated, such as the degree of polymerization and molecular weight distribution (MWD) of products in the polymeric membranes. We find that the SEIP can lead to a higher total degree of polymerization as compared to the supramolecular interfacial polymerization (SIP). However, the average chain length of products in the SEIP is lower than that of the SIP due to its obvious interface curvature. The stoichiometric ratio of reactants in two phases will affect the MWD of the products, which further affects the performance of the membranes in practical applications, such as drug release rate and permeability. Besides, the MWD of the product by SEIP obviously deviates from the Flory distribution as a consequence of the curvature of reaction interface. In addition, we obtain the MWD for the emulsions whose size distribution conforms to the Gaussian distribution so that the MWD may be predicted according to the corresponding emulsion size distribution. This study helps us to better understand the controlling factors that may affect the structure and properties of supramolecular polymeric membranes by SEIP.
Collapse
Affiliation(s)
- Ji-Yuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Sheng Li
- College of Chemistry, Jilin University, Changchun 130023, China
| | - Li-Jun Ma
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
12
|
Wang K, Shao YG, Yan FZ, Zhang Z, Li S. Construction of Supramolecular Polymers with Different Topologies by Orthogonal Self-Assembly of Cryptand-Paraquat Recognition and Metal Coordination. Molecules 2021; 26:952. [PMID: 33670156 PMCID: PMC7916833 DOI: 10.3390/molecules26040952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/04/2022] Open
Abstract
Recently, metal-coordinated orthogonal self-assembly has been used as a feasible and efficient method in the construction of polymeric materials, which can also provide supramolecular self-assembly complexes with different topologies. Herein, a cryptand with a rigid pyridyl group on the third arm derived from BMP32C10 was synthesized. Through coordination-driven self-assembly with a bidentate organoplatinum(II) acceptor or tetradentate Pd(BF4)2•4CH3CN, a di-cryptand complex and tetra-cryptand complex were prepared, respectively. Subsequently, through the addition of a di-paraquat guest, linear and cross-linked supramolecular polymers were constructed through orthogonal self-assembly, respectively. By comparing their proton nuclear magnetic resonance (1H NMR) and diffusion-ordered spectroscopy (DOSY) spectra, it was found that the degrees of polymerization were dependent not only on the concentrations of the monomers but also on the topologies of the supramolecular polymers.
Collapse
Affiliation(s)
- Kai Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Guang Shao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng-Zhi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Hirao T, Fukuta K, Haino T. Polymerization of a biscalix[5]arene derivative. RSC Adv 2021; 11:17587-17594. [PMID: 35480194 PMCID: PMC9033180 DOI: 10.1039/d1ra02276h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Recent decades have seen an increased interest in the preparation of polymers possessing host or guest moieties as the end group, which has enabled new polymeric materials such as self-healable, shape-memory, and stimuli-responsive materials. Such polymers are commonly synthesized by tethering the host or guest moieties to polymers. On the other hand, there are limited reports demonstrating the preparation of host- or guest-appended polymers by directly polymerizing the corresponding host- or guest-appended monomers, which is valuable for easy access to diverse polymers from single molecular species. However, reactive host and/or guest moieties of the monomer interfere with the polymerization reaction. Here, we report that a biscalix[5]arene host-appended molecule can be polymerized with various monomers to form the corresponding host-appended polymers. The host–guest complexation behavior of calix[5]arene-appended polymers with fullerene derivatives was studied by 1H NMR and UV/Vis spectroscopic techniques, which revealed that the long polymer chains did not prevent host–guest complexation even when the fullerene derivative was equipped with a polymer chain. Thus, the present study shows the potential for developing polymers that have various combinations of polymer chains. A calix[5]arene appended monomer molecule was subjected to polymerization reaction to yield corresponding methacrylate polymers. The calix[5]arene appended polymers showed excellent encapsulation capability for fullerene molecules.![]()
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Kazushi Fukuta
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
14
|
Alam N, Sarma D. A thixotropic supramolecular metallogel with a 2D sheet morphology: iodine sequestration and column based dye separation. SOFT MATTER 2020; 16:10620-10627. [PMID: 33079107 DOI: 10.1039/d0sm00959h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sequestration of hazardous radioactive iodine and dye separation to reduce industrial waste through reutilization is pivotal for environmental safety. In this regard, herein, the synthesis of a new waterborne ultrasensitive supramolecular metallogel (Mg@DEOA) with a 2D sheet morphology is accomplished through direct mixing of a low molecular weight gelator diethanolamine and magnesium nitrate hexahydrate. This porous metallogel (180 m2 g-1) exhibits thixotropic properties and is injectable. The material was found to be an effective (587 mg g-1) host matrix for iodine sequestration from solution. Moreover, the Mg@DEOA xerogel was used to efficiently remove rhodamine B from a mixture of dyes with high separation factors through a xerogel packed column and as an adsorbent material for water-soluble dyes and CO. This column based application demonstrated by the metallogel could be useful for practical industrial dye-separation.
Collapse
Affiliation(s)
- Noohul Alam
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
15
|
Nitta N, Takatsuka M, Kihara S, Hirao T, Haino T. Self‐Healing Supramolecular Materials Constructed by Copolymerization via Molecular Recognition of Cavitand‐Based Coordination Capsules. Angew Chem Int Ed Engl 2020; 59:16690-16697. [DOI: 10.1002/anie.202006604] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Natsumi Nitta
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Mei Takatsuka
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Shin‐ichi Kihara
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
16
|
Nitta N, Takatsuka M, Kihara S, Hirao T, Haino T. Self‐Healing Supramolecular Materials Constructed by Copolymerization via Molecular Recognition of Cavitand‐Based Coordination Capsules. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Natsumi Nitta
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Mei Takatsuka
- Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Shin‐ichi Kihara
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takehiro Hirao
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Takeharu Haino
- Graduate School of Advanced Science and Engineering Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
17
|
Song P, Wang H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901244. [PMID: 31215093 DOI: 10.1002/adma.201901244] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/03/2019] [Indexed: 05/17/2023]
Abstract
It has always been critical to develop high-performance polymeric materials with exceptional mechanical strength and toughness, thermal stability, and even healable properties for meeting performance requirements in industry. Conventional chemical cross-linking leads to enhanced mechanical strength and thermostability at the expense of extensibility due to mutually exclusive mechanisms. Such major challenges have recently been addressed by using noncovalent cross-linking of reversible multiple hydrogen-bonds (H-bonds) that widely exist in biological materials, such as silk and muscle. Recent decades have witnessed the development of many tailor-made high-performance H-bond cross-linked polymeric materials. Here, recent advances in H-bond cross-linking strategies are reviewed for creating high-performance polymeric materials. H-bond cross-linking of polymers can be realized via i) self-association of interchain multiple H-bonding interactions or specific H-bond cross-linking motifs, such as 2-ureido-4-pyrimidone units with self-complementary quadruple H-bonds and ii) addition of external cross-linkers, including small molecules, nanoparticles, and polymer aggregates. The resultant cross-linked polymers normally exhibit tunable high strength, large extensibility, improved thermostability, and healable capability. Such performance portfolios enable these advanced polymers to find many significant cutting-edge applications. Major challenges facing existing H-bond cross-linking strategies are discussed, and some promising approaches for designing H-bond cross-linked polymeric materials in the future are also proposed.
Collapse
Affiliation(s)
- Pingan Song
- School of Engineering, Zhejiang A & F University, Hangzhou, 311300, China
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD, 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD, 4300, Australia
| |
Collapse
|
18
|
Faiczak K, Brook MA, Feinle A. Energy-Dissipating Polymeric Silicone Surfactants. Macromol Rapid Commun 2020; 41:e2000161. [PMID: 32346942 DOI: 10.1002/marc.202000161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/06/2022]
Abstract
Materials that are able to withstand impact loadings by dissipating energy are crucial for a broad range of different applications, including personal protective applications. Shear-thickening fluids (STFs) are often used for this purpose, but their preparation is still limited, in part, to high production costs. It is demonstrated that polymeric surfactants comprised of linear telechelic sugar-modified silicones-with neither additives nor particles-generate transient polymer networks (TPNs) that represent a promising alternative to STFs. The reported polymers have distinct viscoelastic properties and can turn from a liquid into a rubbery network when force is applied. Saccharide-modified silicones with short chains (degree of polymerization (DP) ≈ 34, 68) are solids, but become energy-absorbing viscoelastic fluids when diluted in low-viscosity silicone oils; longer silicones (DP ≈ 338, 675) with low saccharide contents are viscoelastic fluids at room temperature. Excellent damping properties are found for the reported silicone surfactants, even those containing only 0.1% saccharides. The degree of energy absorption can be tailored simply by controlling the sugar/silicone ratio.
Collapse
Affiliation(s)
- Kyle Faiczak
- McMaster University, Department of Chemistry and Chemical Biology, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Michael A Brook
- McMaster University, Department of Chemistry and Chemical Biology, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Andrea Feinle
- McMaster University, Department of Chemistry and Chemical Biology, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.,Paris-Lodron University Salzburg, Department of Chemistry and Physics of Materials, Jakob-Haringer Str. 2A, Salzburg, Austria, 5020
| |
Collapse
|
19
|
Lotfallah AH, Isabel Burguete M, Alfonso I, Luis SV. Synthesis of second-generation self-assembling Gemini Amphiphilic Pseudopeptides. J Colloid Interface Sci 2020; 564:52-64. [DOI: 10.1016/j.jcis.2019.12.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
|
20
|
Chetia M, Debnath S, Chowdhury S, Chatterjee S. Self-assembly and multifunctionality of peptide organogels: oil spill recovery, dye absorption and synthesis of conducting biomaterials. RSC Adv 2020; 10:5220-5233. [PMID: 35498311 PMCID: PMC9049182 DOI: 10.1039/c9ra10395c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/19/2020] [Indexed: 02/03/2023] Open
Abstract
The self-assembly of a series of low molecular weight gelator dipeptides containing para amino benzoic acid has been studied in mechanistic detail. All four dipeptides form phase selective, thermoreversible, rigid gels in a large range of organic solvents and fuels such as petrol, diesel, and kerosene. The mechanism of self-assembly has been dissected in detail using several experimental techniques. Self-assembly is driven mainly by aromatic and hydrophobic interactions. Hydrogen bonding groups, though present, seem to make a trivial contribution towards the self-assembly process. Phase selective gelation abilities in fuels in the presence of acidic, basic and saline conditions, together with the easy recovery of fuels from the organogels, render the peptides potential candidates for addressing oil-spill recovery. Being electron rich systems, these organogelators can absorb cationic dyes with >90% efficiency from wastewater. Finally, conducting biomaterials have been synthesized by the insertion of reduced graphene oxide into the organogels. Such small peptide based gelator molecules, being economically viable and easy to prepare, in addition to being multifunctional, are a hot area of research in the field of materials chemistry.
Collapse
Affiliation(s)
- Monikha Chetia
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sumit Chowdhury
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati Guwahati Assam India 781039 +91-361-2583310
| |
Collapse
|
21
|
Coubrough HM, Reynolds M, Goodchild JA, Connell SDA, Mattsson J, Wilson AJ. Assembly of miscible supramolecular network blends using DDA·AAD hydrogen-bonding interactions of pendent side-chains. Polym Chem 2020. [DOI: 10.1039/c9py01913h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miscible blends of poly(methyl methacrylate) and polystyrene polymers are assembled through triple hydrogen bonding between complementary ureidoimidazole and amidoisocytosine heterodimers.
Collapse
Affiliation(s)
| | | | | | | | - Johan Mattsson
- School of Physics & Astronomy
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| |
Collapse
|
22
|
Cheng CC, Gebeyehu BT, Huang SY, Abebe Alemayehu Y, Sun YT, Lai YC, Chang YH, Lai JY, Lee DJ. Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. J Colloid Interface Sci 2019; 552:166-178. [PMID: 31125827 DOI: 10.1016/j.jcis.2019.05.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 11/15/2022]
Abstract
HYPOTHESIS Invoking cooperative assembly of the uracil-functionalized supramolecular polymer BU-PPG [uracil end-capped poly(propylene glycol)] upon association with the nucleobase adenine derivative A-MA [methyl 3-(6-amino-9H-purin-9-yl)propanoate] as a model drug provides a new concept to control and tune the properties of supramolecular complexes and holds significant potential for the development of safer, more effective drug delivery systems. EXPERIMENTS BU-PPG and A-MA were successfully developed and exhibited specific recognition and high affinity, which enabled reversible complementary adenine-uracil (A-U) hydrogen bonding-induced formation of spherical micelles in aqueous solution. The self-assembly and controllable A-MA release behavior of BU-PPG/A-MA micelles were studied using morphological analysis and optical and light scattering techniques to investigate the effect of photoirradiation and temperature on the complementary hydrogen bond interactions between BU-PPG and A-MA. FINDINGS The resulting micelles possess unusual physical properties, including controlled photoreactivity kinetics, controllable self-assembled morphology and low cytotoxicity in vitro, as well as reversible temperature-responsive behavior. Importantly, irradiated micelles exhibited excellent long-term structural stability under normal physiological conditions and serum disturbance. Increasing the temperature triggered rapid release of A-MA by disrupting A-U complexes. These findings represent an entirely new, promising strategy for the development of multi-controlled release drug delivery nanocarriers based on complementary hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Belete Tewabe Gebeyehu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yihalem Abebe Alemayehu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ya-Ting Sun
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - You-Cheng Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Xing JY, Xue YH, Lu ZY, Liu H. In-Depth Analysis of Supramolecular Interfacial Polymerization via a Computer Simulation Strategy. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji-Yuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Yao-Hong Xue
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Hong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
24
|
Ge Y, Shen X, Cao H, Jin L, Shang J, Wang Y, Pan T, Yang Y, Qi Z. Biological Macrocycle: Supramolecular Hydrophobic Guest Transport System Based on Nanodiscs with Photodynamic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7824-7829. [PMID: 31141380 DOI: 10.1021/acs.langmuir.9b00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A biogenic macrocycle-based guest loading system has been developed by the self-assembly of membrane scaffold protein and phospholipids. The resulting 10 nm level transport system can increase the solubility of hydrophobic photodynamic agent hypocrellin B in aqueous medium and exhibited a cellular internalization capacity with substantial photodynamic activity.
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Xin Shen
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Hongqian Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
- Department of Public Health , Shandong University , Jinan , Shandong 250012 , China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
- Institute of Biomedical Materials & Engineering (IBME) , Northwestern Polytechnical University , Xi'an , Shaanxi 710072 , China
| |
Collapse
|
25
|
Podder D, Nandi SK, Sasmal S, Haldar D. Synergistic Tricolor Emission-Based White Light from Supramolecular Organic-Inorganic Hybrid Gel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6453-6459. [PMID: 30998369 DOI: 10.1021/acs.langmuir.9b00456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of engineered hybrid systems by encapsulating nanoparticles in gel scaffolds and their synergistic effects are highly crucial for the fabrication of advanced functional materials. Herein, a series of dipeptides containing an aromatic amino acid at the N-terminal and an aliphatic amino acid at the C-terminal were synthesized and studied. Among them, only the dipeptide l-Phe-l-Val can form both hydro- and organogelator, depending on the N- and C-terminal protecting groups. The organogel shows bright blue emission under 366 nm UV irradiation; however, the hydrogel does not show such blue emission. Such kind of emission may be due to the self-assembly and high degree of aggregation in the gel state of the phenyl ring. The blue-emitting organogel efficiently encapsulates green emission source CdSe quantum dots and red emission source LD 700 perchlorate dye. The resulting organic-inorganic hybrid gel exhibits white light emission due to the synergistic effect under 366 nm UV irradiation.
Collapse
Affiliation(s)
- Debasish Podder
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , West Bengal , India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , West Bengal , India
| | - Supriya Sasmal
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , West Bengal , India
| | - Debasish Haldar
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , West Bengal , India
| |
Collapse
|
26
|
Yang JH, Lee J, Lim S, Jung S, Jang SH, Jang SH, Kwak SY, Ahn S, Jung YC, Priestley RD, Chung JW. Understanding and controlling the self-healing behavior of 2-ureido-4[1H]-pyrimidinone-functionalized clustery and dendritic dual dynamic supramolecular network. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Hema K, Sureshan KM. Solid‐State Synthesis of Two Different Polymers in a Single Crystal: A Miscible Polymer Blend from a Topochemical Reaction. Angew Chem Int Ed Engl 2019; 58:2754-2759. [DOI: 10.1002/anie.201813198] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala- 695551 India
| | - Kana M. Sureshan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala- 695551 India
| |
Collapse
|
28
|
Hema K, Sureshan KM. Solid‐State Synthesis of Two Different Polymers in a Single Crystal: A Miscible Polymer Blend from a Topochemical Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuntrapakam Hema
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala- 695551 India
| | - Kana M. Sureshan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala- 695551 India
| |
Collapse
|
29
|
Dhibar S, Dey A, Jana R, Chatterjee A, Das GK, Ray PP, Dey B. A semiconducting supramolecular Co(ii)-metallohydrogel: an efficient catalyst for single-pot aryl–S bond formation at room temperature. Dalton Trans 2019; 48:17388-17394. [DOI: 10.1039/c9dt03373d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A monoethanolamine based Co(ii)-metallohydrogel can act as a Schottky barrier diode device and a catalyst for single-pot aryl–S bond formation at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Amiya Dey
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Rajkumar Jana
- Department of Physics
- Jadavpur University
- Kolkata
- India
| | - Arpita Chatterjee
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Gourab Kanti Das
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| | | | - Biswajit Dey
- Department of Chemistry
- Visva-Bharati University
- Santiniketan 731235
- India
| |
Collapse
|
30
|
Xiao T, Zhong W, Qi L, Gu J, Feng X, Yin Y, Li ZY, Sun XQ, Cheng M, Wang L. Ring-opening supramolecular polymerization controlled by orthogonal non-covalent interactions. Polym Chem 2019. [DOI: 10.1039/c9py00312f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The π–π interaction has been successfully utilized to orthogonally regulate the supramolecular polymerization driven by quadruple hydrogen bonding.
Collapse
|
31
|
Li B, He T, Shen X, Tang D, Yin S. Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 2019. [DOI: 10.1039/c8py01396a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent developments in AIE fluorescent supramolecular polymeric materials based on different types of intermolecular noncovalent interactions, and their wide ranging applications as chemical sensors, organic electronic materials, bio-imaging agents and so on.
Collapse
Affiliation(s)
- Bo Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Tian He
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Xi Shen
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Danting Tang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Shouchun Yin
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
32
|
Podder D, Chowdhury SR, Nandi SK, Haldar D. Tripeptide based super-organogelators: structure and function. NEW J CHEM 2019. [DOI: 10.1039/c8nj05578e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The peptide based super-gelators are highly soluble in non-toxic organic solvent ethanol, the solution is easy to handle and just by spraying the ethanol solution over an oil–water mixture it is able to form an organogel at room temperature.
Collapse
Affiliation(s)
- Debasish Podder
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Srayoshi Roy Chowdhury
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| |
Collapse
|
33
|
Wang L, Wang M, Guo LX, Sun Y, Zhang XQ, Lin BP, Yang H. Oligodeoxynucleosides with Olefin Bridges. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ling-Xiang Guo
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Ying Sun
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xue-Qin Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Bao-Ping Lin
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Key Laboratory for Science and Application of Molecular Ferroelectrics, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
34
|
Chen L, Liu R, Hao X, Yan Q. CO2
-Cross-Linked Frustrated Lewis Networks as Gas-Regulated Dynamic Covalent Materials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Liang Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Xiang Hao
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
35
|
Chen L, Liu R, Hao X, Yan Q. CO2
-Cross-Linked Frustrated Lewis Networks as Gas-Regulated Dynamic Covalent Materials. Angew Chem Int Ed Engl 2018; 58:264-268. [DOI: 10.1002/anie.201812365] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Renjie Liu
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Xiang Hao
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
36
|
Oh JS, Choi KH, Suh DH. Rapid Self‐healing Film From Novel Photo Polymerization Additive. ChemistrySelect 2018. [DOI: 10.1002/slct.201803616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeong Seop Oh
- Department of chemical engineeringHanyang university Wangsimni-ro 222 04763 Seongdong-gu Seoul (South Korea
| | - Kyoung Hwan Choi
- Department of chemical engineeringHanyang university Wangsimni-ro 222 04763 Seongdong-gu Seoul (South Korea
| | - Dong Hack Suh
- Department of chemical engineeringHanyang university Wangsimni-ro 222 04763 Seongdong-gu Seoul (South Korea
| |
Collapse
|
37
|
Zhang R, He M, Gao D, Liu Y, Wu M, Jiao Z, Su Y, Jiang Z. Polyphenol-assisted in-situ assembly for antifouling thin-film composite nanofiltration membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Tellers J, Canossa S, Pinalli R, Soliman M, Vachon J, Dalcanale E. Dynamic Cross-Linking of Polyethylene via Sextuple Hydrogen Bonding Array. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01715] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jonathan Tellers
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Stefano Canossa
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Maria Soliman
- SABIC Europe
B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Jérôme Vachon
- SABIC Europe
B.V., Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
39
|
Self-Assembled Structures of Diblock Copolymer/Homopolymer Blends through Multiple Complementary Hydrogen Bonds. CRYSTALS 2018. [DOI: 10.3390/cryst8080330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A poly(styrene-b-vinylbenzyl triazolylmethyl methyladenine) (PS-b-PVBA) diblock copolymer and a poly(vinylbenzyl triazolylmethyl methylthymine) (PVBT) homopolymer were prepared through a combination of nitroxide-mediated radical polymerizations and click reactions. Strong multiple hydrogen bonding interactions of the A···T binary pairs occurred in the PVBA/PVBT miscible domain of the PS-b-PVBA/PVPT diblock copolymer/homopolymer blend, as evidenced in Fourier transform infrared and 1H nuclear magnetic resonance spectra. The self-assembled lamellar structure of the pure PS-b-PVBA diblock copolymer after thermal annealing was transformed to a cylinder structure after blending with PVBT at lower concentrations and then to a disordered micelle or macrophase structure at higher PVBT concentrations, as revealed by small-angle X-ray scattering and transmission electron microscopy.
Collapse
|
40
|
Tong F, Linares-Mendez IJ, Han YF, Wisner JA, Wang HB. Readily functionalized AAA-DDD triply hydrogen-bonded motifs. Org Biomol Chem 2018; 16:2947-2954. [PMID: 29623318 DOI: 10.1039/c8ob00479j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present a new, readily functionalized AAA-DDD hydrogen bond array. A novel AAA monomeric unit (3a-b) was obtained from a two-step synthetic procedure starting with 2-aminonicotinaldehyde via microwave radiation (overall yield of 52-66%). 1H NMR and fluorescence spectroscopy confirmed the complexation event with a calculated association constant of 1.57 × 107 M-1. Likewise, the usefulness of this triple hydrogen bond motif in supramolecular polymerization was demonstrated through viscosity measurements in a crosslinked supramolecular alternating copolymer.
Collapse
Affiliation(s)
- Feng Tong
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, China.
| | | | | | | | | |
Collapse
|
41
|
Son SY, Kim JH, Song E, Choi K, Lee J, Cho K, Kim TS, Park T. Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00093] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sung Yun Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Jae-Han Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eunjoo Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Kyoungwon Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Joohyeon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Taiho Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
42
|
Qi Z, Chiappisi L, Gong H, Pan R, Cui N, Ge Y, Böttcher C, Dong S. Ion Selectivity in Nonpolymeric Thermosensitive Systems Induced by Water-Attenuated Supramolecular Recognition. Chemistry 2018; 24:3854-3861. [DOI: 10.1002/chem.201705838] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| | - Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie; Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 124, Sekr. TC7 D-10623 Berlin Germany
- Institut Max von Laue-Paul Langevin; 71 Avenue des Martyrs 38042 Grenoble Cedex 9 France
| | - Hanlin Gong
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| | - Ren Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| | - Ning Cui
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| | - Christoph Böttcher
- Research Center for Electron Microscopy, BioSupraMol; Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstr. 36a 14195 Berlin Germany
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 Hunan P. R. China
| |
Collapse
|
43
|
Qin B, Zhang S, Huang Z, Xu JF, Zhang X. Supramolecular Interfacial Polymerization of Miscible Monomers: Fabricating Supramolecular Polymers with Tailor-Made Structures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bo Qin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuai Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zehuan Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Wang L, Yin Z, Zhang Y, Jiang Y, Zhang L, Yasin A. Probing the single pair rupture force of supramolecular quadruply hydrogen bonding modules by nano-adhesion measurement. RSC Adv 2018; 8:21798-21805. [PMID: 35541728 PMCID: PMC9081402 DOI: 10.1039/c8ra03739f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Studying quadruply hydrogen bonding (QHB) module interactions in materials matrices presents a significant challenge because a wide variety of non-covalent interactions may be relevant. Here we introduce a method of surface modification with DeUG (7-deazaguanine urea), DAN (2,7-diamido-1,8-naphthyridine) and UPy (2-ureido-4[1H]-pyrimidone) modules to form self-assembled monolayers (SAMs) on a glass surface. The QHB interactions under mechanical stress were investigated by measuring adhesion force using PS-DAN (DAN modified polystyrene), PBMA-DeUG (DeUG modified poly butyl methacrylate) and PBA-UPy (UPy modified poly butyl acrylate) as adhesion promoters. A mechanical lap-shear test was used to evaluate the fracture resistance of QHB heterocomplexes. The maximum load at fail showed that QHB interaction contributed significantly (72%) to overall adhesion. For the QHB modified glass surface, using a polymer modified with its complementary QHB partner greatly facilitated their pairing efficiency, up to 40% for DAN-DeUG. A general method from which single pair ruptures force of QHB modules could be obtained using thermodynamic data obtained from solution chemistry was proposed. Using this method, the single pair rupture force for UPy–UPy was measured as 160 pN, and the single pair rupture force for DAN-DeUG was obtained as 193 pN. Quadruply hydrogen bonding interactions under mechanical stress were investigated by measuring adhesion force using PS-DAN, PBMA-DeUG and PBA-UPy as adhesion promoters. Results showed QHB interaction contributed significantly (72%) of overall adhesion.![]()
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemical and Environmental Engineering
- Xinjiang Institute of Engineering
- Urumqi 830023
- China
- Xinjiang Technical Institute of Physics and Chemistry
| | - Zhaoming Yin
- Department of Chemical and Environmental Engineering
- Xinjiang Institute of Engineering
- Urumqi 830023
- China
| | - Yagang Zhang
- Department of Chemical and Environmental Engineering
- Xinjiang Institute of Engineering
- Urumqi 830023
- China
- Xinjiang Technical Institute of Physics and Chemistry
| | - Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| |
Collapse
|
45
|
|
46
|
Mendez IJL, Wang HB, Yuan YX, Wisner JA. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes. Macromol Rapid Commun 2017; 39. [PMID: 29251385 DOI: 10.1002/marc.201700619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Indexed: 11/06/2022]
Abstract
Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system.
Collapse
Affiliation(s)
- Iamnica J Linares Mendez
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430056, China.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Hong-Bo Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430056, China.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Ying-Xue Yuan
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430056, China
| | - James A Wisner
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei, 430056, China.,Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
47
|
Assembly of a self-complementary monomer: Formation of a pH-responsive pillar[5]arene-based supramolecular polymer†. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Danjo H, Hamaguchi M, Asai K, Nakatani M, Kawanishi H, Kawahata M, Yamaguchi K. Proton-Induced Assembly–Disassembly Modulation of Spiroborate Twin-Bowl Polymers Bearing Pyridyl Groups. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Masatoshi Kawahata
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kentaro Yamaguchi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
49
|
Wang H, Ji X, Li Z, Huang F. Fluorescent Supramolecular Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28198107 DOI: 10.1002/adma.201606117] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/13/2016] [Indexed: 05/07/2023]
Abstract
Fluorescent supramolecular polymeric materials are rising stars in the field of fluorescent materials not only because of the inherent optoelectronic properties originating from their chromophores, but also due to the fascinating stimuli-responsiveness and reversibility coming from their noncovalent connections. Especially, these noncovalent connections influence the fluorescence properties of the chromophores because their state of aggregation and energy transfer can be regulated by the assembly-disassembly process. Considering these unique properties, fluorescent supramolecular polymeric materials have facilitated the evolution of new materials useful for applications in fluorescent sensors, probes, as imaging agents in biological systems, light-emitting diodes, and organic electronic devices. In this Review, fluorescent supramolecular polymeric materials are classified depending on the types of main driving forces for supramolecular polymerization, including multiple hydrogen bonding, electrostatic interactions, π-π stacking interactions, metal-coordination, van der Waals interactions and host-guest interactions. Through the summary of the studies about fluorescent supramolecular polymeric materials, the status quo of this research field is assessed. Based on existing challenges, directions for the future development of this field are furnished.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
50
|
Tiwari SK, Verma K, Saren P, Oraon R, De Adhikari A, Nayak GC, Kumar V. Manipulating selective dispersion of reduced graphene oxide in polycarbonate/nylon 66 based blend nanocomposites for improved thermo-mechanical properties. RSC Adv 2017. [DOI: 10.1039/c7ra02044a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Selective dispersion of rGO in PC/nylon blend by varying mixing sequence of rGO during melt mixing.
Collapse
Affiliation(s)
- Santosh Kr. Tiwari
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Kartikey Verma
- Department of Applied Physics
- Chandigarh University
- Mohali
- India
| | - Pupulata Saren
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Ramesh Oraon
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | - Amrita De Adhikari
- Department of Applied Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad
- India
| | | | - Vijay Kumar
- Department of Applied Physics
- Chandigarh University
- Mohali
- India
| |
Collapse
|