1
|
Gilissen PJ, Duez Q, Tripodi GL, Dekker MMJ, Ouyang J, Dhbaibi K, Vanthuyne N, Crassous J, Roithová J, Elemans JAAW, Nolte RJM. Kinetic enantio-recognition of chiral viologen guests by planar-chiral porphyrin cages. Chem Commun (Camb) 2023; 59:13974-13977. [PMID: 37942536 PMCID: PMC10667586 DOI: 10.1039/d3cc04934e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The kinetic enantio-recognition of chiral viologen guests by planar-chiral porphyrin cage compounds, measured in terms of ΔΔG‡on, is determined by the planar-chirality of the host and influenced by the size, as measured by ion mobility-mass spectrometry, but not the chirality of its substituents.
Collapse
Affiliation(s)
- Pieter J Gilissen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Quentin Duez
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Guilherme L Tripodi
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Magda M J Dekker
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Jiangkun Ouyang
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Kais Dhbaibi
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Nicolas Vanthuyne
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, 13397, Marseille Cedex 20, France
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Jana Roithová
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Esteve F, Altava B, Luis SV, García-Verdugo E. Basically, nucleophilicity matters little: towards unravelling the supramolecular driving forces in enzyme-like CO 2 conversion. Org Biomol Chem 2022; 20:6637-6645. [PMID: 35929502 DOI: 10.1039/d2ob00948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism for the cycloaddition of CO2 to styrene oxide in the presence of macrocyclic pseudopeptides has been studied using DFT methods. Computational calculations indicate that the unprecedented catalytic behaviour previously observed experimentally, in which the most reactive species was not the most nucleophilic but the most basic one, can be associated to the tight cooperativity between several supramolecular interactions promoted by simple peptidomimetics able to display a synzymatic behaviour. This bizarre catalytic performance afforded remarkable conversions of a sluggish substrate like styrene oxide into the desired cyclic carbonate, even under relatively mild reaction conditions, opening the way for the practical use of CO2 as a raw material in the preparation of valuable chemicals. Furthermore, the remote modification of essential structural features of the macrocycle (synzyme engineering) permitted the driving forces of the synzymatic system to be analyzed, stressing the crucial synergic effect between an elegantly preorganized oxyanion hole and additional aromatic interactions.
Collapse
Affiliation(s)
- Ferran Esteve
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Eduardo García-Verdugo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| |
Collapse
|
3
|
Cherraben S, Scelle J, Hasenknopf B, Vives G, Sollogoub M. Precise Rate Control of Pseudorotaxane Dethreading by pH-Responsive Selectively Functionalized Cyclodextrins. Org Lett 2021; 23:7938-7942. [PMID: 34582212 DOI: 10.1021/acs.orglett.1c02940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of cyclodextrins functionalized with zero, one, two, or six amines was shown to control the rate of their threading and dethreading on a molecular axle depending on the pH and their substitution pattern. The originality of this system lies in the rate control of the switch by operating the stimulus directly on the macrocycle.
Collapse
Affiliation(s)
- Sawsen Cherraben
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Jérémy Scelle
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Bernold Hasenknopf
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Guillaume Vives
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS UMR8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Abstract
Mechanically interlocked molecules (MIMs) have gained attention in the field of catalysis due to their unique molecular properties. Central to MIMs, rotaxanes are highly promising and attractive supramolecular catalysts due to their unique three-dimensional structures and the flexibility of their subcomponents. This Minireview discusses the use of rotaxanes in organocatalysis and transition-metal catalysis.
Collapse
Affiliation(s)
- Carel Kwamen
- Faculty of ChemistryOrganic Chemistry and Center for NanointegrationDuisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of ChemistryOrganic Chemistry and Center for NanointegrationDuisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|
5
|
Gilissen PJ, White PB, Berrocal JA, Vanthuyne N, Rutjes FPJT, Feringa BL, Elemans JAAW, Nolte RJM. Molecular motor-functionalized porphyrin macrocycles. Nat Commun 2020; 11:5291. [PMID: 33082343 PMCID: PMC7576194 DOI: 10.1038/s41467-020-19123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Molecular motors and switches change conformation under the influence of an external stimulus, e.g. light. They can be incorporated into functional systems, allowing the construction of adaptive materials and switchable catalysts. Here, we present two molecular motor-functionalized porphyrin macrocycles for future photo-switchable catalysis. They display helical, planar and point chirality, and are diastereomers, which differ in the relative orientation of the motor and macrocyclic components. Fluorescence, UV-vis, and 1H NMR experiments reveal that the motor-functionalized macrocycles can bind and thread different variants of viologen guests, including a one-side blocked polymeric one of 30 repeat units. The latter feature indicates that the motor systems can find the open end of a polymer chain, thread on it, and move along the chain to eventually bind at the viologen trap, opening possibilities for catalytic writing on single polymer chains via chemical routes. Molecular motors and switches change conformation under the influence of an external stimulus and can be incorporated into functional systems, allowing the construction of adaptive materials and switchable catalysts. Here, the authors present two molecular motor-functionalized porphyrin macrocycles for future photo-switchable catalysis.
Collapse
Affiliation(s)
- Pieter J Gilissen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - José Augusto Berrocal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Johannes A A W Elemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Gilissen PJ, Swartjes A, Spierenburg B, Bruekers JP, Tinnemans P, White PB, Rutjes FP, Nolte RJ, Elemans JA. Rapid and scalable synthesis of chiral porphyrin cage compounds. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Elemans JAAW, Nolte RJM. Porphyrin cage compounds based on glycoluril – from enzyme mimics to functional molecular machines. Chem Commun (Camb) 2019; 55:9590-9605. [DOI: 10.1039/c9cc04372a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Feature Article gives an overview of the application of glycoluril-based porphyrin cage compounds in host–guest chemistry, allosterically controlled self-assembly, biomimetic catalysis, and polymer encoding.
Collapse
Affiliation(s)
| | - Roeland J. M. Nolte
- Radboud University
- Institute for Molecules and Materials
- 6525 AJ Nijmegen
- The Netherlands
| |
Collapse
|
8
|
Lewis JEM, Galli M, Goldup SM. Properties and emerging applications of mechanically interlocked ligands. Chem Commun (Camb) 2017; 53:298-312. [PMID: 27819362 DOI: 10.1039/c6cc07377h] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanically interlocked molecules have a long and rich history as ligands thanks to the key role coordination chemistry has played in the development of high yielding passive template syntheses of rotaxanes and catenanes. In this Feature Article, we highlight the effect of the mechanical bond on the properties of metal ions bound within the sterically hindered environment of the macrocycle cavity, and discuss the emerging applications of interlocked ligands in catalysis, sensing and supramolecular materials.
Collapse
Affiliation(s)
- James E M Lewis
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Marzia Galli
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Stephen M Goldup
- Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
van den Boomen OI, Coumans RG, Akeroyd N, Peters TP, Schlebos PP, Smits J, de Gelder R, Elemans JA, Nolte RJ, Rowan AE. Carbenoid transfer reactions catalyzed by a ruthenium porphyrin macrocycle. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Sui Q, Ren XT, Dai YX, Wang K, Li WT, Gong T, Fang JJ, Zou B, Gao EQ, Wang L. Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chem Sci 2016; 8:2758-2768. [PMID: 28553511 PMCID: PMC5426459 DOI: 10.1039/c6sc04579k] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022] Open
Abstract
A pyridinium-carboxylate compound undergoes reversible color change under pressure owing to the formation of radicals via electron transfer; dehydration and hydration can also trigger electron transfer.
While viologen derivatives have long been known for electrochromism and photochromism, here we demonstrated that a viologen-carboxylate zwitterionic molecule in the crystalline state exhibits piezochromic and hydrochromic behaviors. The yellow crystal undergoes a reversible color change to red under high pressure, to green after decompression, and finally back to yellow upon standing at ambient pressure. Ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance X-ray diffraction and DFT calculations suggested that the piezochromism is due to the formation of radicals via pressure-induced electron transfer from carboxylate to pyridinium, without a crystallographic phase transition. It was proposed that electron transfer is induced by pressure-forced reduction of intermolecular donor–acceptor contacts. The electron transfer can also be induced by dehydration, which gives a stable green anhydrous radical phase. The color change is reversible upon reabsorption of water, which triggers reverse electron transfer. The compound not only demonstrates new chromic phenomena for viologen compounds, but also represents the first example of organic mechanochromism and hydrochromism associated with radical formation via electron transfer.
Collapse
Affiliation(s)
- Qi Sui
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , College of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Xiang-Ting Ren
- Center for High Pressure Science and Technology Advanced Research , 1690 Cailun Road , Shanghai 201203 , P. R. China .
| | - Yu-Xiang Dai
- State Key Laboratory of Superhard Materials , Jilin University , 2699 Qianjin Street , Changchun , Jilin 130012 , P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials , Jilin University , 2699 Qianjin Street , Changchun , Jilin 130012 , P. R. China
| | - Wen-Tao Li
- Center for High Pressure Science and Technology Advanced Research , 1690 Cailun Road , Shanghai 201203 , P. R. China .
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , College of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Jia-Jia Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , College of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Bo Zou
- State Key Laboratory of Superhard Materials , Jilin University , 2699 Qianjin Street , Changchun , Jilin 130012 , P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , College of Chemistry and Molecular Engineering , East China Normal University , 3663 North Zhongshan Road , Shanghai 200062 , P. R. China .
| | - Lin Wang
- Center for High Pressure Science and Technology Advanced Research , 1690 Cailun Road , Shanghai 201203 , P. R. China .
| |
Collapse
|
11
|
Matsuoka Y, Mutoh Y, Azumaya I, Kikkawa S, Kasama T, Saito S. Synthesis and Shuttling Behavior of [2]Rotaxanes with a Pyrrole Moiety. J Org Chem 2016; 81:3479-87. [PMID: 26949996 DOI: 10.1021/acs.joc.5b02911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesized [2]rotaxanes with a pyrrole moiety from a [2]rotaxane with a 1,3-diynyl moiety. The conversion of the 1,3-diynyl moiety of the axle component to the pyrrole moiety was accomplished by a Cu-mediated cycloaddition of anilines. The cycloaddition reaction was accelerated when the [2]rotaxane was used as the substrate. The effect of the structure of the pyrrole moiety on the rate of the shuttling was studied.
Collapse
Affiliation(s)
- Yusuke Matsuoka
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University , 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University , 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takeshi Kasama
- Research Center for Medical and Dental Sciences, Tokyo Medical and Dental University , 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science , Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
12
|
Chen Z, Aoki D, Uchida S, Marubayashi H, Nojima S, Takata T. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes. Angew Chem Int Ed Engl 2016; 55:2778-81. [DOI: 10.1002/anie.201510953] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Chen
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Daisuke Aoki
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Satoshi Uchida
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Hironori Marubayashi
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Shuichi Nojima
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
13
|
Chen Z, Aoki D, Uchida S, Marubayashi H, Nojima S, Takata T. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Chen
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Daisuke Aoki
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Satoshi Uchida
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Hironori Marubayashi
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Shuichi Nojima
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
14
|
Deutman ABC, Varghese S, Moalin M, Elemans JAAW, Rowan AE, Nolte RJM. Slippage of a porphyrin macrocycle over threads of varying bulkiness: implications for the mechanism of threading polymers through a macrocyclic ring. Chemistry 2014; 21:360-70. [PMID: 25345395 DOI: 10.1002/chem.201403740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Indexed: 11/08/2022]
Abstract
Threading of a polymer through a macrocyclic ring may occur directly, that is, by finding the end of the polymer chain, or by a process in which the polymer chain first folds and then threads through the macrocyclic ring in a hairpin-like conformation. We present kinetic and thermodynamic studies on the threading of a macrocyclic porphyrin receptor (H2 1) onto molecular threads that are blocked on one side and are open on the other side. The open side is modified by groups that vary in ease of folding and in bulkiness. Additionally, the threads contain a viologen binding site for the macrocyclic receptor, which is located close to the blocking group. The rates of threading of H2 1 were measured under various conditions, by recording as a function of time the quenching of the fluorescence of the porphyrin, which occurs when receptor H2 1 reaches the viologen binding site. The kinetic data suggest that threading is impossible if the receptor encounters an open side that is sterically encumbered in a similar way as a folded polymer chain. This indicates that threading of polymers through macrocyclic compounds through a folded chain mechanism is unlikely.
Collapse
Affiliation(s)
- Alexander B C Deutman
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands), Fax: (+31) 24-3652929
| | | | | | | | | | | |
Collapse
|
15
|
Deutman ABC, Smits JMM, de Gelder R, Elemans JAAW, Nolte RJM, Rowan AE. Strong Induced-Fit Binding of Viologen and Pyridine Derivatives in Adjustable Porphyrin Cavities. Chemistry 2014; 20:11574-83. [DOI: 10.1002/chem.201402919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 11/11/2022]
|
16
|
Meng Z, Chen CF. Highly efficient synthesis of a tristable molecular shuttle and its controlled motion under chemical stimuli. Org Biomol Chem 2014; 12:6937-43. [DOI: 10.1039/c4ob01283f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Neal EA, Goldup SM. Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem Commun (Camb) 2014; 50:5128-42. [DOI: 10.1039/c3cc47842d] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We highlight some of the less discussed consequences of mechanical bonding for the chemical behaviour of catenanes and rotaxanes, including striking recent examples where molecular motion controls chemical reactions.
Collapse
Affiliation(s)
- Edward A. Neal
- School of Biological and Chemical Science
- Queen Mary University of London
- London, UK
| | - Stephen M. Goldup
- School of Biological and Chemical Science
- Queen Mary University of London
- London, UK
| |
Collapse
|
18
|
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 2013; 43:1734-87. [PMID: 24365792 DOI: 10.1039/c3cs60037h] [Citation(s) in RCA: 673] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of artificial catalysts able to compete with the catalytic proficiency of enzymes is an intense subject of research. Non-covalent interactions are thought to be involved in several properties of enzymatic catalysis, notably (i) the confinement of the substrates and the active site within a catalytic pocket, (ii) the creation of a hydrophobic pocket in water, (iii) self-replication properties and (iv) allosteric properties. The origins of the enhanced rates and high catalytic selectivities associated with these properties are still a matter of debate. Stabilisation of the transition state and favourable conformations of the active site and the product(s) are probably part of the answer. We present here artificial catalysts and biomacromolecule hybrid catalysts which constitute good models towards the development of truly competitive artificial enzymes.
Collapse
Affiliation(s)
- Matthieu Raynal
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
19
|
Aoki D, Uchida S, Nakazono K, Koyama Y, Takata T. Macromolecular [2]Rotaxanes: Effective Synthesis and Characterization. ACS Macro Lett 2013; 2:461-465. [PMID: 35581797 DOI: 10.1021/mz400197d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macromolecular [2]rotaxanes, which consist of a polymer chain threading into a wheel component, were synthesized in high yield and with high purity. The synthesis was achieved by the ring-opening polymerization (ROP) of δ-valerolactone (VL) using a hydroxyl-terminated pseudorotaxane as an initiator with diphenyl phosphate as a catalyst in dichloromethane at room temperature. The 1H NMR, gel permeation chromatography (GPC), and MALDI-TOF-MS measurements of the resulting poly(δ-valerolactone)s clearly indicate the presence of the rotaxane structure with the polymer chain, confirming that the diphenyl phosphate-catalyzed ROP of VL proceeds without deslippage of the wheel component. The obtained macromolecular [2]rotaxane was acetylated to afford a nonionic macromolecular [2]rotaxane, in which only one wheel component is movable from one end to another along the polymer chain.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Organic and Polymeric
Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Organic and Polymeric
Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Kazuko Nakazono
- Department of Organic and Polymeric
Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuhito Koyama
- Department of Organic and Polymeric
Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric
Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
20
|
Coumans RGE, Elemans JAAW, Rowan AE, Nolte RJM. Interlocked Porphyrin Switches. Chemistry 2013; 19:7758-70. [DOI: 10.1002/chem.201203983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/03/2013] [Indexed: 11/12/2022]
|
21
|
Baggerman J, Haraszkiewicz N, Wiering PG, Fioravanti G, Marcaccio M, Paolucci F, Kay ER, Leigh DA, Brouwer AM. Induction of motion in a synthetic molecular machine: effect of tuning the driving force. Chemistry 2013; 19:5566-77. [PMID: 23564495 DOI: 10.1002/chem.201204016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Indexed: 12/28/2022]
Abstract
Rotaxane molecular shuttles were studied in which a tetralactam macrocyclic ring moves between a succinamide station and a second station in which the structure is varied. Station 2 in all cases is an aromatic imide, which is a poor hydrogen-bond acceptor in the neutral form, but a strong one when reduced with one or two electrons. When the charge density on the hydrogen-bond-accepting carbonyl groups in station 2 is reduced by changing a naphthalimide into a naphthalene diimide radical anion, the shuttling rate changes only slightly. When station 2 is a pyromellitimide radical anion, however, the shuttling rate is significantly reduced. This implies that the shuttling rate is not only determined by the initial unbinding of the ring from the first station, as previously supposed. An alternative reaction mechanism is proposed in which the ring binds to both stations in the transition state.
Collapse
Affiliation(s)
- Jacob Baggerman
- Van 't Hoff Institute for Molecular Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dong Z, Luo Q, Liu J. Artificial enzymes based on supramolecular scaffolds. Chem Soc Rev 2012; 41:7890-908. [DOI: 10.1039/c2cs35207a] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Berná J, Alajarín M, Orenes RA. Azodicarboxamides as Template Binding Motifs for the Building of Hydrogen-Bonded Molecular Shuttles. J Am Chem Soc 2010; 132:10741-7. [DOI: 10.1021/ja101151t] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Berná
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain, and Servicio de Apoyo a la Investigación (SAI), Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Mateo Alajarín
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain, and Servicio de Apoyo a la Investigación (SAI), Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Raúl-Angel Orenes
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain, and Servicio de Apoyo a la Investigación (SAI), Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
24
|
Zhu K, Wu L, Yan X, Zheng B, Zhang M, Huang F. Anion-Assisted Complexation of Paraquat by Cryptands Based on Bis(m-phenylene)-[32]crown-10. Chemistry 2010; 16:6088-98. [DOI: 10.1002/chem.200903553] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Deutman ABC, Monnereau C, Elemans JAAW, Ercolani G, Nolte RJM, Rowan AE. Mechanism of Threading a Polymer Through a Macrocyclic Ring. Science 2008; 322:1668-71. [DOI: 10.1126/science.1164647] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Wang BY, Bao X, Yan Z, Maslak V, Hadad CM, Badjić JD. A 3-fold “Butterfly Valve” in Command of the Encapsulation’s Kinetic Stability. Molecular Baskets at Work. J Am Chem Soc 2008; 130:15127-33. [PMID: 18937455 DOI: 10.1021/ja8041977] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bao-Yu Wang
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Xiaoguang Bao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Zhiqing Yan
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Veselin Maslak
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Christopher M. Hadad
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - Jovica D. Badjić
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| |
Collapse
|
27
|
Balzani V, Credi A, Venturi M. Molecular Machines Working on Surfaces and at Interfaces. Chemphyschem 2008; 9:202-20. [DOI: 10.1002/cphc.200700528] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Suzaki Y, Taira T, Osakada K, Horie M. Rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing axles. Molecular motion in the solid state and aggregation in solution. Dalton Trans 2008:4823-33. [DOI: 10.1039/b804125c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Li S, Liu M, Zhang J, Zheng B, Zhang C, Wen X, Li N, Huang F. High-yield preparation of [2]rotaxanes based on the bis(m-phenylene)-32-crown-10-based cryptand/paraquat derivative recognition motif. Org Biomol Chem 2008; 6:2103-7. [DOI: 10.1039/b803927e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|