1
|
Shao A, Li R, Li Y, Zhang X, Jiang Y, Lin A, Ni J. Construction of HaloTag-based macromolecular probe for multiple logic gates and photoactivatable bioimaging. Int J Biol Macromol 2024; 278:135043. [PMID: 39182891 DOI: 10.1016/j.ijbiomac.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Protein bioconjugation has emerged as one of the most valuable tools for the development of protein-based biochemical assays. Herein, we report a fluorescent macromolecular probe RF12_POI, in which the coumarin derivative RF12 is specifically conjugated onto the HaloTag fused protein of interest (POI) to achieve a dual stimuli-mediated fluorescence response. RF12 is first obtained by installing a photo-cleavable 1-ethyl-2-nitrobenzyl group onto the C7 hydroxy moiety of coumarin fluorophore with a HaloTag ligand attaching to the acid-labile 1,3-dioxane moiety. Upon stimulation, RF12_Halo exhibits a sequential fluorescence response to photon/H+ on both liquid and solid interfaces. Through the conjugation of RF12 onto the GFP_Halo protein, RF12_GFP_Halo presents a fluorescence resonance energy transfer (FRET) from photo-cleaved RF12 to GFP in the protein complex. Furthermore, by utilizing the stimuli-responsive fluorescence characteristics of coumarin derivatives RF12 (photon/H+) and RF16 (H2O2/H+), we construct RF12/RF16_POI based protein films and achieve multiple applications of logic circuits, including AND, OR, XOR, INHIBIT, Half-adder or Half-subtractor. In these circuits, the output value of I/I0 is dependent on the input sequence of photon, H2O2, and H+. Additionally, we evaluate the fluorescence labeling ability of RF12 to intracellular IRE1_Halo protein and demonstrate that RF12 containing the HaloTag ligand could be precisely retained in cells to track IRE1_Halo protein. Hence, we provide a unique structural design strategy to construct fluorescence dual-responsive macromolecules for information encryption and cellular protein visualization.
Collapse
Affiliation(s)
- Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yaxi Li
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Xuekun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jianming Ni
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China.
| |
Collapse
|
2
|
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1185. [PMID: 39057862 PMCID: PMC11280116 DOI: 10.3390/nano14141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The use of DNA structures in creating multimodal logic gates bears high potential for building molecular devices and computation systems. However, due to the complex designs or complicated working principles, the implementation of DNA logic gates within molecular devices and circuits is still quite limited. Here, we designed simple four-way DNA logic gates that can serve as multimodal platforms for simple to complex operations. Using the proximity quenching of the fluorophore-quencher pair in combination with the toehold-mediated strand displacement (TMSD) strategy, we have successfully demonstrated that the fluorescence output, which is a result of gate opening, solely relies on the oligonucleotide(s) input. We further demonstrated that this strategy can be used to create multimodal (tunable displacement initiation sites on the four-way platform) logic gates including YES, AND, OR, and the combinations thereof. The four-way DNA logic gates developed here bear high promise for building biological computers and next-generation smart molecular circuits with biosensing capabilities.
Collapse
Affiliation(s)
| | | | | | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Elbeheiry HM, Schulz M. Enhancing Control Over Nitric Oxide Photorelease via a Molecular Keypad Lock. Chemistry 2024; 30:e202400709. [PMID: 38700927 DOI: 10.1002/chem.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 05/23/2024]
Abstract
Based on Boolean logic, molecular keypad locks secure molecular information, typically with an optical output. Here we investigate a rare example of a molecular keypad lock with a chemical output. To this end, the light-activated release of biologically important nitric oxide from a ruthenium complex is studied, using proton concentration and photon flux as inputs. In a pH-dependent equilibrium, a nitritoruthenium(II) complex is turned into a nitrosylruthenium(II) complex, which releases nitric oxide under irradiation with visible light. The precise prediction of the output nitric oxide concentration as function of the pH and photon flux is achieved with an artificial intelligence approach, namely the adaptive neuro-fuzzy inference system. In this manner an exceptionally high level of control over the output concentration is obtained. Moreover, the provided concept to lock a chemical output as well as the output prediction may be applied to other (photo)release schemes.
Collapse
Affiliation(s)
- Hani M Elbeheiry
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department of Chemistry, Faculty of Science, Damietta University, 34517, New Damietta, Egypt
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Functional Interfaces, Leibniz-Institute of Photonic Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
4
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Li YL, Min XH, Fan YJ, Dong JX, Wu D, Ren X, Ma HM, Gao ZF, Wei Q, Xia F, Ju H. Photocleavable DNA Nanotube-Based Dual-Amplified Resonance Rayleigh Scattering System for MicroRNA Detection Incorporating Molecular Computing-Cascaded Keypad Lock Functionality. Anal Chem 2024. [PMID: 38324019 DOI: 10.1021/acs.analchem.3c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.
Collapse
Affiliation(s)
- Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xue Hong Min
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, P. R. China
| | - Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hong Min Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zhang X, Xiu T, Wang H, Wang H, Li P, Tang B. Recent progress in the development of small-molecule double-locked logic gate fluorescence probes. Chem Commun (Camb) 2023; 59:11017-11027. [PMID: 37667841 DOI: 10.1039/d3cc03492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Various bioactive substances are simultaneously involved in physiological processes, and research on the synergistic effect of them can promote the study of pathological mechanisms. To achieve this purpose, several small-molecule double-locked logic gate fluorescence probes have been developed recently. They overcome many shortcomings of the traditional "single-signal" fluorescent probes, with fluorescence that can be activated by two analytes of interest order-independently or order-dependently with one output. In this review, we summarize recently published small-molecule double-locked logic gate probes for the optical detection of two bioactive substances in living systems. We envision that this review will attract significant attention from researchers to exploit more powerful functional double-locked logic gate probes.
Collapse
Affiliation(s)
- Xiaoting Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Tiancong Xiu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Hongtong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei, Jimo, People's Republic of China
| |
Collapse
|
7
|
Motiei L, Margulies D. Molecules that Generate Fingerprints: A New Class of Fluorescent Sensors for Chemical Biology, Medical Diagnosis, and Cryptography. Acc Chem Res 2023. [PMID: 37335975 DOI: 10.1021/acs.accounts.3c00162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
ConspectusFluorescent molecular sensors, often referred to as "turn-on" or "turn-off" fluorescent probes, are synthetic agents that change their fluorescence signal in response to analyte binding. Although these sensors have become powerful analytical tools in a wide range of research fields, they are generally limited to detecting only one or a few analytes. Pattern-generating fluorescent probes, which can generate unique identification (ID) fingerprints for different analytes, have recently emerged as a new class of luminescent sensors that can address this limitation. A unique characteristic of these probes, termed ID-probes, is that they integrate the qualities of conventional small-molecule-based fluorescent sensors and cross-reactive sensor arrays (often referred to as chemical, optical, or electronic noses/tongues). On the one hand, ID-probes can discriminate between various analytes and their combinations, akin to array-based analytical devices. On the other hand, their minute size enables them to analyze small-volume samples, track dynamic changes in a single solution, and operate in the microscopic world, which the macroscopic arrays cannot access.Here, we describe the principles underlying the ID-probe technology, as well as provide an overview of different ID-probes that have been developed to date and the ways they can be applied to a wide range of research fields. We describe, for example, ID-probes that can identify combinations of protein biomarkers in biofluids and in living cells, screen for several protein inhibitors simultaneously, analyze the content of Aβ aggregates, as well as ensure the quality of small-molecule and biological drugs. These examples highlight the relevance of this technology to medical diagnosis, bioassay development, cell and chemical biology, and pharmaceutical quality assurance, among others. ID-probes that can authorize users and protect secret data are also presented and the mechanisms that enable them to hide (steganography), encrypt (cryptography), and prevent access to (password protection) information are discussed.The versatility of this technology is further demonstrated by describing two types of probes: unimolecular ID-probes and self-assembled ID-probes. Probes from the first type can operate inside living cells, be recycled, and their initial patterns can be more easily obtained in a reproducible manner. The second type of probes can be readily modified and optimized, allowing one to prepare various different probes from a much wider range of fluorescent reporters and supramolecular recognition elements. Taken together, these developments indicate that the ID-probe sensing methodology is generally applicable, and that such probes can better characterize analyte mixtures or process chemically encoded information than can the conventional fluorescent molecular sensors. We therefore hope that this review will inspire the development of new types of pattern-generating probes, which would extend the fluorescence molecular toolbox currently used in the analytical sciences.
Collapse
Affiliation(s)
- Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Shen P, Liu Y, Qu X, Zhu M, Huang T, Sun Q. An optical keypad lock with high resettability based on a quantum dot-porphyrin FRET nanodevice. NANOSCALE ADVANCES 2023; 5:2986-2993. [PMID: 37260500 PMCID: PMC10228340 DOI: 10.1039/d3na00030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Due to their appealing properties, nanomaterials have become ideal candidates for the implementation of computing systems. Herein, an optical keypad lock based on a Förster resonance energy transfer (FRET) nanodevice is developed. The nanodevice is composed of a green-emission quantum dot with a thick silica shell (gQD@SiO2) and peripheric blue-emission quantum dots with ultrathin silica spacer (bQD@SiO2), on which 5,10,15,20-tetrakis(4-sulfophenyl)porphyrin (TSPP) is covalently linked. The nanodevice outputs dual emission-based ratiometric fluorescence, depending on the FRET efficiency of bQD-porphyrin pairs, which is highly sensitive to the metalation of TSPP: values are 59.7%, 44.8%, and 10.1% for bQD-Zn(ii)TSPP, bQD-TSPP, and bQD-Fe(iii)TSPP pairs, respectively. As such, by using the competitive chelation-induced transmetalation of TSPP, the nanodevice is capable of implementing a 3-input keypad lock that is unlocked only by the correct input order of Zn(ii) chelator, iron ions, and UV light. Interestingly, the reversible transmetalation of TSPP permits the reset (lock) operation of the keypad lock with the correct input order of ascorbic acid, Zn(ii), and UV light. Application of the nanodevice is exemplified by the construction of paper and cellular keypad locks, respectively, both of which feature signal readability and/or high resettability, showing high potential for personal information identification and bio-encryption applications.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Lab of Lignocellulosic Functional Materials, College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Xiaojun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Mingsong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Ting Huang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University Nanjing 210096 China
| |
Collapse
|
9
|
Bhattacharya S, Sahoo A, Baitalik S. Human brain-inspired chemical artificial intelligence tools for the analysis and prediction of the anion-sensing characteristics of an imidazole-based luminescent Os(II)-bipyridine complex. Dalton Trans 2023; 52:6749-6762. [PMID: 37129261 DOI: 10.1039/d3dt00327b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neural network and decision tree-based soft computing techniques are implemented in this work for the thorough analysis of the multichannel anion-sensing characteristics of an Os(II)-bipyridine complex derived from imidazole-4,5-bis(benzimidazole) ligand. With the aid of three imidazole NH protons in its outer coordination sphere, a substantial change in the spectral response as well as OsII/OsIII potential is made possible upon treating with anions of varying basicity. Initial hydrogen bonding between NH protons and anions and thereafter complete proton transfer from the complex backbone probably take place in the process. The deprotonation of the complex by specific anions and restoration to its original form by acid is also reversible. The responsiveness of the new compound is complex enough to imitate multiple sophisticated binary and ternary Boolean logic (BL) functions (NOT logic, combinational logic, traffic signal, set-reset flip-flop logic, and ternary NOR logic) by employing its spectral and redox outputs upon the action of suitable anions and acid in a proper sequence. Executing sensing investigations on altering the amount of the anions within a widespread range is often time-consuming and tedious. To overcome the lacuna, we implemented multiple soft computing techniques, viz., fuzzy logic (FL), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) regression, for the thorough analysis and prediction of the experimentally observed results. The outcomes obtained from different techniques were compared among themselves as well as with the experimental data and utilized for the proper modeling of the anion-sensing behaviors of the complex.
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| | - Anik Sahoo
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
10
|
Wu Y, Yu Liu Q, Qi Bu Z, Xia Quan M, Yang Lu J, Tao Huang W. Colorimetric multi-channel sensing of metal ions and advanced molecular information protection based on fish scale-derived carbon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122291. [PMID: 36603276 DOI: 10.1016/j.saa.2022.122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Some nanosystems based on carbon nanomaterials have been used for fluorescent chemical/biosensing, elementary information processing, and textual coding. However, little attention has been paid to utilizing biowaste-derived carbon nanomaterials for colorimetric multi-channel sensing and advanced molecular information protection (including text and pattern information). Herein, fish scale-derived carbon nanoparticles (FSCN) were prepared and used for colorimetric detection of metal ions, encoding, encrypting and hiding text- and pattern-based information. The morphology and composition of FSCN were analyzed by TEM, XRD, FTIR, and XPS, and it was found that the FSCN-based multi-channel colorimetric sensing system can detect Cr6+ (detection limit of 56.59 nM and 13.32 nM) and Fe3+ (detection limit of 81.55 nM) through the changes of absorption intensity at different wavelengths (272, 370, and 310 nm). Moreover, the selective responses of FSCN to 20 kinds of metal ions can be abstracted into a series of binary strings, which can encode, hide, and encrypt traditional text-based and even two-dimensional pattern-based information. The preparation of carbon nanomaterials derived from waste fish scales can stimulate other researcheres' enthusiasm for the development and utilization of wastes and promoting resource recycling. Inspired by this work, more researches will continue to explore the world of molecular information technology.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
11
|
Abstract
Featured with molecule-level data encryption, molecular keypad locks show attractive merits in information security. Most of the previous multiple-input locks use fluorescence as output but are impeded by inefficient/labile prequenching or highly synthetic complexity/difficulty of the fluorophore-containing processor molecules. We herein propose a facile three-input molecular keypad lock, which is simple in synthesis and label free but capable of in situ generation of a fluorescent moiety (dityrosine) for background-free fluorescence readout. A nonfluorescent ("Locked") tyrosine derivate zYpc was easily synthesized as the processor. The correct "password" (i.e., UV → ALP → TYR, ABC) stepwise converted zYpc to a dityrosine-containing product, exhibiting a bright blue fluorescence output ("Open"). In contrast, wrongly permutated inputs failed to open this lock. This device shows potential to be extended as a more advanced keypad lock with better security.
Collapse
Affiliation(s)
- Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Tiantian Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Lingling Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
12
|
Wang W, Ge Q, Zhao X. Enzyme-free isothermal amplification strategy for the detection of tumor-associated biomarkers: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Mohandoss S, Ganesan S, Palanisamy S, You S, Velsankar K, Sudhahar S, Lo HM, Lee YR. Nitrogen, sulfur, and phosphorus Co-doped carbon dots-based ratiometric chemosensor for highly selective sequential detection of Al 3+ and Fe 3+ ions in logic gate, cell imaging, and real sample analysis. CHEMOSPHERE 2023; 313:137444. [PMID: 36462566 DOI: 10.1016/j.chemosphere.2022.137444] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Heteroatom-doped photoluminescent (PL) carbon dots (CDs) have recently gained attention as optical sensors due to their excellent tunable properties. In this work, we propose a one-pot hydrothermal synthesis of PL nitrogen (N), sulfur (S), and phosphorus (P) co-doped carbon dots (NSP-CDs) using glutathione and phosphoric acid (H3PO4) as precursors. The synthesized NSP-CDs were characterized using different spectroscopic and microscopic techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. The NSP-CDs exhibited excellent PL properties with green emission at 492 nm upon excitation at 417 nm, a high quantum yield of 26.7%, and dependent emission behavior. The as-prepared NSP-CDs were spherical with a well-monodispersed average particle size of 5.2 nm. Moreover, NSP-CDs demonstrate high PL stability toward a wider pH, high salt ionic strength, and various solvents. Furthermore, the NSP-CDs showed a three-state "off-on-off" PL response upon the sequential addition of Al3+ and Fe3+ ions, with a low limit of detection (LOD) of 10.8 nM for Al3+ and 50.7 nM for Fe3+. The NSP-CD sensor can construct an INHIBIT logic gate with Al3+ and Fe3+ ions as the chemical inputs and emissions as the output mode. Owing to an excellent tunable PL property and biocompatibility, the NSP-CDs were applied for sensing Al3+ and Fe3+ ions as well as live cell imaging. Furthermore, NSP-CDs were designed as PL sensors for detecting Al3+ and Fe3+ ions in real water show their potential application.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon, 25457, Republic of Korea
| | - K Velsankar
- Department of Physics, Alagappa University, Karaikudi, 630003, Tamilnadu, India
| | | | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
14
|
Sahoo A, Bhattacharya S, Jana S, Baitalik S. Neural network and decision tree-based machine learning tools to analyse the anion-responsive behaviours of emissive Ru( ii)–terpyridine complexes. Dalton Trans 2023; 52:97-108. [DOI: 10.1039/d2dt03289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Artificial neural network, adaptive neuro-fuzzy inference and decision tree regression are implemented to analyse the anion-responsive behaviours of emissive Ru(ii)–terpyridine complexes.
Collapse
Affiliation(s)
- Anik Sahoo
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sohini Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
15
|
Lu JY, Jiang Q, Lei JJ, He YX, Huang WT. Molecular ‘email’: Electrochemical aptasensing of fish pathogens, molecular information encoding, encryption and hiding applications. Anal Chim Acta 2022; 1232:340483. [DOI: 10.1016/j.aca.2022.340483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022]
|
16
|
Pal P, Sahoo A, Paul A, Baitalik S. Anion and Light Responsive Molecular Switches Based on Stilbene‐Appended Ru(II) Terpyridyl‐Imidazole Complexes That Mimic Advanced Boolean and Fuzzy Logic Operations. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Poulami Pal
- Inorganic Chemistry Section, Department of Chemistry Jadavpur University Kolkata 700032 India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry Jadavpur University Kolkata 700032 India
| | - Animesh Paul
- Inorganic Chemistry Section, Department of Chemistry Jadavpur University Kolkata 700032 India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry Jadavpur University Kolkata 700032 India
| |
Collapse
|
17
|
Hydrazone-based Schiff base dual chemosensor for recognition of Cu2+ and F− by 1:2 demultiplexer, half adder, half subtractor, molecular keypad lock and logically reversible transfer gate logic circuits and its application as test kit. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
A K A, Babu A R S, A Anappara A, N K R. Specific ultralow level chemo-recognition using Graphene-fluorophore supramolecular assembly: Fine-tuning the fluorophore framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120408. [PMID: 34592481 DOI: 10.1016/j.saa.2021.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The non-covalent interactions between graphene and aromatic fluorophores have generated highly sensitive fluorimetric turn-on sensors for various significant analytes. Herein, the supramolecular interaction between reduced graphene oxide and 7-Hydroxy-4-Methyl-8-Amino Coumarin is made use of for tracing Cu2+ at sub-zeptomole level with excellent selectivity among a collection of nineteen metal ions. The system enables quantification of the analyte in a commendably wide range, from micromolar to zeptomolar, a feature that almost all-optical sensors lack. Handy solid-state sensor strip fabricated using the above-mentioned supramolecular combination enabled visual recognition of Cu2+ions at the molecular level. Based on the chemo recognition ability of the fluorophore, multiple Boolean logic devices operating at the molecular level are proposed. By screening pertinent coumarin derivatives, it is demonstrated that the selectivity and sensitivity of the sensors of this sort are decided by the number of π- interaction centers of the fluorophores and the strength by which they interact with graphene, respectively, which will enable identification and modification of proper fluorophores for ultra-trace detection of contaminants of environmental relevance from aqueous solutions.
Collapse
Affiliation(s)
- Akhila A K
- Department of Chemistry, University of Calicut, Kerala 673635, India
| | - Suresh Babu A R
- Department of Chemistry, University of Calicut, Kerala 673635, India.
| | - Aji A Anappara
- Department of Physics, National Institute of Technology Calicut (NITC), Kerala 673601, India.
| | - Renuka N K
- Department of Chemistry, University of Calicut, Kerala 673635, India.
| |
Collapse
|
19
|
Jiang S, Mao W, Mao D, Li ZT, Ma D. AND molecular logic gates based on host-guest complexation operational in live cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wei W, Li J, Yao H, Liu H. A molecular keypad lock with 3-output signals built on stimulus-responsive polymer film electrodes containing diallyl viologen. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Meiser LC, Nguyen BH, Chen YJ, Nivala J, Strauss K, Ceze L, Grass RN. Synthetic DNA applications in information technology. Nat Commun 2022; 13:352. [PMID: 35039502 PMCID: PMC8763860 DOI: 10.1038/s41467-021-27846-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
Synthetic DNA is a growing alternative to electronic-based technologies in fields such as data storage, product tagging, or signal processing. Its value lies in its characteristic attributes, namely Watson-Crick base pairing, array synthesis, sequencing, toehold displacement and polymerase chain reaction (PCR) capabilities. In this review, we provide an overview of the most prevalent applications of synthetic DNA that could shape the future of information technology. We emphasize the reasons why the biomolecule can be a valuable alternative for conventional electronic-based media, and give insights on where the DNA-analog technology stands with respect to its electronic counterparts.
Collapse
Affiliation(s)
- Linda C Meiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | | | | | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | | | - Luis Ceze
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Robert N Grass
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland.
| |
Collapse
|
22
|
Yao QF, Quan MX, Yang JH, Liu QY, Bu ZQ, Huang WT. Multifunctional Carbon Nanocomposites as Nanoneurons from Multimode and Multianalyte Sensing to Molecular Logic Computing, Steganography, and Cryptography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103983. [PMID: 34668311 DOI: 10.1002/smll.202103983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Inspired by information exchange and logic functions of life based on molecular recognition and interaction networks, ongoing efforts are directed toward development of molecular or nanosystems for multiplexed chem/biosensing and advanced information processing. However, because of their preparation shortcomings, poor functionality, and limited paradigms, it is still a big challenge to develop advanced nanomaterials-based systems and comprehensively realize neuron-like functions from multimode sensing to molecular information processing and safety. Herein, using fish scales derived carbon nanoparticles (FSCN) as a reducing agent and stabilizer, a simple one-step synthesis method of multifunctional silver-carbon nanocomposites (AgNPs-FSCN) is developed. The prepared AgNPs-FSCN own wide antibacterial and multisignal response abilities in five channels (including color, Tyndall, absorption and fluorescence intensities, and absorption wavelength) for quantitative colorimetric and fluorescence sensing of H2 O2 , ascorbic acid, and dopamine. Benefiting from its multicoding stimuli-responsive ability, molecular concealment, and programmability, AgNPs-FSCN can be abstracted as nanoneurons for implementing batch and parallel molecular logic computing, steganography, and cryptography. This research will promote the preparation of advanced multifunctional nanocomposites and the development of their multipurpose applications, including the multireadout-guided multianalyte intelligent sensing and sophisticated molecular computing, communication, and security.
Collapse
Affiliation(s)
- Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jin Hua Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
23
|
Zhang H, Li Q, Yang Y, Ji X, Sessler JL. Unlocking Chemically Encrypted Information Using Three Types of External Stimuli. J Am Chem Soc 2021; 143:18635-18642. [PMID: 34719924 DOI: 10.1021/jacs.1c08558] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Encryption is critical to information security; however, existing chemical-based information encryption strategies are still in their infancy. We report here a new approach to chemical encryption involving a supramolecular gel QR (quick response) code with multiple encryption functions. Three color "turn-on" supramolecular polymer gels, G1-G3, were prepared that produce pink, purple, and yellow colors when subject to treatment with acetic acid vapor, UV light, and methanolic FeCl3, respectively. As the result of hydrogen-bonding interactions at the gel interfaces, the three gels can be assembled to produce gel G4. Engraving a QR code pattern onto G4 then gave gel G5. When one or two stimuli are applied to the individual pieces corresponding to the QR engraved versions of the gels G1-G3 making up G5, a complete scannable pattern is not displayed, and the stored information cannot be recognized. Only when three different stimuli are applied at the same time does G5 give a complete recognizable pattern allowing the stored information to be retrieved. This strategy was applied to the decryption-based opening of a coded lock.
Collapse
Affiliation(s)
- Hanwei Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Chan KH, Groves JT. Concise Modular Synthesis and NMR Structural Determination of Gallium Mycobactin T. J Org Chem 2021; 86:15453-15468. [PMID: 34699221 DOI: 10.1021/acs.joc.1c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modular synthesis of mycobactin T and its N-acetyl analogue is reported in a route that facilitates permutation of the lipid tails. A key feature is the generation of N(α)-Cbz-N(ε)-benzyloxy-N(ε)-Boc-lysine (A4) with methyl(trifluoromethyl)dioxirane in 59% yield. Selective hydroxamate N-acylation was achieved with acyl fluorides, enabling installation of lipids tails in the final step. O-Benzyl-dehydrocobactin T (B4) was prepared by modifying a known five-step sequence with an overall yield of 49%. 2-Hydroxyphenyl-4-carboxyloxazoline (C3) was prepared from 2-hydroxybenzoic acid and l-serine methyl ester in three steps with an overall yield of 55%. Ester coupling of A4 and B4 with EDCI afforded MbI-1 in 73% yield. Catalytic hydrogenation with Pd/BaSO4 and 50 psi of H2 simultaneously effected alkene reduction and debenzylation to afford MbI-2 in 96% yield. Fragment C3 was converted into acyl fluoride C4, which coupled with MbI-2 to afford MbI-3 in 51% yield. Finally, Boc-removal with HCl/EtOAc and treatment of the resultant hydroxylamine with stearyl fluoride furnished mycobactin T in 65% yield. Overall, the yield is 4% over 14 steps. The gallium mycobactin T-N-acetyl derivative (GaMbT-NAc) structure was determined by 1H NMR. The structure shows an octahedral Ga and two internal hydrogen bonds between peptidic N-Hs and two of the oxygen atoms coordinating Ga.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Islam M, Shafiq Z, Mabood F, Shah HH, Singh V, Khalid M, de Alcântara Morais SF, Braga AAC, Khan MU, Hussain J, Al-Harrasi A, Marraiki N, Zaghloul NSS. 2-Nitro- and 4-fluorocinnamaldehyde based receptors as naked-eye chemosensors to potential molecular keypad lock. Sci Rep 2021; 11:20847. [PMID: 34675345 PMCID: PMC8531455 DOI: 10.1038/s41598-021-99599-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
New-generation chemosensors desire small organic molecules that are easy to synthesise and cost-effective. As a new interdisciplinary area of research, the integration of these chemosensors into keypad locks or other advanced communication protocols is becoming increasingly popular. Our lab has developed new chemosensor probes that contain 2-nitro- (1-3) and 4-fluoro-cinnamaldehyde (4-6) and applied them to the anion recognition and sensing process. Probes 1-6 are colorimetric sensors for naked-eye detection of AcO-/CN-/F-, while probes 4-6 could differentiate between F- and AcO-/CN- anions in acetonitrile. Using the density functional theory (DFT), it was found that probes 1-6 acted as effective chemosensors. By using Probe 5 as a chemosensor, we explored colorimetric recognition of multiple anions in more detail. Probe 5 was tested in combination with a combinatorial approach to demonstrate pattern-generation capability and its ability to distinguish among chemical inputs based on concentration. After pattern discrimination using principal component analysis (PCA), we examined anion selectivity using DFT computation. In our study, probe 5 demonstrates excellent performance as a chemosensor and shows promise as a future molecular-level keypad lock system.
Collapse
Affiliation(s)
- Muhammad Islam
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Fazal Mabood
- Natural and Medical Sciences Research Centre, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Nizwa, Oman
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Hakikulla H Shah
- Natural and Medical Sciences Research Centre, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Nizwa, Oman
| | - Vandita Singh
- Department of Food Science and Human Nutrition, College of Applied and Health Sciences, A'Sharqiyah University, P. O. Box 42, Ibra, Oman
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Sara Figueirêdo de Alcântara Morais
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo, 05508-000, Brazil
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo, 05508-000, Brazil
| | | | - Javid Hussain
- Natural and Medical Sciences Research Centre, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Nizwa, Oman
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
26
|
Mukherjee S, Sahoo A, Deb S, Baitalik S. Light and Cation-Driven Optical Switch based on a Stilbene-Appended Terpyridine System for the Design of Molecular-Scale Logic Devices. J Phys Chem A 2021; 125:8261-8273. [PMID: 34506718 DOI: 10.1021/acs.jpca.1c06524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular system comprising a terpyridine moiety capable of coordinating with different cations and a photoswitchable stilbene unit has been utilized here for the fabrication of multiply configurable logic systems. Incorporation of a substituted stilbene unit into the terpyridine motif generates an intraligand charge-transfer-sensitive module whose absorption and emission spectral properties are highly sensitive to light as well as cations. On the basis of the optical response profile of the receptor in the presence of selected cations as well as light of a specific wavelength, we are able to demonstrate multiple Boolean logic functions such as INHIBIT, IMPLICATION, OR, NOR, and NAND, as well as various combinations of them. Of particular interest, we utilized the present system for the construction of security keypad locks and memory devices by maintaining a proper sequence of the stimuli and monitoring either absorption or emission spectral response at a specific wavelength as the output signal. In addition to various Boolean logic functions, the present system has also the ability to mimic fuzzy logic operations for generating an infinite-valued logic scheme depending on its emission spectral responses upon varying the concentration of cationic (Fe2+ and/or Zn2+) and anionic (CN-) inputs.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
27
|
Turkoglu G, Koygun GK, Zafer Yurt MN, Pirencioglu SN, Erbas-Cakmak S. A therapeutic keypad lock decoded in drug resistant cancer cells. Chem Sci 2021; 12:9754-9758. [PMID: 34349948 PMCID: PMC8293978 DOI: 10.1039/d1sc02521j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
A molecular keypad lock that displays photodynamic activity when exposed to glutathione (GSH), esterase and light in the given order, is fabricated and its efficacy in drug resistant MCF7 cancer cells is investigated. The first two inputs are common drug resistant tumor markers. GSH reacts with the agent and shifts the absorption wavelength. Esterase separates the quencher from the structure, further activating the agent. After these sequential exposures, the molecular keypad lock is exposed to light and produces cytotoxic singlet oxygen. Among many possible combinations, only one 'key' can activate the agent, and initiate a photodynamic response. Paclitaxel resistant MCF7 cells are selectively killed. This work presents the first ever biological application of small molecular keypad locks.
Collapse
Affiliation(s)
- Gulsen Turkoglu
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University Meram Konya Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| | | | - Mediha Nur Zafer Yurt
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| | - Seyda Nur Pirencioglu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University Konya Turkey
| | - Sundus Erbas-Cakmak
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University Meram Konya Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University Konya Turkey
| |
Collapse
|
28
|
Karar M, Paul P, Mistri R, Majumdar T, Mallick A. Dual macrocyclic chemical input based highly protective molecular keypad lock using fluorescence in solution phase: A new type approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Jiang C, Zhang Y, Wang F, Liu H. Toward Smart Information Processing with Synthetic DNA Molecules. Macromol Rapid Commun 2021; 42:e2100084. [PMID: 33864315 DOI: 10.1002/marc.202100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Indexed: 11/07/2022]
Abstract
DNA, a biological macromolecule, is a naturally evolved information material. From the structural point of view, an individual DNA strand can be considered as a chain of data with its bases working as single units. For decades, due to the high biochemical stability, large information storage capacity, and high recognition specificity, DNA has been recognized as an attractive material for information processing. Especially, the chemical synthesis strategies and DNA sequencing techniques have been rapidly developed recently, further enabling encoding information with synthetic DNA molecules. Herein, recent progresses are summarized on information processing based on synthetic DNA molecules from three aspects including information storage, computation, and encryption, and proposed the challenges and future development directions.
Collapse
Affiliation(s)
- Chu Jiang
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Molecular Design and Biomimetics, School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| |
Collapse
|
30
|
Lv WY, Li CH, Li YF, Zhen SJ, Huang CZ. Hierarchical Hybridization Chain Reaction for Amplified Signal Output and Cascade DNA Logic Circuits. Anal Chem 2021; 93:3411-3417. [DOI: 10.1021/acs.analchem.0c04483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
31
|
Andréasson J, Pischel U. Light-stimulated molecular and supramolecular systems for information processing and beyond. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Singh N, Chandra R. A naked-eye colorimetric sensor based on chalcone for the sequential recognition of copper( ii) and sulfide ions in semi-aqueous solution: spectroscopic and theoretical approaches. NEW J CHEM 2021. [DOI: 10.1039/d1nj00583a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chalcone-based new colorimetric sensor A01 for the sequential detection of Cu2+ and S2− ions.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry
- University of Delhi
- Drug Discovery & Development Laboratory
- Delhi 110007
- India
| | - Ramesh Chandra
- Department of Chemistry
- University of Delhi
- Drug Discovery & Development Laboratory
- Delhi 110007
- India
| |
Collapse
|
33
|
Kishore Prasad P, Lahav-Mankovski N, Motiei L, Margulies D. Encrypting messages with artificial bacterial receptors. Beilstein J Org Chem 2020; 16:2749-2756. [PMID: 33224301 PMCID: PMC7670116 DOI: 10.3762/bjoc.16.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
A method for encrypting messages using engineered bacteria and different fluorescently labeled synthetic receptors is described. We show that the binding of DNA-based artificial receptors to E. coli expressing His-tagged outer membrane protein C (His-OmpC) induces a Förster resonance energy transfer (FRET) between the dyes, which results in the generation of a unique fluorescence fingerprint. Because the bacteria continuously divide, the emission pattern generated by the modified bacteria dynamically changes, enabling the system to produce encryption keys that change with time. Thus, this development indicates the potential contribution of live-cell-based encryption systems to the emerging area of information protection at the molecular level.
Collapse
Affiliation(s)
| | - Naama Lahav-Mankovski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Leila Motiei
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
34
|
Mehta R, Luxami V. A Novel ‘
On‐Off
’ Rhodamine Based Sensor for Colorimetric Detection of CN
−
and Its Application as Encoder‐Decoder and Molecular Keypad Lock. ChemistrySelect 2020. [DOI: 10.1002/slct.202002987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ruhi Mehta
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147 001 India
| |
Collapse
|
35
|
Wei B, Sun X, Yao D, Li C, Xiao S, Guo Y, Liang H. Homogeneous DNA-only keypad locks enable one-pot assay of multi-inputs. Chem Commun (Camb) 2020; 56:7427-7430. [PMID: 32490866 DOI: 10.1039/d0cc02868a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Homogeneous DNA-only keypad locks were built with multi-stranded scalable junction substrates and a series of double-stranded eliminators to differentially process correctly- and wrongly-added DNA inputs, respectively. Unlike conventional strategies that employed solid-phase platforms, one-pot assay of multiple DNA inputs was achieved, showing merits in fabricating complicated information security systems.
Collapse
Affiliation(s)
- Bing Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tandon A, Song Y, Mitta SB, Yoo S, Park S, Lee S, Raza MT, Ha TH, Park SH. Demonstration of Arithmetic Calculations by DNA Tile-Based Algorithmic Self-Assembly. ACS NANO 2020; 14:5260-5267. [PMID: 32159938 DOI: 10.1021/acsnano.0c01387] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Owing to its high information density, energy efficiency, and massive parallelism, DNA computing has undergone several advances and made significant contributions to nanotechnology. Notably, arithmetic calculations implemented by multiple logic gates such as adders and subtractors have received much attention because of their well-established logic algorithms and feasibility of experimental implementation. Although small molecules have been used to implement these computations, a DNA tile-based calculator has been rarely addressed owing to complexity of rule design and experimental challenges for direct verification. Here, we construct a DNA-based calculator with three types of building blocks (propagator, connector, and solution tiles) to perform addition and subtraction operations through algorithmic self-assembly. An atomic force microscope is used to verify the solutions. Our method provides a potential platform for the construction of various types of DNA algorithmic crystals (such as flip-flops, encoders, and multiplexers) by embedding multiple logic gate operations in the DNA base sequences.
Collapse
Affiliation(s)
- Anshula Tandon
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Yongwoo Song
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sekhar Babu Mitta
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sanghyun Yoo
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sungjin Lee
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Tayyab Raza
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Tai Hwan Ha
- Future Biotechnology Research Division, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Sung Ha Park
- Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
37
|
Karar M, Paul P, Biswas B, Mallick A, Majumdar T. Excitation wavelength as logic operator. J Chem Phys 2020; 152:075102. [PMID: 32087625 DOI: 10.1063/1.5142045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Multiple molecular logic gates were harvested on a single synthesized material, (E)-2-(2-hydroxy-3-methoxybenzylideneamino)phenol (MBAP), by combining excitation wavelength dependent multi-channel fluorescence outputs and the same chemical inputs. Interestingly, the effortless switching of logic behavior was achieved by simply tweaking the excitation wavelength and sometimes the emission wavelengths with no alteration of chemical inputs and the main device molecule, MBAP. Additionally, new generation purely optically driven memory units were designed on the same system supporting an almost infinite number of write-erase cycles since inter-conversion of memory states was completely free from chemical interferences and impurity issues. Two-way memory functions ("erase-read-write-read" and "write-read-erase-read") worked simultaneously on the same system and could be accessed by simple optical switching between two excitation and emission wavelengths. Our optically switchable device might outperform traditional multifunctional logic gates and memory devices that generally employ chemical triggers to switch functionality and memory states. These optically switchable multifunctional molecular logic gates and memory systems might drive smart devices in the near future with high energy efficiency, extended life span, structural and functional simplicity, exclusive reversibility and enhanced data storage density.
Collapse
Affiliation(s)
- Monaj Karar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| | - Provakar Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713 340, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| |
Collapse
|
38
|
Gu M, Shi H, Ling K, Lv A, Huang K, Singh M, Wang H, Gu L, Yao W, An Z, Ma H, Huang W. Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8183450. [PMID: 32110780 PMCID: PMC7029214 DOI: 10.34133/2020/8183450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/24/2019] [Indexed: 04/13/2023]
Abstract
Developing ultralong organic phosphorescence (UOP) materials with smart response to external stimuli is of great interest in photonics applications, whereas the manipulation of molecular stacking on tuning such dynamic UOP is still a formidable challenge. Herein, we have reported two polymorphs with distinct photoactivated dynamic UOP behavior based on a pyridine derivative for the first time. Our experiment revealed that the dynamic UOP behavior including photoactivation and deactivation feature is highly dependent on irradiation intensity and environmental atmosphere. Additionally, given the unique dynamic UOP feature, these phosphors have been successfully applied to phosphorescence-dependent molecular logic gate and timing data storage. This result not only paves a way to design smart functional materials but also expands the scope of the applications on organic phosphorescence materials.
Collapse
Affiliation(s)
- Mingxing Gu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Kun Ling
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Kaiwei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Manjeet Singh
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - He Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Long Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Yao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhongfu An
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
39
|
Ha SYY, Ng DKP. Constructing a four-input molecular keypad lock with a multi-stimuli-responsive phthalocyanine. Chem Commun (Camb) 2020; 56:14601-14604. [DOI: 10.1039/d0cc06251k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel phthalocyanine has been designed and synthesised whose response towards different stimuli can be manipulated to enable it to function as a four-input molecular keypad lock.
Collapse
Affiliation(s)
- Summer Y. Y. Ha
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| |
Collapse
|
40
|
Gowri Sreedevi KC, Thomas AP, Adinarayana B, Srinivasan A. Engineering diformyl diaryldipyrromethane into a molecular keypad lock. NEW J CHEM 2020. [DOI: 10.1039/d0nj01963a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A diaryldipyrromethane-based acyclic system acts as a photolabile sequential chemosensor for both anions and cations via ESIDPT and deprotonation, which is engineered into a fluorescent molecular keypad lock system.
Collapse
Affiliation(s)
- K. C. Gowri Sreedevi
- Photosciences and Photonics
- National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Department of Chemistry, College of Engineering Trivandrum
| | - Ajesh P. Thomas
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Khordha
- India
- Department of Chemistry
| | - B. Adinarayana
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Khordha
- India
| | - A. Srinivasan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- Khordha
- India
| |
Collapse
|
41
|
Zhang Y, Wang F, Chao J, Xie M, Liu H, Pan M, Kopperger E, Liu X, Li Q, Shi J, Wang L, Hu J, Wang L, Simmel FC, Fan C. DNA origami cryptography for secure communication. Nat Commun 2019; 10:5469. [PMID: 31784537 PMCID: PMC6884444 DOI: 10.1038/s41467-019-13517-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/29/2019] [Indexed: 11/15/2022] Open
Abstract
Biomolecular cryptography exploiting specific biomolecular interactions for data encryption represents a unique approach for information security. However, constructing protocols based on biomolecular reactions to guarantee confidentiality, integrity and availability (CIA) of information remains a challenge. Here we develop DNA origami cryptography (DOC) that exploits folding of a M13 viral scaffold into nanometer-scale self-assembled braille-like patterns for secure communication, which can create a key with a size of over 700 bits. The intrinsic nanoscale addressability of DNA origami additionally allows for protein binding-based steganography, which further protects message confidentiality in DOC. The integrity of a transmitted message can be ensured by establishing specific linkages between several DNA origamis carrying parts of the message. The versatility of DOC is further demonstrated by transmitting various data formats including text, musical notes and images, supporting its great potential for meeting the rapidly increasing CIA demands of next-generation cryptography. Biomolecular cyptography that exploits specific interactions could be used for data encryption. Here the authors use the folding of M13 DNA to encrypt information for secure communication.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210046, China
| | - Mo Xie
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Muchen Pan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Enzo Kopperger
- Physics of Synthetic Biological Systems (E14), Physics Department, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jun Hu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210046, China
| | - Friedrich C Simmel
- Physics of Synthetic Biological Systems (E14), Physics Department, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
42
|
Suo Z, Chen J, Hou X, Hu Z, Xing F, Feng L. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv 2019; 9:16479-16491. [PMID: 35516377 PMCID: PMC9064466 DOI: 10.1039/c9ra01261c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
As an important genetic material for life, DNA has been investigated widely in recent years, especially in interdisciplinary fields crossing nanomaterials and biomedical applications. It plays an important role because of its extraordinary molecular recognition capability and novel conformational polymorphism. DNA is also a powerful and versatile building block for the fabrication of nanostructures and nanodevices. Such DNA-based nanomaterials have also been successfully applied in various aspects ranging from biosensors to biomedicine and special logic gates, as well as in emerging molecular nanomachines. In this present mini-review, we briefly overview the recent progress in these fields. Furthermore, some challenges are also discussed in the conclusions and perspectives section, which aims to stimulate broader scientific interest in DNA nanotechnology and its biomedical applications.
Collapse
Affiliation(s)
- Zhiguang Suo
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Xialing Hou
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Ziheng Hu
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| |
Collapse
|
43
|
Polymer immobilization effect on excited state of emitting copper complex: Synthesis, characterization and performance improvement. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Daniel Thangadurai T, Nithya I, Rakkiyanasamy A. Development of three ways molecular logic gate based on water soluble phenazine fluorescent 'selective ion' sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:132-140. [PMID: 30530066 DOI: 10.1016/j.saa.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
New hydrophilic fluorescent selective ion sensor based on phenazine and phthalazine moieties, 1,1'-(phenazine-2,3-diyl)-bis(3-(1,4-dihydroxyphthalazin-6-yl)urea) (1), has been designed, synthesized and characterized. Interestingly, sensor 1 exhibits prominent "turn-on" and "turn-off" fluorogenic signaling at 580 nm towards Fe2+ & AcO- and Sr2+ & Cu2+, respectively. The fluorescence titration experiments shed light on the nature of the interaction between 1 and guest molecules (Fe2+, Sr2+, Cu2+ and AcO-), which divulge that 1 is flexible enough to orient itself according to the size of the guest molecule. Water mediated excited-state intramolecular proton transfer (ESIPT) and photo-induced electron transfer (PET) mechanisms are responsible for the dual behavior of 1, which binds with guest molecules in 1:1 stoichiometry. Based on the significant duplex fluorescence response of 1, a molecular logic gate keypad lock with sixteen "on" passwords for a storage system has been developed.
Collapse
Affiliation(s)
- T Daniel Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Coimbatore 641 022, Tamilnadu, India.
| | - I Nithya
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Coimbatore 641 022, Tamilnadu, India
| | - A Rakkiyanasamy
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Coimbatore 641 022, Tamilnadu, India
| |
Collapse
|
45
|
Zhu QY, Zhang FR, Du Y, Zhang XX, Lu JY, Yao QF, Huang WT, Ding XZ, Xia LQ. Graphene-Based Steganographically Aptasensing System for Information Computing, Encryption and Hiding, Fluorescence Sensing and in Vivo Imaging of Fish Pathogens. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8904-8914. [PMID: 30730133 DOI: 10.1021/acsami.8b22592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inspired by information processing and communication of life based on complex molecular interactions, some artificial (bio)chemical systems have been developed for applications in molecular information processing or chemo/biosensing and imaging. However, little attention has been paid to simultaneously and comprehensively utilize the information computing, encoding, and molecular recognition capabilities of molecular-level systems (such as DNA-based systems) for multifunctional applications. Herein, a graphene-based steganographically aptasensing system was constructed for multifunctional application, which relies on specific molecular recognition and information encoding abilities of DNA aptamers ( Aeromonas hydrophila and Edwardsiella tarda-binding aptamers as models) and the selective adsorption and fluorescence quenching capacities of graphene oxide (GO). Although graphene-DNA systems have been widely used in biosensors and diagnostics, our proposed graphene-based aptasensing system can not only be utilized for fluorescence sensing and in vivo imaging of fish pathogens ( A. hydrophila and E. tarda), but can also function as a molecular-level logic computing system where the combination of matters (specific molecules or materials) as inputs produces the resulting product (matter level) or fluorescence (energy level) changes as two outputs. More importantly and interestingly, our graphene-based steganographically aptasensing system can also serve as a generally doubly cryptographic and steganographic system for sending different secret messages by using pathogen-binding DNA aptamers as information carriers, GO as a cover, and a pair of keys, that is, target pathogen as a public key, the encryption key used to encode or decode a message in DNA as a private key. Our study not only provides a novel nanobiosensing assay for rapid and effective sensing and in vivo imaging of fish pathogens, but also demonstrates a prototype of (bio)molecular steganography as an important and interesting extension direction of molecular information technology, which is helpful in probably promoting the development of multifunctional molecular-level devices or machines.
Collapse
Affiliation(s)
- Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Yan Du
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science , Hunan Normal University , Changsha 410081 , P. R. China
| |
Collapse
|
46
|
Padhan SK, Palei J, Rana P, Murmu N, Sahu SN. Sequential displacement strategy for selective and highly sensitive detection of Zn 2+, Hg 2+ and S 2- ions: An approach toward a molecular keypad lock. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:271-284. [PMID: 30340207 DOI: 10.1016/j.saa.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 05/14/2023]
Abstract
A thiocarbonohydrazone locked salicylidene based macrocycle ligand L has been synthesized and its ion sensing properties were examined by UV-visible and fluorescence spectroscopy. The macrocycle serves as a highly selective colorimetric sensor for Hg2+ ions while it acts as an excellent fluorescent sensor for Zn2+ ions by exhibiting a green fluorescence at 498 nm even in the presence of interfering ions. A detailed analysis of binding characteristics such as complex stoichiometry, association constant and detection limits of L toward Hg2+ and Zn2+ ions were evaluated by UV-visible and fluorescence experiments which revealed a stronger binding affinity and higher detection limit of L toward the mercury ions. Further, the sequential displacement strategy for the chromofluorogenic detection of Zn2+, Hg2+ and S2- ions by ligand L, has been studied comprehensively. Finally, the ion-responsive fluorescence output signal of L were employed to design a molecular keypad lock which could be accessible by two users having two different set of chemical passwords (inputs) through distinguishable optical trajectories.
Collapse
Affiliation(s)
- Subrata Kumar Padhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Jitendra Palei
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Punam Rana
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Narayan Murmu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India
| | - Satya Narayan Sahu
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla 768 019, Odisha, India.
| |
Collapse
|
47
|
Molecular memory with downstream logic processing exemplified by switchable and self-indicating guest capture and release. Nat Commun 2019; 10:49. [PMID: 30664631 PMCID: PMC6341106 DOI: 10.1038/s41467-018-07902-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022] Open
Abstract
Molecular-logic based computation (MLBC) has grown by accumulating many examples of combinational logic gates and a few sequential variants. In spite of many inspirations being available in biology, there are virtually no examples of MLBC in chemistry where sequential and combinational operations are integrated. Here we report a simple alcohol-ketone redox interconversion which switches a macrocycle between a large or small cavity, with erect aromatic walls which create a deep hydrophobic space or with collapsed walls respectively. Small aromatic guests can be captured or released in an all or none manner upon chemical command. During capture, the fluorescence of the alcohol macrocycle is quenched via fluorescent photoinduced electron transfer switching, meaning that its occupancy state is self-indicated. This represents a chemically-driven RS Flip-Flop, one of whose outputs is fed into an INHIBIT gate. Processing of outputs from memory stores is seen in the injection of packaged neurotransmitters into synaptic clefts for onward neural signalling. Overall, capture-release phenomena from discrete supermolecules now have a Boolean basis.
Collapse
|
48
|
Lustgarten O, Carmieli R, Motiei L, Margulies D. A Molecular Secret Sharing Scheme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Omer Lustgarten
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Leila Motiei
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - David Margulies
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
49
|
Lustgarten O, Carmieli R, Motiei L, Margulies D. A Molecular Secret Sharing Scheme. Angew Chem Int Ed Engl 2018; 58:184-188. [DOI: 10.1002/anie.201809855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Omer Lustgarten
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Leila Motiei
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - David Margulies
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
50
|
Dreos A, Wang Z, Tebikachew BE, Moth-Poulsen K, Andréasson J. Three-Input Molecular Keypad Lock Based on a Norbornadiene-Quadricyclane Photoswitch. J Phys Chem Lett 2018; 9:6174-6178. [PMID: 30296093 PMCID: PMC6218103 DOI: 10.1021/acs.jpclett.8b02567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
The photo- and acidochromic properties of a new generation norbornadiene derivative have been harnessed for the realization of a three-input keypad lock, where a specific sequence of inputs induces a unique output. Reversible quadricyclane/norbornadiene photoisomerization is reported, and this rare feature allows the first example of a norbornadiene-based molecular logic system. The function of this system is clearly rationalized in terms of the interconversion scheme and the absorption spectra of the involved species.
Collapse
|