1
|
Wu Q, Liu C, Liu Y, Li T. Engineering fluorescent NO probes for live-monitoring cellular inflammation and apoptosis. Analyst 2024; 149:5306-5312. [PMID: 39291408 DOI: 10.1039/d4an00747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The processes of apoptosis and inflammatory responses, which are defensive strategies used by cells to confront external substances, can give rise to diverse diseases when prolonged or disrupted, such as cancer, Alzheimer's disease, and Parkinson's disease. Here we engineered a live-cell imaging fluorescent probe for nitric oxide (NO) based on naphthalimide and o-phenylenediamine, enabling the sensitive detection of NO in cancer cells and thereby live-monitoring of the doxorubicin-induced apoptosis and lipopolysaccharide-triggered inflammation reactions. Importantly, we found that the level of released NO can sensitively indicate the early stages of both cellular inflammatory responses and apoptotic processes. This suggested that cellular NO in fact behaves as a new class of signaling molecule for inflammatory responses and apoptosis processes, providing a potent tool for live-monitoring cellular physiological reactions.
Collapse
Affiliation(s)
- Qun Wu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| | - Yifan Liu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Atia NN, Khashaba PY, El Zohny SA, Rageh AH. Development of an innovative turn-on fluorescent probe for targeted in-vivo detection of nitric oxide in rat brain extracts as a biomarker for migraine disease. Talanta 2024; 272:125763. [PMID: 38368832 DOI: 10.1016/j.talanta.2024.125763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Nitric oxide (NO) is one of the reactive nitrogen species (RNS) that has been proposed to be a key signaling molecule in migraine. Migraine is a neurological disorder that is linked to irregular NO levels, which necessitates precise NO quantification for effective diagnosis and treatment. This work introduces a novel fluorescent probe, 2,3-diaminonaphthelene-1,4-dione (DAND), which was designed and synthesized to selectively detect NO in-vitro and in-vivo as a migraine biomarker. DAND boasts high aqueous solubility, biocompatibility, and facile synthesis, which enable highly selective and sensitive detection of NO under physiological conditions. NO reacts with diamine moieties (recognition sites) of DAND, results in the formation of a highly fluorescent product (DAND-NO) known as 1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione at λem 450 nm. The fluorescence turn-on sensing mechanism operates through an intramolecular charge transfer (ICT) mechanism. To maximize fluorescence signal intensity, parameters including DAND concentration, reaction temperature, reaction time and pH were systematically optimized for sensitive and precise NO determination. The enhanced detection capability (LOD = 0.08 μmol L-1) and high selectivity of the probe make it a promising tool for NO detection in brain tissue homogenates. This demonstrates the potential diagnostic value of the probe for individuals suffering from migraine. Furthermore, this study sheds light on the potential role of zolmitriptan (ZOLM), an antimigraine medication, in modulating NO levels in the brain of rats with nitroglycerin-induced migraine, emphasizing its significant impact on reducing NO levels. The obtained results could have significant implications for understanding how ZOLM affects NO levels and may aid in the development of more targeted and effective migraine treatment strategies.
Collapse
Affiliation(s)
- Noha N Atia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Pakinaz Y Khashaba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, 71515, Egypt
| | - Sally A El Zohny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, 71515, Egypt
| | - Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
4
|
Hu J, Wang R, Liao W, Hu J, Li L, Cheng Z, Chen WH. A novel donor-acceptor fluorescent probe for the fluorogenic/ chromogenic detection and bioimaging of nitric oxide. Anal Chim Acta 2024; 1296:342333. [PMID: 38401928 DOI: 10.1016/j.aca.2024.342333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Nitric oxide (NO) plays an essential role in regulating various physiological and pathological processes. This has spurred various efforts to develop feasible methods for the detection of NO. Herein we designed and synthesized a novel donor-acceptor fluorescent probe Car-NO for the selective and specific detection of NO. Reaction of Car-NO with NO generated a new donor-acceptor structure with strong intramolecular charge transfer (ICT) effect, and led to remarkable chromogenic change from yellow to blue and dramatic fluorescence quenching. Car-NO exhibited high selectivity, excellent sensitivity, and rapid response for the detection of NO. In addition, the nanoparticles prepared from Car-NO (i.e., Car-NO NPs) showed strong NIR emission and high selectivity/sensitivity. Car-NO NPs was successfully employed to image both endogenous and exogenous NO in HeLa and RAW 264.7 cells. The present findings reveal that Car-NO is a promising probe for the detection and bioimaging of NO.
Collapse
Affiliation(s)
- Jingxin Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
5
|
Su M, Ji X, Liu F, Li Z, Yan D. Chemical Strategies Toward Prodrugs and Fluorescent Probes for Gasotransmitters. Mini Rev Med Chem 2024; 24:300-329. [PMID: 37102481 DOI: 10.2174/1389557523666230427152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 04/28/2023]
Abstract
Three gaseous molecules are widely accepted as important gasotransmitters in mammalian cells, namely NO, CO and H2S. Due to the pharmacological effects observed in preclinical studies, these three gasotransmitters represent promising drug candidates for clinical translation. Fluorescent probes of the gasotransmitters are also in high demand; however, the mechanisms of actions or the roles played by gasotransmitters under both physiological and pathological conditions remain to be answered. In order to bring these challenges to the attention of both chemists and biologists working in this field, we herein summarize the chemical strategies used for the design of both probes and prodrugs of these three gasotransmitters.
Collapse
Affiliation(s)
- Ma Su
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Xingyue Ji
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Feng Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Suzhou University, China
| | - Zhang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| | - Duanyang Yan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou University, China
| |
Collapse
|
6
|
Singh M, Kumar J. Flourescence sensors for heavy metal detection: major contaminants in soil and water bodies. ANAL SCI 2023; 39:1829-1838. [PMID: 37531068 DOI: 10.1007/s44211-023-00392-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Due to the increasing consumption of heavy metals, there is a rising need for specific and useful methods that are employed for the detection of heavy metals. Fluorescence sensing is a highly selective, rapid and biosensing technique that is employed in the determination of some heavy metals in any sample of soil or water, any other living person, the food being consumed or any other substance which are being used daily. These fluorescent methods are a type of analytical technique and they are mainly based on detection. Many types of metal conjugated molecules have been used of the detection of these heavy metals with various mechanisms. We have taken into account some specific sensor molecules as they were more suitable and easily accessible. These techniques that were employed in the detection of various heavy metals such as copper, lead and mercury have been discussed in the following review article.
Collapse
Affiliation(s)
- M Singh
- Chandigarh University, Mohali, Punjab, 140413, India
| | - J Kumar
- Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
7
|
Dacon NJ, Wu NB, Michel BW. Red-shifted activity-based sensors for ethylene via direct conjugation of fluorophore to metal-carbene. RSC Chem Biol 2023; 4:871-878. [PMID: 37920389 PMCID: PMC10619136 DOI: 10.1039/d3cb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
A number of Activity-Based Sensors (ABS) for relatively unreactive small molecules, such as ethylene, necessitates a transition metal for reaction under ambient conditions. Olefin metathesis has emerged as one of the primary strategies to achieve ethylene detection, and other transition metals are used for similarly challenging-to-detect analytes. However, limited studies exist investigating how fluorophore-metal attachment impacts photophysical properties of such ABS. Two new probes were prepared with the chelating benzlidene Ru-ligand directly conjugated to a BODIPY fluorophore and the photophysical properties of the new conjugated ABS were evaluated.
Collapse
Affiliation(s)
- Nicholas J Dacon
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Nathan B Wu
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Brian W Michel
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| |
Collapse
|
8
|
Wu W, Wen Y, Chen Y, Ji L, Chao H. A Mitochondria-Localized Iridium(III) Complex for Simultaneous Two-Photon Phosphorescence Lifetime Imaging of Downstream Products N 2O 3 and ONOO - of Endogenous Nitric Oxide. Anal Chem 2023; 95:15956-15964. [PMID: 37856322 DOI: 10.1021/acs.analchem.3c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO) serves as a ubiquitous and fundamental signaling molecule involved in intricate effects on both physiological and pathological processes. NO, biosynthesized by nitric oxide synthase (NOS) or generated from nitrite, can form nitrosation reagent N2O3 (4NO + O2 = 2N2O3) through its oxidation or quickly produce peroxynitrite anion ONOO- (NO + •O2- = ONOO-) by reacting with superoxide anion (•O2-). However, most of the existing luminescent probes for NO just focus on specificity and utilize only a single signal to distinguish products N2O3 or ONOO-. In most of the present work, they differentiate one product from another simply by fluorescence signal or fluorescence intensity, which is not enough to distinguish accurately the behavior of NO in living cells. Herein, a new mitochondria-targeted and two-photon near-infrared (NIR) phosphorescent iridium(III) complex, known as Ir-NBD, has been designed for accurate detection and simultaneous imaging of two downstream products of endogenous NO, i.e., N2O3 and ONOO-. Ir-NBD exhibits a rapid response to N2O3 and ONOO- in enhanced phosphorescence intensity, increased phosphorescence lifetime, and an exceptionally high two-photon cross-section, reaching values of 78 and 85 GM, respectively, after the reaction. Furthermore, we employed multiple imaging methods, phosphorescence intensity imaging, and phosphorescence lifetime imaging together to image even distinguish N2O3 and ONOO- by probe Ir-NBD. Thus, coupled with its excellent photometrics, Ir-NBD enabled the detection of the basal level of intracellular NO accurately by responding to N2O3 and ONOO- in the lipopolysaccharide-stimulated macrophage model in virtue of fluorescence signal and phosphorescence lifetime imaging, revealing precisely the endogenous mitochondrial NO distribution during inflammation in a cell environment.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuxin Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 400201, P. R. China
| |
Collapse
|
9
|
Andreeva VD, Ehlers H, R C AK, Presselt M, J van den Broek L, Bonnet S. Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction. Commun Chem 2023; 6:179. [PMID: 37644120 PMCID: PMC10465535 DOI: 10.1038/s42004-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Haley Ehlers
- Mimetas B.V., De limes 7, 2342 DH, Oegstgeest, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aswin Krishna R C
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| | | | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
10
|
Graewe L, Hupfer ML, Schulz M, Mahammed A, Gross Z, Presselt M. Supramolecular Control of Photonic Response and Sensing of Nitricoxide using Iron(III) Corrole Monolayers and Their Stacks. Chempluschem 2023; 88:e202200260. [PMID: 36623940 DOI: 10.1002/cplu.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Indexed: 12/23/2022]
Abstract
In this work, we assemble amphiphilic iron(III) corroles at air-water interfaces into well-defined quasi-two-dimensional molecular monolayers and theirs stacks for sensing of nitric oxide (NO). For this purpose, we use the Langmuir-Blodgett (LB) technique, which allows varying the packing density of iron(III) corroles anchored to the aqueous subphase via one molecular side. The stacks of ten down to three molecular monolayers on the front and back sides of the substrates are sufficiently optically dense to detect NO binding to the layers photometrically. This sensing with few layers demonstrates the potential for electronic detection, where very thin surface functionalizations enable efficient electronic communication between the layer and the (semi)conductor. Despite increasing optical densities, the spectral responses to NO exposure become smaller with increasing packing density until the collapse point of the monolayers is reached. This demonstrates that the highest molecular efficiency for binding and detection of NO is achieved at the smallest packing densities. This finding is relevant to all molecular sensor films with axial binding of analytes to the sensor molecules and demonstrates the advantage of sensor molecule assembly into monolayers on water-air interfaces using the LB technique.
Collapse
Affiliation(s)
- Lennart Graewe
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Maximilian L Hupfer
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (Leibniz IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany.,SciClus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
11
|
Rana S, Sharma RK, Fridman N, Kumar A. Structural characterization and bioimaging of Zn 2+ using meta-benziporphodimethene analogue. LUMINESCENCE 2022. [PMID: 36068987 DOI: 10.1002/bio.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
"Prevention is better than cure, especially when something has no cure." Cancer, in most patients is detected at the stage beyond which it becomes non-curative. Thus, the early detection of cancer cells can play a crucial role in enhancing the chances of a patient's survival. In this light, we present a non-fluorescent receptor employed for the detection of Zn2+ ion in MDA-MB-231 carcinoma cells that exhibits fluorescence turn-on behaviour upon binding with the metal ion. In this work, the synthesis of 11,16-bis(2,6-difluorobenzene)-6,6,21,21-tetramethyl-meta-benziporpho-6,21-dimethene and its Zn2+ chloride complex have been reported. The compounds were fully characterized using UV-Visible, NMR, IR and mass spectrometry. Furthermore, the X-ray polymorphs of meta-benziporphodimethene analogue have been added. The study of its bioimaging applications in MDA-MB-231 breast cancer cells for the detection of Zn2+ ions have been reported.
Collapse
Affiliation(s)
- Shikha Rana
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| | | | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| |
Collapse
|
12
|
Das S, Das M, Laha S, Rajak K, Choudhuri I, Bhattacharyya N, Samanta BC, Maity T. Development of moderately fluorescence active salen type chemosensor for judicious recognition and quantification of Zn(II), Al(III) and SO4=: Demonstration of molecular logic gate formation and live cell images studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Shen Q, Kong X, Li K, Wan T, Dong J, Wu H. A highly sensitive fluorescent 1,8‐naphthalimide Schiff base probe for detection of Hg
2+. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qinqin Shen
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| |
Collapse
|
14
|
Chauhan D, Kumar A, Warkar SG. Synthesis, characterization and metal ions sensing applications of meta-benziporphodimethene-embedded polyacrylamide/carboxymethyl guargum polymeric hydrogels in water. ENVIRONMENTAL TECHNOLOGY 2022; 43:991-1002. [PMID: 32811349 DOI: 10.1080/09593330.2020.1812730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
We have developed a robust procedure for the visual on-site detection of zinc, cadmium and mercury metal ions in an aqueous medium using a polymeric hydrogel matrix-based colorimetric sensor. Zn2+, Cd2+and Hg2+, owing to their biological significant value and environmental harm, have attracted more attention. The selective detection of Zn2+, Cd2+and Hg2+ metal ions has always been challenging due to their closed-shell d10 electronic configuration which makes them spectroscopically silent. A polyacrylamide/carboxymethyl guargum polymeric hydrogel-based metal ion sensor was synthesized by in situ embedding 11, 16-bis (phenyl)-6, 6, 21, 21-tetramethyl-m-benzi-6,21-porphodimethene (meta-BPDM) in a host hydrogel. The meta-BPDM-embedded hydrogel shows high stability, sensitivity and selectivity when it is dipped into the aqueous solutions of Zn2+, Cd2+and Hg2+ metal ions. During detection, the binding of these metal ions in hydrogel causes hydrogel to change from red to bluish-green which was visually detected and confirmed by UV-visible spectroscopy. The meta-BPDM-embedded polymeric hydrogel was characterized by using solid-state UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, energy-dispersive X-ray analysis and its sensing properties were studied. The meta-BPDM-embedded polymeric hydrogel was found to be an excellent colorimetric sensor for Zn2+, Cd2+ and Hg2+ in aqueous medium without leaching of meta-BPDM from the hydrogel. The selectivity to sense these ions is mainly dependent on the binding constant of these metal ions with the meta-BPDM embedded in the hydrogel. The sensitivity of the hydrogel was 0.5, 1, and 2 mg/L with Hg2+, Zn2+ and Cd2+, respectively.
Collapse
Affiliation(s)
- Deepti Chauhan
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G Warkar
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
15
|
|
16
|
Das P, Singh Rajput S, Das M, Laha S, Choudhuri I, Bhattacharyya N, Das A, Chandra Samanta B, Mehboob Alam M, Maity T. Easy, Selective and Colorimetric Detection of Zn(II), Cu(II), F- Ions by a New Piperazine Based Schiff Base Chemosensor along with Molecular Logic Gate Formation and Live Cell Images Study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Xie H, Li Z, Gong J, Hu L, Alam P, Ji X, Hu Y, Chau JHC, Lam JWY, Kwok RTK, Tang BZ. Phototriggered Aggregation-Induced Emission and Direct Generation of 4D Soft Patterns. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105113. [PMID: 34605067 DOI: 10.1002/adma.202105113] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Microscopic control of macroscopic phenomena is one of the core subjects in materials science. Particularly, the spatio-temporal control of material behaviors through a non-contact way is of fundamental importance but is difficult to accomplish. Herein, a strategy to realize remote spatio-temporal control of luminescence behaviors is reported. A multi-arm salicylaldehyde benzoylhydrazone-based aggregation-induced emission luminogen (AIEgen)/metal-ion system, of which the fluorescence can be gated by the UV irradiation with time dependency, is developed. By changing the metal-ion species, the fluorescence emission and the intensity can also be tuned. The mechanism of the UV-mediated fluorescence change is investigated, and it is revealed that a phototriggered aggregation-induced emission (PTAIE) process contributes to the behaviors. The AIEgen is further covalently integrated into a polymeric network and the formed gel/metal-ion system can achieve laser-mediated mask-free writing enabled by the PTAIE process. Moreover, by further taking advantage of the time-dependent self-healing property of hydrazone-based dynamic covalent bond, transformable 4D soft patterns are generated. The findings and the strategy increase the ways to manipulate molecules on the supramolecule or aggregate level. They also show opportunities for the development of controllable smart materials and expand the scope of the materials in advanced optoelectronic applications.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Junyi Gong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Lianrui Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Joe H C Chau
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
- State Key Laboratory of Luminescent Materials and Devices, and Center for Aggregation-Induced Emission (Guangzhou International Campus), South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
19
|
Piperidine based effective chemosensor for Zn(II) with the formation of binuclear Zn complex having specific Al(III) detection ability in aqueous medium and live cell images. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Qu ZB, Zhou X, Zhang M, Shen J, Li Q, Xu F, Kotov N, Fan C. Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007900. [PMID: 33960020 DOI: 10.1002/adma.202007900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Self-limited nanoassemblies, such as supraparticles (SPs), can be made from virtually any nanoscale components, but SPs from nanocarbons including graphene quantum dots (GQDs), are hardly known because of the weak van der Waals attraction between them. Here it is shown that highly uniform SPs from GQDs can be successfully assembled when the components are bridged by Tb3+ ions supplementing van der Waals interactions. Furthermore, they can be coassembled with superoxide dismutase, which also has weak attraction to GQDs. Tight structural integration of multilevel components into SPs enables efficient transfer of excitonic energy from GQDs and protein to Tb3+ . This mechanism is activated when Cu2+ is reduced to Cu1+ by nitric oxide (NO)-an important biomarker for viral pulmonary infections and Alzheimer's disease. Due to multipronged fluorescence enhancement, the limit of NO detection improves 200 times reaching 10 × 10-12 m. Furthermore, the uniform size of SPs enables digitization of the NO detection using the single particle detection format resulting in confident registration of as few as 600 molecules mL-1 . The practicality of the SP-based assay is demonstrated by the successful monitoring of NO in human breath. The biocompatible SPs combining proteins, carbonaceous nanostructures, and ionic components provide a general path for engineering uniquely sensitive assays for noninvasive tracking of infections and other diseases.
Collapse
Affiliation(s)
- Zhi-Bei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
- School of Chemistry and Chemical Engineering and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Building E in Fenda Science Park, Baoan District, Shenzhen, 518000, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Qian Li
- School of Chemistry and Chemical Engineering and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200241, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Nicholas Kotov
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200241, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
21
|
A Benzothiazole-Based Fluorescence Turn-on Sensor for Copper(II). J Fluoresc 2021; 31:1203-1209. [PMID: 34037894 DOI: 10.1007/s10895-021-02752-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
A new benzothiazole-based chemosensor BTN (1-((Z)-(((E)-3-methylbenzo[d]thiazol-2(3H)-ylidene)hydrazono)methyl)naphthalen-2-ol) was synthesized for the detection of Cu2+. BTN could detect Cu2+ with "off-on" fluorescent response from colorless to yellow irrespective of presence of other cations. Limit of detection for Cu2+ was determined to be 3.3 μM. Binding ratio of BTN and Cu2+ turned out to be a 1:1 with the analysis of Job plot and ESI-MS. Sensing feature of Cu2+ by BTN was explained with theoretical calculations, which might be owing to internal charge transfer and chelation-enhanced fluorescence processes.
Collapse
|
22
|
Vonlanthen M, Rojas‐Montoya SM, Cuétara‐Guadarrama F, Martínez‐Serrano RD, Burillo G, Rivera E. Coumarin Grafted Polyethylene Matrix as Colorimetric and Fluorescent Chemosensor for Metal Ions. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mireille Vonlanthen
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| | - Sandra M. Rojas‐Montoya
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| | - Fabián Cuétara‐Guadarrama
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| | - Ricardo D. Martínez‐Serrano
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| | - Guillermina Burillo
- Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria C.P. 04510 Ciudad de México Mexico City México
| |
Collapse
|
23
|
Al-Noaimi M, Awwadi FF, Hammoudeh A, Abdel-Rahman OS, Alwahsh MI. Ruthenium (II) quinoline-azoimine complex: Synthesis, crystalline structures spectroelectrochemistry and catalytic properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Wang L, Zhang J, An X, Duan H. Recent progress on the organic and metal complex-based fluorescent probes for monitoring nitric oxide in living biological systems. Org Biomol Chem 2020; 18:1522-1549. [PMID: 31995085 DOI: 10.1039/c9ob02561h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is an important gaseous signaling molecule related to various human diseases. To investigate the biological functions of NO, many strategies have been developed for real-time monitoring the NO levels in biological systems. Among these strategies, fluorescent probes are considered to be one of the most efficient and applicable methods owing to their excellent sensitivity and selectivity, high spatiotemporal resolution, noninvasiveness, and experimental convenience. Therefore, great efforts have been paid to the design, synthesis, and fluorescence investigation of novel NO fluorescent probes in the past several years. However, few of them exhibit practical applications owing to the low concentration, short half-life, and rapid diffusion characteristics of NO in biological systems. Rational design of NO fluorescent probes with excellent selectivity and sensitivity, low cytotoxicity, long-lived fluorescent emission, and low background interference is still a challenge for scientists all over the word. To provide spatial-temporal information, this article focuses on the progress made in the organic and metal complex-based NO fluorescent probes during the past five years. The key structural elements and sensing mechanisms of NO fluorescent probes are discussed. Some novel ratiometric, luminescence, and photoacoustic probes with low background interference and deep tissue penetrating ability are mentioned. All these probes have been used for imaging exogenous and endogenous NO in cells and animal models. More importantly, this article also describes the development of multi-functional NO fluorescent probes, such as organelle targeting probes, dual-analysis probes, and probe-drug conjugates, which will inspire the design of various functional fluorescent probes.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China. and Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China
| | - Juan Zhang
- Shandong Jinan Qilu Science Patent Office Ltd, Ji'nan 250014, Shandong Province, China
| | - Xue An
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| | - Hongdong Duan
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250300, Shandong Province, China.
| |
Collapse
|
25
|
Wang Y, Xu S, Xian M. Specific Reactions of RSNO, HSNO, and HNO and Their Applications in the Design of Fluorescent Probes. Chemistry 2020; 26:11673-11683. [PMID: 32433809 PMCID: PMC8211375 DOI: 10.1002/chem.202001885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO)-derived species play essential roles in regulating cellular responses. Among these species, S-nitrosothiols (including RSNO and HSNO) and nitroxyl (HNO) are especially interesting. Owing to their high reactivity and short survival time, the detection of these molecules in biological settings can be challenging. In this regard, much effort has been invested in exploring novel reactions of RSNO/HSNO/HNO and applying these reactions to develop fluorescence probes. Herein, reported specific reactions of RSNO/HSNO/HNO are summarized and strategies used in the design of fluorescent probes are illustrated. The properties and potential problems of representative probes are also discussed.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
26
|
Abstract
Initially being considered as an environmental pollutant, nitric oxide has gained the momentum of research since its discovery as endothelial derived growth factor in 1987. Extensive researches have revealed the various pathological and physiological roles of nitric oxide such as inflammation, vascular and neurological regulation functions. Hence, the development of methods for quantifying nitric oxide concentration and its metabolites will be beneficial to well know about its biological functions and effects. This review summaries various methods for in vitro and in vivo nitric oxide detection, and introduces their merits and demerits.
Collapse
Affiliation(s)
- Ekta Goshi
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Gaoxin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Chen Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide 2020; 98:1-19. [DOI: 10.1016/j.niox.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
|
28
|
Li C, Tang WJ, Feng W, Liu C, Song QH. A rapid-response and ratiometric fluorescent probe for nitric oxide: From the mitochondria to the nucleus in live cells. Anal Chim Acta 2020; 1096:148-158. [DOI: 10.1016/j.aca.2019.10.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/06/2023]
|
29
|
Qu Y, Wu Y, Wang C, Zhao K, Wu H. A new 1,8-naphthalimide-based fluorescent “turn-off” sensor for detecting Cu2+ and sensing mechanisms. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819886540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this article, a new “turn-off” fluorescent sensor N- n-butyl-4-{2-[(ethylimino)methyl]phenol}-1,8-naphthalimide (HL) for CuII ions is synthesized, which contains a 1,8-naphthalimide moiety as the fluorophore and a Schiff base as the recognition group. As expected, it exhibits high selectivity and sensitivity for detecting CuII ions over other common metal ions in acetonitrile–2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid (HEPES) (1:1 v/v, pH = 7.4) solution. In addition, the fluorescence intensity for HL showed a good linearity with the concentration of CuII ions in the range of 0.5–5.0 μM. The 2:1 binding stoichiometry between HL and CuII ions was established on the basis of combined fluorescence titrations, a Job’s plot, single-crystal X-ray analysis and mass spectrometry. The quenching response of HL toward CuII ions is attributed to the reverse photoinduced electron transfer mechanism. The proposed sensor HL is preliminarily applied to quantify CuII ions in water samples from the Yellow River and tap water.
Collapse
Affiliation(s)
- Yao Qu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Yancong Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| |
Collapse
|
30
|
Iovan DA, Jia S, Chang CJ. Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry. Inorg Chem 2019; 58:13546-13560. [PMID: 31185541 PMCID: PMC8544879 DOI: 10.1021/acs.inorgchem.9b01221] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Xie Y, Yan L, Li J. An On-Off-On Fluorescence Probe Based on Coumarin for Cu 2+, Cysteine, and Histidine Detections. APPLIED SPECTROSCOPY 2019; 73:794-800. [PMID: 30523694 DOI: 10.1177/0003702818821329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple coumarin-based Schiff base (probe L) was successfully developed. It showed strong green fluorescence emission at 527 nm with a 70.3% of fluorescence quantum efficiency (ΦF). However, after the addition of common metal ions, probe L can only combine with Cu2+ ions and displayed significant fluorescence quenching of > 96.2% (ΦF = 2.7%) due to the paramagnetic quenching action from Cu2+. Conversely, by the coordination action of cysteine (Cys) and histidine (His), the quenching fluorescence of the complex (L-Cu2+) between probe L and Cu2+ ions was recovered mostly because the Cys and His can usurp Cu2+ of L-Cu2+ and led to the liberation of probe L. Based on the fluorescence changes of probe L with the actions of Cu2+, Cys, and His, an on-off-on reversible fluorescence probe for sensitive and specific monitoring Cu2+, Cys, and His has been prepared. More importantly, the probe L and L-Cu2+ ensemble can be used, respectively, to test Cu2+ and Cys/His in live cells and human urine samples with great reliability.
Collapse
Affiliation(s)
- Ya Xie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liqiang Yan
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
32
|
Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019; 62:8881-8914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the complexity of multifactorial diseases, single-target drugs do not always exhibit satisfactory efficacy. Recently, increasing evidence indicates that simultaneous modulation of multiple targets may improve both therapeutic safety and efficacy, compared with single-target drugs. However, few multitarget drugs are on market or in clinical trials, despite the best efforts of medicinal chemists. This article discusses the systematic establishment of target combination, lead generation, and optimization of multitarget-directed ligands (MTDLs). Moreover, we analyze some MTDLs research cases for several complex diseases in recent years and the physicochemical properties of 117 clinical multitarget drugs, with the aim to reveal the trends and insights of the potential use of MTDLs.
Collapse
Affiliation(s)
- Junting Zhou
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Xueyang Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| | - Hongli Jiang
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China.,Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China.,Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , People's Republic of China
| | - Wenyuan Liu
- Department of Analytical Chemistry , China Pharmaceutical University , Nanjing 210009 , People's Republic of China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , 211198 , People's Republic of China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 211198 , People's Republic of China
| |
Collapse
|
33
|
Islam ASM, Sasmal M, Maiti D, Dutta A, Ganguly S, Katarkar A, Gangopadhyay S, Ali M. Phenazine-Embedded Copper(II) Complex as a Fluorescent Probe for the Detection of NO and HNO with a Bioimaging Application. ACS APPLIED BIO MATERIALS 2019; 2:1944-1955. [PMID: 35030683 DOI: 10.1021/acsabm.9b00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Mihir Sasmal
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Debjani Maiti
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Ananya Dutta
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Sholanki Ganguly
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Atul Katarkar
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, Epalinges 1066, Switzerland
| | - Sumana Gangopadhyay
- Department of Chemistry, Gurudas College, Narkeldanga, Kolkata, West Bengal 700 054, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700 032, India
- Vice-Chancellor, Aliah University, ll-A/27, Action Area II, Newtown, Kolkata, West Bengal 700 160, India
| |
Collapse
|
34
|
Liu L, Zhang Q, Wang J, Zhao L, Liu L, Lu Y. A specific fluorescent probe for fast detection and cellular imaging of cysteine based on a water-soluble conjugated polymer combined with copper(II). Talanta 2019; 198:128-136. [PMID: 30876540 DOI: 10.1016/j.talanta.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/19/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
In pure water system, the specific and rapid detection of cysteine (Cys) is very important and challenging. Herein, a new optical probe was developed for the purpose based on the complex of cupric ion (Cu2+) with a water-soluble conjugated polymer, poly[3-(3-N,N-diacetateaminopropoxy)-4-methyl thiophene disodium salts] (PTCO2). The fluorescence of PTCO2 in 100% aqueous solution can almost completely extinguished by Cu2+ ions due to its intrinsic paramagnetic properties. Among various amino acids, only Cys causes immediately the efficient recovery of the Cu2+-quenched fluorescence of PTCO2 with ~31-folds fluorescence enhancement because of the stronger affinity of Cys to Cu2+ leading to the formation of Cu2+-Cys complex through Cu-S bond and separation of Cu2+ from weak-fluorescent PTCO2-Cu(II) ensemble and thereby restoring the free PTCO2 fluorescence. In tris-HCl buffer solution (2 mM, pH 7.4), the intensity of the restored fluorescence is linear with the concentration of Cys, ranging from 0 to 120 μM and the estimated detection limit of Cys is 3.3 × 10-7 M with the correlation coefficient R = 0.9981. In addition, the PTCO2-Cu(II) ensemble probe exhibits low cytotoxicity and good membrane penetration, and its application in living cell imaging of Cys has also been explored.
Collapse
Affiliation(s)
- Lihua Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Lixia Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
35
|
Dutta A, Islam ASM, Maiti D, Sasmal M, Pradhan C, Ali M. A smart molecular probe for selective recognition of nitric oxide in 100% aqueous solution with cell imaging application and DFT studies. Org Biomol Chem 2019; 17:2492-2501. [DOI: 10.1039/c9ob00177h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, least-cytotoxic as well as an efficient fluorescent sensor HqEN480 recognizes NO in 100% aqueous solution with cell imaging application.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | | | - Debjani Maiti
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Mihir Sasmal
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Chandradoy Pradhan
- Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
- Vice-Chancellor
- Aliah University
| |
Collapse
|
36
|
Maiti D, Islam ASM, Dutta A, Sasmal M, Prodhan C, Ali M. Dansyl-appended CuII-complex-based nitroxyl (HNO) sensing with living cell imaging application and DFT studies. Dalton Trans 2019; 48:2760-2771. [DOI: 10.1039/c8dt04564j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce herein, a novel copper complex-based fluorescent probe[CuII(DQ468)Cl]+that exhibits a significant fluorescence turn-on response towards nitroxyl with high selectivity over other biological reactive oxygen, nitrogen and sulfur species, including nitric oxide.
Collapse
Affiliation(s)
- Debjani Maiti
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | | | - Ananya Dutta
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Mihir Sasmal
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Chandraday Prodhan
- Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
- Vice-Chancellor
- Aliah University
| |
Collapse
|
37
|
Wang BH, Yan B. A dye@MOF crystalline probe serving as a platform for ratiometric sensing of trichloroacetic acid (TCA), a carcinogen metabolite in human urine. CrystEngComm 2019. [DOI: 10.1039/c9ce00924h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel microporous dual-emitting dye@MOF FS@1 hybrid has been designed and prepared to effectively detect TCA, the biomarker for carcinogenic TCE in human urine.
Collapse
Affiliation(s)
- Bing-Hui Wang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
| | - Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- China
- School of Materials Science and Engineering
| |
Collapse
|
38
|
Rout K, Manna AK, Sahu M, Mondal J, Singh SK, Patra GK. Triazole-based novel bis Schiff base colorimetric and fluorescent turn-on dual chemosensor for Cu2+ and Pb2+: application to living cell imaging and molecular logic gates. RSC Adv 2019; 9:25919-25931. [PMID: 35530070 PMCID: PMC9070313 DOI: 10.1039/c9ra03341f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 12/23/2022] Open
Abstract
A triazole-based novel bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized by elemental analysis, 1H-NMR, ESI-MS, FTIR spectra and DFT studies. The receptor L showed selective and sensitive colorimetric sensing ability for Cu2+ and Pb2+ ions by changing color from colorless to yellow and light yellow respectively in CH3OH–tris-buffer (1 : 1, v/v). However, it displayed strong fluorescence enhancement upon the addition of both Cu2+ and Pb2+ ions, attributed to the blocking of PET. The fluorometric detection limits for Cu2+ and Pb2+ were found to be 12 × 10−7 M and 9 × 10−7 M and the colorimetric detection limits were 3.7 × 10−6 M and 1.2 × 10−6 M respectively; which are far below the permissible concentration in drinking water determined by WHO. Moreover, it was found that chemosensor L worked as a reversible fluorescence probe towards Cu2+ and Pb2+ ions by the accumulation of S2− and EDTA respectively. Based on the physicochemical and analytical methods like ESI-mass spectrometry, Job plot, FT-IR, 1H-NMR spectra and DFT studies the detection mechanism may be explained as metal coordination, photoinduced electron transfer (PET) as well as an internal charge transfer (ICT) process. The sensor could work in a pH span of 4.0–12.0. The chemosensor L shows its application potential in the detection of Cu2+ and Pb2+ in real samples, living cells and building of molecular logic gate. A novel triazole-based bis Schiff base colorimetric and fluorescent chemosensor (L) has been designed, synthesized and characterized. The chemo-sensor L shows its application potential in the detection of Cu2+ and Pb2+ in living cells and building molecular logic gate.![]()
Collapse
Affiliation(s)
- Kalyani Rout
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Amit Kumar Manna
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Meman Sahu
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Jahangir Mondal
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Sunil K. Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| | - Goutam K. Patra
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur
- India
| |
Collapse
|
39
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
40
|
Felip-León C, Angulo-Pachón CA, Miravet JF, Galindo F. Self-Assembly Controls Reactivity with Nitric Oxide: Implications for Fluorescence Sensing. ACS OMEGA 2018; 3:15538-15545. [PMID: 31458209 PMCID: PMC6643459 DOI: 10.1021/acsomega.8b01869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/31/2018] [Indexed: 06/10/2023]
Abstract
Three molecules containing the fluorophore 4-amino-1,8-naphthalimide (ANI) and showing different tendencies to self-assembly in aqueous environment have been prepared and fully characterized. The fluorescence emissions of two of these compounds in aqueous solutions are efficiently quenched in the presence of nitric oxide (NO) in aerated medium. Nuclear magnetic resonance and mass spectrometry techniques indicate that NO/O2 induces deamination of the ANI fluorophore, resulting in nonemissive 1,8-naphtalimide derivatives. It is found that the reactivity toward NO/O2 is regulated by the different aggregation modes presented by the molecules in aqueous medium. In this way, the molecules displaying fluorescence response toward NO/O2 are those with weak self-association properties whereas the compound with a high hydrophobic character (self-assembling into large nanoparticles) is insensitive to this species. Ultimately, the results described here could not only set the basis for the design of fluorescent bioprobes for NO/O2 based on ANI derivatives or other monoamino compounds but also could raise awareness about the importance of supramolecular interactions for the design of chemosensors.
Collapse
Affiliation(s)
- Carles Felip-León
- Departamento de Química
Inorgánica y Orgánica, Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - César A. Angulo-Pachón
- Departamento de Química
Inorgánica y Orgánica, Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F. Miravet
- Departamento de Química
Inorgánica y Orgánica, Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Francisco Galindo
- Departamento de Química
Inorgánica y Orgánica, Universitat
Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
41
|
Smulik-Izydorczyk R, Dębowska K, Pięta J, Michalski R, Marcinek A, Sikora A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic Biol Med 2018; 128:69-83. [PMID: 29704623 DOI: 10.1016/j.freeradbiomed.2018.04.564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022]
Abstract
Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.
Collapse
Affiliation(s)
- Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
42
|
Subashini G, Saravanan A, Shyamsivappan S, Arasakumar T, Mahalingam V, Shankar R, Mohan PS. A versatile “on-off-on” quinoline pyrazoline hybrid for sequential detection of Cu2+ and S− ions towards bio imaging and tannery effluent monitoring. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Zhu XY, Yao HW, Fu YJ, Guo XF, Wang H. Effect of substituents on Stokes shift of BODIPY and its application in designing bioimaging probes. Anal Chim Acta 2018; 1048:194-203. [PMID: 30598150 DOI: 10.1016/j.aca.2018.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
BODIPY-based probes have excellent fluorescence properties. However, small Stokes shifts approximately 5-15 nm greatly affect their detection sensitivity. In this study, we compared the Stokes shifts of reported BODIPY-based probes with various of substituents, and found that the phenyl groups on the specific position of BODIPY core could expand the Stokes shift of BODIPY-based probes, and methoxy groups on these phenyl substituents could enhance such effects. Then, by quantum chemical calculations, we found that the number of methoxy groups might also have obvious effect on the Stokes shift of BODIPY. Taking nitric oxide (NO) as analyte, 4,4-difluoro-8-(3,4-diaminophenyl)-3,5-bis(2,4-dimethoxyphenyl)-4-bora-3a,4a-diaza-s-indancene (DMOPB) with diaminophenyl substituents has been designed and synthesized. Compared with monomethoxy-phenyl substituted BODIPY-based probes (MOPBs) in our previous work, Stokes shift of DMOPB was expanded by 10 nm when using dimethoxyphenyl instead of monomethoxyphenyl, which is basically consistent with the quantum chemistry calculation of 11 nm. DMOPB can react with NO in only 2 min to form the triazole DMOPB-T with a fluorescence quantum yield of 0.32. An excellent linear relationship was observed in the range of NO concentration from 0.5 μM to 4 μM and the detection limit was 1 nM. The experimental results indicate that DMOPB with high sensitivity, excellent selectivity, low toxicity and dark background can be a great candidate for imaging NO in cells and tissues. Considering the lack of practical way to increase Stokes shift of small-molecule fluorescent probes based on specific fluorophore, the proposed strategy has great potential for the designing of probes with large Stokes shift.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui-Wen Yao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Jia Fu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
44
|
Toussaint SNW, Calkins RT, Lee S, Michel BW. Olefin Metathesis-Based Fluorescent Probes for the Selective Detection of Ethylene in Live Cells. J Am Chem Soc 2018; 140:13151-13155. [DOI: 10.1021/jacs.8b05191] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sacha N. W. Toussaint
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Ryan T. Calkins
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
45
|
Barzegar Amiri Olia M, Hancock AN, Schiesser CH, Goerigk L, Wille U. Photophysical insights and guidelines for blue “turn‐on” fluorescent probes for the direct detection of nitric oxide (NO
•
) in biological systems. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Amber N. Hancock
- School of Chemistry Bio21 Institute, The University of Melbourne Parkville Victoria Australia
| | | | - Lars Goerigk
- School of Chemistry The University of Melbourne Parkville Victoria Australia
| | - Uta Wille
- School of Chemistry Bio21 Institute, The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
46
|
Iridium-based probe for luminescent nitric oxide monitoring in live cells. Sci Rep 2018; 8:12467. [PMID: 30127525 PMCID: PMC6102254 DOI: 10.1038/s41598-018-30991-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is an intra- and extracellular messenger with important functions during human physiology process. A long-lived luminescent iridium(III) complex probe 1 has been designed and synthesized for the monitoring of NO controllably released from sodium nitroprusside (SNP). Probe 1 displayed a 15-fold switch-on luminescence in the presence of SNP at 580 nm. The probe exhibited a linear response towards SNP between 5 to 25 μM with detection limit at 0.18 μM. Importantly, the luminescent switch-on detection of NO in HeLa cells was demonstrated. Overall, complex 1 has the potential to be applied for NO tracing in complicated cellular environment.
Collapse
|
47
|
Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes. J Fluoresc 2018; 28:999-1021. [DOI: 10.1007/s10895-018-2263-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/05/2018] [Indexed: 01/07/2023]
|
48
|
Yang YS, Ma SS, Zhang YP, Ru JX, Liu XY, Guo HC. A novel biphenyl-derived salicylhydrazone Schiff base fluorescent probes for identification of Cu 2+ and application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:202-208. [PMID: 29605784 DOI: 10.1016/j.saa.2018.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
A novel biphenyl-derived salicylhydrazone Schiff base (BSS) fluorescent probes for highly sensitive and selective identification of Cu2+ has been synthesized. In addition, the recognition has been proved experimentally. The results indicated that the complex forms a 1:1 complex with Cu2+ shows fluorescent quenching. Furthermore, the detection limit of 1.54×10-8M. More interesting, the probe BSS not only have a good biocompatibility in living cells, but also the sense behavior of Cu2+ in the cell nucleus.
Collapse
Affiliation(s)
- Yun-Shang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Suo-Suo Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ying-Peng Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jia-Xi Ru
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiao-Yu Liu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
49
|
A regenerated “turn on” fluorescent probe for sulfide detection in live cells and read samples based on dihydroxyhemicyanine-Cu2+ dye. Anal Chim Acta 2018; 1010:69-75. [DOI: 10.1016/j.aca.2018.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/20/2017] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
|
50
|
Huang G, Li C, Han X, Aderinto SO, Shen K, Mao S, Wu H. Sensitive and selective detection of Cu(II) ion: A new effective 1,8-naphthalimide-based fluorescence ‘turn off’ sensor. LUMINESCENCE 2018; 33:660-669. [DOI: 10.1002/bio.3461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Guozhen Huang
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Chuang Li
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Xintong Han
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Stephen Opeyemi Aderinto
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Kesheng Shen
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Shanshan Mao
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| | - Huilu Wu
- School of Chemical and Biological Engineering; Lanzhou Jiaotong University; Lanzhou Gansu People's Republic of China
| |
Collapse
|