1
|
Lusky OS, Sherer D, Goldbourt A. Dynamics in the Intact fd Bacteriophage Revealed by Pseudo 3D REDOR-Based Magic Angle Spinning NMR. JACS AU 2024; 4:3619-3628. [PMID: 39328763 PMCID: PMC11423308 DOI: 10.1021/jacsau.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024]
Abstract
The development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here, we present an automated protocol to measure, using magic-angle spinning NMR, the effective 13C-15N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C-N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus and describe its overall dynamics on the submillisecond time scale. The method is based on combining three pseudo three-dimensional NMR experiments, where a rotational echo double resonance (REDOR) dephasing block, designed to measure internuclear distances, is combined with three complementary 13C-13C mixing schemes: dipolar-assisted rotational resonance, through-bond transfer-based double quantum/single quantum correlation, and radio frequency driven recoupling. These mixing schemes result in highly resolved carbon spectra with correlations that are created by different transfer mechanisms. We show that the helical part of the coat protein undergoes a uniform small (∼30°) amplitude motion, while the N-terminus is highly flexible. In addition, our results suggest that the reduced mobility of lysine sidechains at the C-terminus are a signature of binding to the single stranded DNA.
Collapse
Affiliation(s)
- Orr Simon Lusky
- School
of Chemistry, Faculty of Exact sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dvir Sherer
- School
of Chemistry, Faculty of Exact sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Goldbourt
- School
of Chemistry, Faculty of Exact sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Yuan J, Chiu PT, Liu X, Zhou J, Wang Y, Ho RM, Wen T. Cross-domain Chirality Transfer in Self-Assembly of Chiral Block Copolymers. Angew Chem Int Ed Engl 2024; 63:e202317102. [PMID: 38140766 DOI: 10.1002/anie.202317102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Chirality transfer is essential to acquire helical hierarchical superstructures from the self-assembly of supramolecular materials. By taking advantage of chirality transfers at different length scales through intra-chain and inter-chain chiral interactions, helical phase (H*) can be formed from the self-assembly of chiral block copolymers (BCPs*). In this study, chiral triblock terpolymers, polystyrene-b-poly(ethylene oxide)-b-poly(L-lactide) (PS-PEO-PLLA), and polystyrene-b-poly(4-vinylpyridine)-b-poly(L-lactide) (PS-P4VP-PLLA) are synthesized for self-assembly. For PS-PEO-PLLA with an achiral PEO mid-block that is compatible with PLLA (chiral end-block), H* can be formed while the block length is below a critical value. By contrast, for the one with achiral P4VP mid-block that is incompatible with PLLA, the formation of H* phase would be suppressed regardless of the length of the mid-block, giving cylinder phase. Those results elucidate a new type of chirality transfer across the phase domain that is referred as cross-domain chirality transfer, providing complementary understanding of the chirality transfer at the interface of phase-separated domains.
Collapse
Affiliation(s)
- Jun Yuan
- Electron Microscopy Center, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Po-Ting Chiu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Xiang Liu
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Jiajia Zhou
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Yingying Wang
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Tao Wen
- School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| |
Collapse
|
3
|
Böhning J, Graham M, Letham SC, Davis LK, Schulze U, Stansfeld PJ, Corey RA, Pearce P, Tarafder AK, Bharat TAM. Biophysical basis of filamentous phage tactoid-mediated antibiotic tolerance in P. aeruginosa. Nat Commun 2023; 14:8429. [PMID: 38114502 PMCID: PMC10730611 DOI: 10.1038/s41467-023-44160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Inoviruses are filamentous phages infecting numerous prokaryotic phyla. Inoviruses can self-assemble into mesoscale structures with liquid-crystalline order, termed tactoids, which protect bacterial cells in Pseudomonas aeruginosa biofilms from antibiotics. Here, we investigate the structural, biophysical, and protective properties of tactoids formed by the P. aeruginosa phage Pf4 and Escherichia coli phage fd. A cryo-EM structure of the capsid from fd revealed distinct biochemical properties compared to Pf4. Fd and Pf4 formed tactoids with different morphologies that arise from differing phage geometries and packing densities, which in turn gave rise to different tactoid emergent properties. Finally, we showed that tactoids formed by either phage protect rod-shaped bacteria from antibiotic treatment, and that direct association with a tactoid is required for protection, demonstrating the formation of a diffusion barrier by the tactoid. This study provides insights into how filamentous molecules protect bacteria from extraneous substances in biofilms and in host-associated infections.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Miles Graham
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Suzanne C Letham
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Luke K Davis
- Department of Mathematics, University College London, London, WC1H 0AY, UK
- Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Philip Pearce
- Department of Mathematics, University College London, London, WC1H 0AY, UK
- Institute for the Physics of Living Systems, University College London, London, WC1E 6BT, UK
| | - Abul K Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Łysik D, Deptuła P, Chmielewska S, Skłodowski K, Pogoda K, Chin L, Song D, Mystkowska J, Janmey PA, Bucki R. Modulation of Biofilm Mechanics by DNA Structure and Cell Type. ACS Biomater Sci Eng 2022; 8:4921-4929. [PMID: 36301743 PMCID: PMC9667457 DOI: 10.1021/acsbiomaterials.2c00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Deoxyribonucleic
acid (DNA) evolved as a tool for storing and transmitting
genetic information within cells, but outside the cell, DNA can also
serve as “construction material” present in microbial
biofilms or various body fluids, such as cystic fibrosis, sputum,
and pus. In the present work, we investigate the mechanics of biofilms
formed from Pseudomonas aeruginosa Xen
5, Staphylococcus aureus Xen 30, and Candida albicans 1408 using oscillatory shear rheometry
at different levels of compression and recreate these mechanics in
systems of entangled DNA and cells. The results show that the compression-stiffening
and shear-softening effects observed in biofilms can be reproduced
in DNA networks with the addition of an appropriate number of microbial
cells. Additionally, we observe that these effects are cell-type dependent.
We also identify other mechanisms that may significantly impact the
viscoelastic behavior of biofilms, such as the compression-stiffening
effect of DNA cross-linking by bivalent cations (Mg2+,
Ca2+, and Cu2+) and the stiffness-increasing
interactions of P. aeruginosa Xen 5
biofilm with Pf1 bacteriophage produced by P. aeruginosa. This work extends the knowledge of biofilm mechanobiology and demonstrates
the possibility of modifying biopolymers toward obtaining the desired
biophysical properties.
Collapse
Affiliation(s)
- Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
| | - LiKang Chin
- Department of Biomedical Engineering, Widener University, Chester, Pennsylvania 19087, United States
| | - Dawei Song
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Paul A. Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
5
|
Shikinaka K. Spontaneous Alignment of Microtubules Via Tubulin Polymerization in a Narrow Space Under a Temperature Gradient. Methods Mol Biol 2022; 2430:185-192. [PMID: 35476332 DOI: 10.1007/978-1-0716-1983-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this chapter, protocols for spontaneous alignment of microtubules (MTs), such as helices and spherulites, via tubulin polymerization in a narrow space and under a temperature gradient are presented for tubulin solutions and tubulin-polymer mixtures. These protocols provide an easy route for hierarchical MT assembly and may extend our current understanding of cytoskeletal protein self-assembly under dissipative conditions.
Collapse
Affiliation(s)
- Kazuhiro Shikinaka
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, Sendai, Miyagi, Japan.
| |
Collapse
|
6
|
Delepierre G, Eyley S, Thielemans W, Weder C, Cranston ED, Zoppe JO. Patience is a virtue: self-assembly and physico-chemical properties of cellulose nanocrystal allomorphs. NANOSCALE 2020; 12:17480-17493. [PMID: 32808640 DOI: 10.1039/d0nr04491a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose nanocrystals (CNCs) are bio-based rod-like nanoparticles with a quickly expanding market. Despite the fact that a variety of production routes and starting cellulose sources are employed, all industrially produced CNCs consist of cellulose I (CNC-I), the native crystalline allomorph of cellulose. Here a comparative study of the physico-chemical properties and liquid crystalline behavior of CNCs produced from cellulose II (CNC-II) and typical CNC-I is reported. CNC-I and CNC-II are isolated by sulfuric acid hydrolysis of cotton and mercerized cotton, respectively. The two allomorphs display similar surface charge densities and ζ-potentials and both have a right-handed twist, but CNC-II have a slightly smaller average length and aspect ratio, and are less hygroscopic. Interestingly, the self-assembly behavior of CNC-I and CNC-II in water is different. Whilst CNC-I forms a chiral nematic phase, CNC-II initially phase separates into an upper isotropic and a lower nematic liquid crystalline phase, before a slow reorganization into a large-pitch chiral nematic texture occurs. This is potentially caused by a combination of factors, including the inferred faster rotational diffusion of CNC-II and the different crystal structures of CNC-I and CNC-II, which are responsible for the presence and absence of a giant dipole moment, respectively.
Collapse
Affiliation(s)
- Gwendoline Delepierre
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland and University of British Columbia, 2424 Main Mall, Vancouver, BC V6 T 1Z4, Canada.
| | - Samuel Eyley
- Sustainable Materials Lab, Chemical Engineering, KU Leuven Kulak Kortrijk Campus, E. Sabbelaan 53 box 7659, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Chemical Engineering, KU Leuven Kulak Kortrijk Campus, E. Sabbelaan 53 box 7659, 8500 Kortrijk, Belgium
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Emily D Cranston
- University of British Columbia, 2424 Main Mall, Vancouver, BC V6 T 1Z4, Canada.
| | - Justin O Zoppe
- Omya International AG, Baslerstrasse 42, 4665, Oftringen, Switzerland.
| |
Collapse
|
7
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
8
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Uji H, Ogawa J, Itabashi K, Imai T, Kimura S. Compartmentalized host spaces accommodating guest aromatic molecules in a chiral way in a helix-peptide-aromatic framework. Chem Commun (Camb) 2018; 54:12483-12486. [PMID: 30338328 DOI: 10.1039/c8cc07380e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel host molecular assembly of a free-standing flat nanosheet with compartmentalized spaces was prepared using a bolaamphiphilic peptide composed of two amphiphilic helical peptides and an oligo(naphthaleneethynylene) (ONE) unit at the center of the molecule. The nanosheet possesses void host spaces that can accommodate two mol-equivalent ONE groups to form columns of ONE groups in a right-handed helical way and ONE channels over a long distance. The present molecular system therefore can provide a chiral pore channel for relatively large molecules.
Collapse
Affiliation(s)
- Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
10
|
Tortora MMC, Doye JPK. Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics. J Chem Phys 2018; 147:224504. [PMID: 29246043 DOI: 10.1063/1.5002666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
11
|
Orellana AG, Romani E, De Michele C. Speeding up Monte Carlo simulation of patchy hard cylinders. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:51. [PMID: 29651630 DOI: 10.1140/epje/i2018-11657-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The hard cylinder model decorated with attractive patches proved to be very useful recently in studying physical properties of several colloidal systems. Phase diagram, elastic constants and cholesteric properties obtained from computer simulations based on a simple hard cylinder model have been all successfully and quantitatively compared to experimental results. Key to these simulations is an efficient algorithm to check the overlap between hard cylinders. Here, we propose two algorithms to check the hard cylinder overlap and we assess their efficiency through a comparison with an existing method available in the literature and with the well-established algorithm for simulating hard spherocylinders. In addition, we discuss a couple of optimizations for performing computer simulations of patchy anisotropic particles and we estimate the speed-up which they can provide in the case of patchy hard cylinders.
Collapse
Affiliation(s)
| | - Emanuele Romani
- Dipartimento di Fisica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185, Roma, Italy
| | - Cristiano De Michele
- Dipartimento di Fisica, "Sapienza" Università di Roma, P.le A. Moro 2, 00185, Roma, Italy.
| |
Collapse
|
12
|
Morag O, Sgourakis NG, Abramov G, Goldbourt A. Filamentous Bacteriophage Viruses: Preparation, Magic-Angle Spinning Solid-State NMR Experiments, and Structure Determination. Methods Mol Biol 2018; 1688:67-97. [PMID: 29151205 DOI: 10.1007/978-1-4939-7386-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Filamentous bacteriophages are elongated semi-flexible viruses that infect bacteria. They consist of a circular single-stranded DNA (ssDNA) wrapped by a capsid consisting of thousands of copies of a major coat protein subunit. Given the increasing number of discovered phages and the existence of only a handful of structures, the development of methods for phage structure determination is valuable for biophysics and structural virology. In recent years, we developed and applied techniques to elucidate the 3D atomic-resolution structures of intact bacteriophages using experimental magic-angle spinning (MAS) solid-state NMR data. The flexibility in sample preparation - precipitated homogeneous solids - and the fact that ssNMR presents no limitation on the size, weight or morphology of the system under study makes it an ideal approach to study phage systems in detail.In this contribution, we describe approaches to prepare isotopically carbon-13 and nitrogen-15 enriched intact phage samples in high yield and purity, and we present experimental MAS NMR methods to study the capsid secondary and tertiary structure, and the DNA-capsid interface. Protocols for the capsid structure determination using the Rosetta modeling software are provided. Specific examples are given from studies of the M13 and fd filamentous bacteriophage viruses.
Collapse
Affiliation(s)
- Omry Morag
- School of Chemistry, Tel Aviv University, PO Box 39040, Tel Aviv, 69978041, Israel
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Gili Abramov
- Department of Chemistry, New York University, New York, NY, USA
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, PO Box 39040, Tel Aviv, 69978041, Israel.
| |
Collapse
|
13
|
Li MC, Ousaka N, Wang HF, Yashima E, Ho RM. Chirality Control and Its Memory at Microphase-Separated Interface of Self-Assembled Chiral Block Copolymers for Nanostructured Chiral Materials. ACS Macro Lett 2017; 6:980-986. [PMID: 35650879 DOI: 10.1021/acsmacrolett.7b00493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we show the induced chirality of an achiral chromophoric dye as a joint of polylactide-containing chiral block copolymers (BCPs*) driven by self-assembly, giving the achiral dyes preferentially arranged in a one-handed helical array at the microphase-separated interface. This helical arrangement of the achiral dyes can be "memorized" after hydrolysis of the polylactides in the BCPs* and serves as a chiral template for further chirality induction of different achiral dyes, probably through attractive aromatic π-π interactions at the interface, producing nanostructured chiral materials with tunable circular dichroism signals at desired wavelengths.
Collapse
Affiliation(s)
- Ming-Chia Li
- Department
of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Naoki Ousaka
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hsiao-Fang Wang
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Abramov G, Shaharabani R, Morag O, Avinery R, Haimovich A, Oz I, Beck R, Goldbourt A. Structural Effects of Single Mutations in a Filamentous Viral Capsid Across Multiple Length Scales. Biomacromolecules 2017; 18:2258-2266. [PMID: 28657731 DOI: 10.1021/acs.biomac.7b00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filamentous bacteriophage (phage) are single-stranded DNA viruses that infect bacteria. Single-site mutants of fd phage have been studied by magic-angle spinning nuclear magnetic resonance and by small-angle X-ray scattering. Detailed analysis has been performed that provides insight into structural variations on three length scales. The results, analyzed in conjunction with existing literature data, suggest that a single charge mutation on the capsid surface affects direct interviral interactions but not the structure of individual particles or the macroscale organization. On the other hand, a single hydrophobic mutation located at the hydrophobic interface that stabilizes capsid assembly alters the atomic structure of the phage, mainly affecting intersubunit interactions, affects its macroscale organization, that is, the pitch of the cholesteric liquid crystal formed by the particles, but skips the nanoscale hence does not affect direct interparticle interactions. An X-ray scattering under osmotic pressure assay provides the effective linear charge density of the phage and we obtain values of 0.6 Å-1 and 0.4 Å-1 for fd and M13 phage, respectively. These values agree with a simple consideration of a single cylinder with protein and DNA charges spread according to the most recent atomic-resolution models of the phage.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Rona Shaharabani
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Ram Avinery
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Anat Haimovich
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Inbal Oz
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Roy Beck
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
15
|
Sergeyev IV, Itin B, Rogawski R, Day LA, McDermott AE. Efficient assignment and NMR analysis of an intact virus using sequential side-chain correlations and DNP sensitization. Proc Natl Acad Sci U S A 2017; 114:5171-5176. [PMID: 28461483 PMCID: PMC5441803 DOI: 10.1073/pnas.1701484114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An experimental strategy has been developed to increase the efficiency of dynamic nuclear polarization (DNP) in solid-state NMR studies. The method makes assignments simpler, faster, and more reliable via sequential correlations of both side-chain and Cα resonances. The approach is particularly suited to complex biomolecules and systems with significant chemical-shift degeneracy. It was designed to overcome the spectral congestion and line broadening that occur due to sample freezing at the cryogenic temperatures required for DNP. Nonuniform sampling (NUS) is incorporated to achieve time-efficient collection of multidimensional data. Additionally, fast (25 kHz) magic-angle spinning (MAS) provides optimal sensitivity and resolution. Data collected in <1 wk produced a virtually complete de novo assignment of the coat protein of Pf1 virus. The peak positions and linewidths for samples near 100 K are perturbed relative to those near 273 K. These temperature-induced perturbations are strongly correlated with hydration surfaces.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Boris Itin
- New York Structural Biology Center, New York, NY 10027
| | - Rivkah Rogawski
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Loren A Day
- Public Health Research Institute, Rutgers University, Newark, NJ 07103
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027;
| |
Collapse
|
16
|
Filamentous Bacteriophage Promote Biofilm Assembly and Function. Cell Host Microbe 2016; 18:549-59. [PMID: 26567508 DOI: 10.1016/j.chom.2015.10.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/04/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
Biofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments. This liquid crystalline structure enhances biofilm function by increasing adhesion and tolerance to desiccation and antibiotics. Pf bacteriophages are prevalent among P. aeruginosa clinical isolates and were detected in CF sputum. The addition of Pf bacteriophage to sputum polymers or serum was sufficient to drive their rapid assembly into viscous liquid crystals. Fd, a related bacteriophage of Escherichia coli, has similar biofilm-building capabilities. Targeting filamentous bacteriophage or the liquid crystalline organization of the biofilm matrix may represent antibacterial strategies.
Collapse
|
17
|
Zan T, Wu F, Pei X, Jia S, Zhang R, Wu S, Niu Z, Zhang Z. Into the polymer brush regime through the "grafting-to" method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior. SOFT MATTER 2016; 12:798-805. [PMID: 26531814 DOI: 10.1039/c5sm02015h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The current work reports an intriguing discovery of how the force exerted on protein complexes like filamentous viruses by the strong interchain repulsion of polymer brushes can induce subtle changes of the constituent subunits at the molecular scale. Such changes transform into the macroscopic rearrangement of the chiral ordering of the rodlike virus in three dimensions. For this, a straightforward "grafting-to" PEGylation method has been developed to densely graft a filamentous virus with poly(ethylene glycol) (PEG). The grafting density is so high that PEG is in the polymer brush regime, resulting in straight and thick rodlike particles with a thin viral backbone. Scission of the densely PEGylated viruses into fragments was observed due to the steric repulsion of the PEG brush, as facilitated by adsorption onto a mica surface. The high grafting density of PEG endows the virus with an isotropic-nematic (I-N) liquid crystal (LC) phase transition that is independent of the ionic strength and the densely PEGylated viruses enter into the nematic LC phase at much lower virus concentrations. Most importantly, while the intact virus and the one grafted with PEG of low grafting density can form a chiral nematic LC phase, the densely PEGylated viruses only form a pure nematic LC phase. This can be traced back to the secondary to tertiary structural change of the major coat protein of the virus, driven by the steric repulsion of the PEG brush. Quantitative parameters characterising the conformation of the grafted PEG derived from the grafting density or the I-N LC transition are elegantly consistent with the theoretical prediction.
Collapse
Affiliation(s)
- Tingting Zan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu S, Zan T, Chen S, Pei X, Li H, Zhang Z. Thermoresponsive Chiral to Nonchiral Ordering Transformation in the Nematic Liquid-Crystal Phase of Rodlike Viruses: Turning the Survival Strategy of a Virus into Valuable Material Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6995-7005. [PMID: 26053642 DOI: 10.1021/acs.langmuir.5b01476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The current work investigates the thermoresponsive in situ chiral to nonchiral ordering transformation of a rodlike virus in the naturally assembled state-the chiral nematic liquid crystal (CLC) phase. We take this as an elegant example of reconfigurable self-assembly, through which it is possible to realize in situ transformation from one assembled state to another without disrupting the preformed assembly in general or going through a secondary assembling procedure of the disassembled building blocks. The detailed investigation presented here reveals many unique characteristics of the thermoresponsive 3D chiral ordering of rodlike viruses induced by heat stress. The chiral to nonchiral ordering transformation is highly reversible in the temperature range of up to 60 °C and can be repeated many times. There exists a critical temperature around 40 °C which is independent of the ionic strength and virus concentration. Such reconfigurable ordering in the CLC phase stems from the intrinsic structure change of constituent coat proteins without disrupting the structural integrity of the virus, as revealed by three analytical techniques targeting levels ranging from the molecular, secondary conformation of the constituent proteins to the whole single virus, respectively. Such structural flexibility, also termed polymorphism, is relative to the survival strategies of a biological organism such as the virus and can be transformed into very precious material properties. The potential of the virus-based CLC phase as the chiral matrix to regulate chiro-optical properties of gold nanorods is also presented.
Collapse
Affiliation(s)
- Shuaiyu Liu
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tingting Zan
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- ‡School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Si Chen
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaodong Pei
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Henmin Li
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenkun Zhang
- †Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Shikinaka K, Mori S, Shigehara K, Masunaga H. Helical alignment inversion of microtubules in accordance with a structural change in their lattice. SOFT MATTER 2015; 11:3869-3874. [PMID: 25864798 DOI: 10.1039/c5sm00488h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Giant helical (oriented chiral nematic) alignments of microtubules of nanometer to centimeter lengths are known to form over a temperature gradient during anisotropic spiral propagation via tubulin dimer addition in a capillary cell. Such helical alignments may be modified by the addition of either paclitaxel or dimethyl sulfoxide, which induces a lattice (helical) structural change in the microtubule itself. In this study, we found that the lattice structural change of microtubules brings about inversion of microtubule alignments in the helical ordering. Based on microscopy and scattering data, a mechanism for the helical ordering of microtubules is discussed in relation to their lattice (helical) structure.
Collapse
Affiliation(s)
- Kazuhiro Shikinaka
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | | | | | |
Collapse
|
20
|
Abramov G, Morag O, Goldbourt A. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:80-90. [PMID: 25797007 DOI: 10.1016/j.jmr.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
| |
Collapse
|
21
|
Abramov G, Goldbourt A. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2014; 59:219-230. [PMID: 24875850 DOI: 10.1007/s10858-014-9840-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
| | | |
Collapse
|
22
|
Cao J, Liu S, Xiong J, Chen Y, Zhang Z. Stimuli responsive chiral liquid crystal phases of phenylboronic acid functionalized rodlike viruses and their interaction with biologically important diols. Chem Commun (Camb) 2014; 50:10402-5. [DOI: 10.1039/c4cc04639k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
M13 viruses decorated with phenylboronic acid moieties form pH-responsive chiral LC phases that are regulated by binding with biological diols.
Collapse
Affiliation(s)
- Jun Cao
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- and Institute of Polymer Chemistry
- Nankai University
- Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Shuaiyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- and Institute of Polymer Chemistry
- Nankai University
- Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Jie Xiong
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- and Institute of Polymer Chemistry
- Nankai University
- Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yingjun Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- and Institute of Polymer Chemistry
- Nankai University
- Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- and Institute of Polymer Chemistry
- Nankai University
- Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
23
|
Ho RM, Li MC, Lin SC, Wang HF, Lee YD, Hasegawa H, Thomas EL. Transfer of Chirality from Molecule to Phase in Self-Assembled Chiral Block Copolymers. J Am Chem Soc 2012; 134:10974-86. [DOI: 10.1021/ja303513f] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on
Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Chia Li
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Chieh Lin
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsiao-Fang Wang
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Der Lee
- Department
of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hirokazu Hasegawa
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Edwin L. Thomas
- Department of Materials Science
and Engineering, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
24
|
Katsonis N, Lacaze E, Ferrarini A. Controlling chirality with helix inversion in cholesteric liquid crystals. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15962g] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
De Michele C, Bellini T, Sciortino F. Self-Assembly of Bifunctional Patchy Particles with Anisotropic Shape into Polymers Chains: Theory, Simulations, and Experiments. Macromolecules 2011. [DOI: 10.1021/ma201962x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristiano De Michele
- Dipartimento di Fisica, Sapienza - Università di Roma, P. le A. Moro
2, 00185 Roma, Italy
| | - Tommaso Bellini
- Dipartimento
di Chimica, Biochimica
e Biotecnologie per la Medicina, Università di Milano, , I-20122 Milano, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica and CNR-ISC, Sapienza - Università di Roma, P. le A. Moro
2, 00185 Roma, Italy
| |
Collapse
|
26
|
Corradini R, Tedeschi T, Sforza S, Green MM, Marchelli R. Control of helical handedness in DNA and PNA nanostructures. Methods Mol Biol 2011; 749:79-92. [PMID: 21674366 DOI: 10.1007/978-1-61779-142-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Helical handedness and the twist and tilt parameters of the base pairs in duplex DNA can be affected by base sequence variation and change in environmental conditions as occurs in the transformation between right-handed B-DNA and left-handed Z-DNA. For duplexes of DNA with oligonucleotide analogs such as peptide nucleic acids (PNAs), less is known about the effects on structure such as the base pair twist and tilt parameters and handedness. However, in PNA:PNA duplexes, the absence of chiral information determining helical handedness allows the relationship between preferred helical handedness and structural design to be manipulated and, therefore, better understood. In this chapter, we report a protocol for switching between B- and Z-DNA:DNA duplexes, and the experimental procedures for obtaining right- or left-handed PNA:PNA duplexes.
Collapse
Affiliation(s)
- Roberto Corradini
- Dipartimento di Chimica Organica e Industriale, Univeristà di Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
27
|
Sergeyev IV, Day LA, Goldbourt A, McDermott AE. Chemical shifts for the unusual DNA structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:20208-17. [PMID: 21854063 DOI: 10.1021/ja2043062] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100 K, as well as non-DNP spectra at a variety of field strengths and at temperatures in the range 213-243 K, have allowed the assignment of the (13)C and (15)N resonances of the unusual DNA structure in the Pf1 virion. The (13)C chemical shifts of C3' and C5', considered to be key reporters of deoxyribose conformation, fall near or beyond the edges of their respective ranges in available databases. The (13)C and (15)N chemical shifts of the DNA bases have above-average values for AC4, AC5, CC5, TC2, and TC5, and below average values for AC8, GC8, and GN2, pointing to an absence of Watson-Crick hydrogen bonding, yet the presence of some type of aromatic ring interaction. Crosspeaks between Tyr40 of the coat protein and several DNA atoms suggest that Tyr40 is involved in this ring interaction. In addition, these crosspeak resonances and several deoxyribose resonances are multiply split, presumably through the effects of ordered but differing interactions between capsid protein subunits and each type of nucleotide in each of the two DNA strands. Overall, these observations characterize and support the DNA model proposed by Liu and Day and refined by Tsuboi et al., which calls for the most highly stretched and twisted naturally occurring DNA yet encountered.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | | | | | | |
Collapse
|
28
|
Abramov G, Morag O, Goldbourt A. Magic-Angle Spinning NMR of a Class I Filamentous Bacteriophage Virus. J Phys Chem B 2011; 115:9671-80. [DOI: 10.1021/jp2040955] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
29
|
|
30
|
Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist. Proc Natl Acad Sci U S A 2010; 107:17497-502. [PMID: 20876125 DOI: 10.1073/pnas.1011199107] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N(∗)), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N(∗) phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N(∗) helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N(∗) handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N(∗) phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described.
Collapse
|
31
|
Goldbourt A, Day LA, McDermott AE. Intersubunit hydrophobic interactions in Pf1 filamentous phage. J Biol Chem 2010; 285:37051-9. [PMID: 20736177 DOI: 10.1074/jbc.m110.119339] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Magic angle spinning solid-state NMR has been used to study the structural changes in the Pf1 filamentous bacteriophage, which occur near 10 °C. Comparisons of NMR spectra recorded above and below 10 °C reveal reversible perturbations in many NMR chemical shifts, most of which are assigned to atoms of hydrophobic side chains of the 46-residue subunit. The changes mainly involve groups located in patches on the interfaces between neighboring capsid subunits. The observations show that the transition adjusts the hydrophobic interfaces between fairly rigid subunits. The low temperature form has been generally more amenable to structure determination; spin diffusion experiments on this form revealed unambiguous contacts between side chains of neighboring subunits. These contacts are important constraints for structure modeling.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | | | |
Collapse
|
32
|
Zhang Z, Buitenhuis J, Cukkemane A, Brocker M, Bott M, Dhont JKG. Charge reversal of the rodlike colloidal fd virus through surface chemical modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10593-10599. [PMID: 20433147 DOI: 10.1021/la100740e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
There is increasing interest in the use of viruses as model systems for fundamental research and as templates for nanomaterials. In this work, the rodlike fd virus was subjected to chemical modifications targeting different solvent-exposed functional groups in order to tune its surface properties, especially reversing the surface charge from negative to positive. The carboxyl groups of fd were coupled with different kinds of organic amines by carbodiimide chemistry, resulting in modified viruses that are positively charged over a wide range of pH. Care was taken to minimize intervirus cross linking, which often occurs because of such modifications. The surface amino groups were also grafted with poly(ethylene glycol) (PEG) end-functionalized with an active succinimidyl ester in order to introduce a steric stabilization effect. By combining charge reversal with PEG grafting, a reversible attraction between positively and negatively charged PEG-grafted fd viruses could be realized, which was tuned by the ionic strength of the solution. In addition, a charge-reversed fd virus forms only a pure nematic phase in contrast to the cholesteric phase of the wild type. These modified viruses might be used as model systems in soft condensed matter physics, for example, in the study of polyelectrolyte complexes or lyotropic liquid-crystalline phase behavior.
Collapse
Affiliation(s)
- Zhenkun Zhang
- IFF-Soft Condensed Matter, Research Center Jülich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Wang F, Cao B, Mao C. Bacteriophage Bundles with Pre-Aligned Ca Initiate the Oriented Nucleation and Growth of Hydroxylapatite. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2010; 22:3630-3636. [PMID: 20802794 PMCID: PMC2926989 DOI: 10.1021/cm902727s] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic ions may direct the self-assembly of biomacromolecules into nanostructures which can further be used as a reactant and matrix for nanomaterials synthesis and assembly. Here we use bone mineral and filamentous bacteriophage as a model to demonstrate this concept. Divalent calcium ions are found to trigger the electrostatic self-assembly of anionic nanofiber-like bacteriophages into bundle structures where calcium ions are pre-organized between bacteriophage nanofibers. The resultant Ca(2+)-bacteriophage bundles can be separated and purified from the aqueous solution. The nanostructures of the bundles are verified by zeta potential analysis, small angle x-ray scattering and transmission electron microscopy. Because of the transcription of the bacteriophage chiral surface to the periodic alignment of pre-loaded Ca(2+), the Ca(2+)-bacteriphage bundles can serve as both Ca sources and biotemplates to initiate the oriented nucleation and growth of nanocrystalline hydroxyapatite in phosphate solution or in simulated body fluid. This work provides new insights into biomineralization and represents a new approach to the fabrication of biomolecular-inorganic hybrid layered nanostructures.
Collapse
Affiliation(s)
| | | | - Chuanbin Mao
- To whom correspondence should be addressed. Tel.:405-325-4385. Fax:405-325-6111.
| |
Collapse
|
34
|
Loksztejn A, Dzwolak W. Vortex-Induced Formation of Insulin Amyloid Superstructures Probed by Time-Lapse Atomic Force Microscopy and Circular Dichroism Spectroscopy. J Mol Biol 2010; 395:643-55. [DOI: 10.1016/j.jmb.2009.10.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/16/2022]
|
35
|
Barry E, Dogic Z, Meyer RB, Pelcovits RA, Oldenbourg R. Direct measurement of the twist penetration length in a single smectic A layer of colloidal virus particles. J Phys Chem B 2009; 113:3910-3. [PMID: 18975886 DOI: 10.1021/jp8067377] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the 1970s, deGennes discussed the fundamental geometry of smectic liquid crystals and established an analogy between the smectic A phase and superconductors. It follows that smectic layers expel twist deformations in the same way that superconductors expel magnetic field. We make a direct observation of the penetration of twist at the edge of a single isolated smectic A layer composed of chiral fd virus particles subjected to a depletion interaction. Using the LC-PolScope, we make quantitative measurements of the spatial dependence of the birefringence due to molecular tilt near the layer edges. We match data to theory for the molecular tilt penetration profile and determine the twist penetration length for this system.
Collapse
Affiliation(s)
- Edward Barry
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
36
|
Wensink HH, Jackson G. Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics. J Chem Phys 2009; 130:234911. [DOI: 10.1063/1.3153348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Okoshi K, Suzuki A, Tokita M, Fujiki M, Watanabe J. Entropically-Driven Formation of Smectic A1, A2, and A3 phases in Binary Mixtures of Rigid-Rod Helical Polysilanes with Different Molecular Weights. Macromolecules 2009. [DOI: 10.1021/ma900040x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kento Okoshi
- Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Akiko Suzuki
- Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Masatoshi Tokita
- Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Michiya Fujiki
- Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Junji Watanabe
- Department of Polymer Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan, and Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
38
|
Grason GM. Braided bundles and compact coils: the structure and thermodynamics of hexagonally packed chiral filament assemblies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041919. [PMID: 19518268 DOI: 10.1103/physreve.79.041919] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Indexed: 05/27/2023]
Abstract
Molecular chirality frustrates the two-dimensional assembly of filamentous molecules, a fact that reflects the generic impossibility of imposing a global twisting of layered materials. We explore the consequences of this frustration for hexagonally ordered assemblies of chiral filaments that are finite in lateral dimension. Specifically, we employ a continuum-elastic description of cylindrical bundles of filaments, allowing us to consider the most general resistance to and preference for chiral ordering of the assembly. We explore two distinct mechanisms by which chirality at the molecular scale of the filament frustrates the assembly into aggregates. In the first, chiral interactions between filaments impart an overall twisting of filaments around the central axis of the bundle. In the second, we consider filaments that are inherently helical in structure, imparting a writhing geometry to the central axis. For both mechanisms, we find that a thermodynamically stable state of dispersed bundles of finite width appears close to but below the point of bulk filament condensation. The range of thermodynamic stability of dispersed bundles is sensitive only to the elastic cost and preference for chiral filament packing. The self-limited assembly of chiral filaments has particular implications for a large class of biological molecules--DNA, filamentous proteins, viruses, and bacterial flagella--which are universally chiral and are observed to form compact bundles under a broad range of conditions.
Collapse
Affiliation(s)
- Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
39
|
Zhang Z, Krishna N, Lettinga MP, Vermant J, Grelet E. Reversible gelation of rod-like viruses grafted with thermoresponsive polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2437-42. [PMID: 19166277 DOI: 10.1021/la8029903] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The synthesis and selected macroscopic properties of a new model system consisting of poly(N-isopropylacrylamide) (PNIPAM)-coated rod-like fd virus particles are presented. The sticky rod-like colloids can be used to study effect of particle shape on gelation transition, the structure and viscoelasticity of isotropic and nematic gels, and to make both open isotropic as well as ordered nematic particle networks. This model system of rod-like colloids, for which the strength of attraction between the particles is tunable, is obtained by chemically grafting highly monodisperse rod-like fd virus particles with thermoresponsive polymers, e.g. PNIPAM. At room temperature, suspensions of the resulting hybrid PNIPAM-fd are fluid sols which are in isotropic or liquid crystalline phases, depending on the particle concentration and ionic strength. During heating/cooling, the suspensions change reversibly between sol and gel state near a critical temperature of approximately 32 degrees C, close to the lower critical solution temperature of free PNIPAM. The so-called nematic gel, which exhibits a cholesteric feature, can therefore be easily obtained. The gelation behavior of PNIPAM-fd system and the structure of the nematic gel have been characterized by rheology, optical microscopy and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Zhenkun Zhang
- IFF, Institut Weiche Materie, Forschungszentrum Julich, D-52425 Julich, Germany
| | | | | | | | | |
Collapse
|
40
|
Pomerantz W, Yuwono V, Pizzey C, Hartgerink J, Abbott N, Gellman S. Nanofibers and Lyotropic Liquid Crystals from a Class of Self-Assembling β-Peptides. Angew Chem Int Ed Engl 2008; 47:1241-4. [DOI: 10.1002/anie.200704372] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Pomerantz W, Yuwono V, Pizzey C, Hartgerink J, Abbott N, Gellman S. Nanofibers and Lyotropic Liquid Crystals from a Class of Self-Assembling β-Peptides. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704372] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Ryu JH, Tang L, Lee E, Kim HJ, Lee M. Supramolecular Helical Columns from the Self-Assembly of Chiral Rods. Chemistry 2008; 14:871-81. [PMID: 17910017 DOI: 10.1002/chem.200701080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chiral-bridged rod molecules (CBRs) that consisted of bis(penta-p-phenylene) conjugated to an opened or closed chiral bridging group as a rigid segment and oligoether dendrons as flexible segments were synthesized and characterized. In the bulk state, both molecules self-assemble into a hexagonal columnar structure, as confirmed by X-ray scatterings and transmission electron microscopy (TEM) observations. Interestingly, these structures display opposite Cotton effects in the chromophore of the aromatic unit in spite of the same chirality (R,R) of the chiral bridging groups. The molecules were observed to self-assemble into cylindrical micellar aggregates in aqueous solution, as confirmed by light scattering and TEM investigations, and exhibit intense signals in the circular dichroism (CD) spectra, which are indicative of one-handed helical conformations. The CD spectra of each molecule showed opposite signals to each other, which were similar to those in the bulk. Notably, when the opened CBR was added to a solution of closed CBRs up to a certain concentration, the CD signal of the closed CBR was amplified. This implies that both molecules co-assemble into a one-handed helical structure because the opened chiral bridge is conformationally flexible, which is inverted to co-assemble with the closed CBR. These results demonstrate that small structural modifications of the chiral moiety can transfer the chiral information to a supramolecular assembly in the opposite way.
Collapse
Affiliation(s)
- Ja-Hyoung Ryu
- Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Dzwolak W, Loksztejn A, Galinska-Rakoczy A, Adachi R, Goto Y, Rupnicki L. Conformational indeterminism in protein misfolding: chiral amplification on amyloidogenic pathway of insulin. J Am Chem Soc 2007; 129:7517-22. [PMID: 17518465 DOI: 10.1021/ja066703j] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unlike folding, protein aggregation is a multipathway, kinetically controlled process yielding different conformations of fibrils. The dynamics and determinism/indeterminism boundaries of misfolded conformations remain obscure. Here we show that, upon vortexing, insulin forms two distinct types of fibrils with opposite local chiral preferences, which manifest in the opposite twists of bound dye, thioflavin T. Occurrence of either type of fibrils in a test tube is only stochastically determined. By acting through an autocatalytic, "chiral amplification"-like mechanism, a random conformational fluctuation triggers conversion of the macroscopic amount of insulin into aggregates with uniformly biased chiral moieties, which bind and twist likewise the achiral dye. Although a convection-driven chiral amplification in achiral systems, which results in randomly distributed excesses of optically active forms, is known, observation of such a phenomenon in misfolded protein built of l-amino acids is unprecedented. The two optical variants of insulin fibrils show distinct morphologies and can propagate their chiral biases upon seeding to nonagitated insulin solutions. Our findings point to a new aspect of topological complexity of protein fibrils: a chiral feature of hierarchically assembled polypeptides, which is partly emancipated from the innate left-handedness of amino acids. Because altering chirality of a molecule changes dramatically its biological activity, the finding may have important ramifications in the context of the structural basis of "amyloid strains".
Collapse
Affiliation(s)
- Wojciech Dzwolak
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|