1
|
Blawitzki LC, Bartels N, Bonda L, Schmidt S, Monzel C, Hartmann L. Glycomacromolecules to Tailor Crowded and Heteromultivalent Glycocalyx Mimetics. Biomacromolecules 2024; 25:5979-5994. [PMID: 39122664 DOI: 10.1021/acs.biomac.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The glycocalyx, a complex carbohydrate layer on cell surfaces, plays a crucial role in various biological processes. Understanding native glycocalyces' complexity is challenging due to their intricate and dynamic nature. Simplified mimics of native glycocalyces offer insights into glycocalyx functions but often lack molecular precision and fail to replicate key features of the natural analogues like molecular crowding and heteromultivalency. We introduce membrane-anchoring precision glycomacromolecules synthesized via solid-phase polymer synthesis (SPPoS) and thiol-induced, light-activated controlled radical polymerization (TIRP), enabling the construction of crowded and heteromultivalent glycocalyx mimetics with varying molecular weights and densities in giant unilamellar vesicles (GUVs). The incorporation and dynamics of glycomacromolecules in the GUVs are examined via microscopy and fluorescence correlation spectroscopy (FCS) and studies on lectin-carbohydrate-mediated adhesion of GUVs reveal inhibitory and promotional adhesion effects corresponding to different glycocalyx mimetic compositions, bridging the gap between synthetic models and native analogues.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Nina Bartels
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lorand Bonda
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| |
Collapse
|
2
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. Nat Commun 2024; 15:7445. [PMID: 39198447 PMCID: PMC11358326 DOI: 10.1038/s41467-024-51320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
G-protein coupled receptors help regulate cellular function and communication, and are targets of small molecule drug discovery efforts. Conventional techniques to probe these interactions require labels and large amounts of receptor to achieve satisfactory sensitivity. Here, we use frequency-locked optical microtoroids for label-free characterization of membrane interactions in vitro at zeptomolar concentrations for the kappa opioid receptor and its native agonist dynorphin A 1-13, as well as big dynorphin (dynorphin A and dynorphin B) using a supported biomimetic membrane. The measured affinity of the agonist dynorphin A 1-13 to the κ-opioid receptor was also measured and found to be 3.1 nM. Radioligand assays revealed a dissociation constant in agreement with this value (1.1 nM). The limit of detection for the κOR/DynA 1-13 was calculated as 180 zM. The binding of Cholera Toxin B-monosialotetrahexosyl ganglioside was also monitored in real-time and an equilibrium dissociation constant of 1.53 nM was found. Our biosensing platform provides a method for highly sensitive real-time characterization of membrane embedded protein binding kinetics that is rapid and label-free, for drug discovery and toxin screening among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey E Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Stephen B Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
3
|
Nagao M, Masuda T, Takai M, Miura Y. Preparation of cellular membrane-mimicking glycopolymer interfaces by a solvent-assisted method on QCM-D sensor chips and their molecular recognition. J Mater Chem B 2024; 12:1782-1787. [PMID: 38314931 DOI: 10.1039/d3tb02663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Carbohydrate-based membranes that show molecular recognition ability are interesting mimics of biointerfaces. Herein, we prepared glycopolymer membranes on QCM-D sensor chips using a solvent-assisted method and investigated their interactions with a target lectin. The membrane containing the glycopolymer with a random arrangement of the carbohydrate units adsorbed more lectin than that containing the glycopolymer with an organized block of carbohydrate units.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tsukuru Masuda
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Gin A, Nguyen PD, Melzer JE, Li C, Strzelinski H, Liggett SB, Su J. Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558657. [PMID: 37786702 PMCID: PMC10541581 DOI: 10.1101/2023.09.20.558657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (> 10 6 ) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38 ± 0.26 μm 2 ⋅ s - 1 . Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant k d = 1.53 nM . The measured affiny of the agonist dynorphin A 1-13 to the κ -opioid receptor revealed a k d = 3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a k d in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.
Collapse
Affiliation(s)
- Adley Gin
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Phuong-Diem Nguyen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| | - Jeffrey E. Melzer
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Cheng Li
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
| | - Hannah Strzelinski
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Judith Su
- Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ 85721
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Sharma A, Negi G, Chaudhary M, Parveen N. Kinetics of Ganglioside-Rich Supported Lipid Bilayer Formation with Tracer Vesicle Fluorescence Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11694-11707. [PMID: 37552772 DOI: 10.1021/acs.langmuir.3c01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Gangliosides, forming a class of lipids complemented by sugar chains, influence the lateral distribution of membrane proteins or membrane-binding proteins, act as receptors for viruses and bacterial toxins, and mediate several types of cellular signaling. Gangliosides incorporated into supported lipid bilayers (SLBs) have been widely applied as a model system to examine these biological processes. In this work, we explored how ganglioside composition affects the kinetics of SLB formation using the vesicle rupturing method on a solid surface. We imaged the attachment of vesicles and the subsequent SLB formation using the time-lapse total internal reflection fluorescence microscopy technique. In the early phase, the ganglioside type and concentration influence the adsorption kinetics of vesicles and their residence/lifetime on the surface before rupturing. Our data confirm that a simultaneous rupturing of neighboring surface-adsorbed vesicles forms microscopic lipid patches on the surface and it is triggered by a critical coverage of the vesicles independent of their composition. In the SLB growth phase, lipid patches merge, forming a continuous SLB. The propagation of patch edges catalyzes the process and depends on the ganglioside type. Our pH-dependent experiments confirm that the polar/charged head groups of the gangliosides have a critical role in these steps and phases of SLB formation kinetics.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Geetanjali Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Monika Chaudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, India
| |
Collapse
|
6
|
Davidović D, Kukulka M, Sarmento MJ, Mikhalyov I, Gretskaya N, Chmelová B, Ricardo JC, Hof M, Cwiklik L, Šachl R. Which Moiety Drives Gangliosides to Form Nanodomains? J Phys Chem Lett 2023:5791-5797. [PMID: 37327454 DOI: 10.1021/acs.jpclett.3c00761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gangliosides are important glycosphingolipids involved in a multitude of physiological functions. From a physicochemical standpoint, this is related to their ability to self-organize into nanoscopic domains, even at molar concentrations of one per 1000 lipid molecules. Despite recent experimental and theoretical efforts suggesting that a hydrogen bonding network is crucial for nanodomain stability, the specific ganglioside moiety decisive for the development of these nanodomains has not yet been identified. Here, we combine an experimental technique achieving nanometer resolution (Förster resonance energy transfer analyzed by Monte Carlo simulations) with atomistic molecular dynamic simulations to demonstrate that the sialic acid (Sia) residue(s) at the oligosaccharide headgroup dominates the hydrogen bonding network between gangliosides, driving the formation of nanodomains even in the absence of cholesterol or sphingomyelin. Consequently, the clustering pattern of asialoGM1, a Sia-depleted glycosphingolipid bearing three glyco moieties, is more similar to that of structurally distant sphingomyelin than that of the closely related gangliosides GM1 and GD1a with one and two Sia groups, respectively.
Collapse
Affiliation(s)
- David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
- Faculty of Science, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Mercedes Kukulka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Natalia Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Barbora Chmelová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu, 2027/3, 121 16 Prague, Czech Republic
| | - Joana C Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 00 Prague, Czech Republic
| |
Collapse
|
7
|
Arnold DP, Xu Y, Takatori SC. Antibody binding reports spatial heterogeneities in cell membrane organization. Nat Commun 2023; 14:2884. [PMID: 37208326 DOI: 10.1038/s41467-023-38525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
The spatial organization of cell membrane glycoproteins and glycolipids is critical for mediating the binding of ligands, receptors, and macromolecules on the plasma membrane. However, we currently do not have the methods to quantify the spatial heterogeneities of macromolecular crowding on live cell surfaces. In this work, we combine experiment and simulation to report crowding heterogeneities on reconstituted membranes and live cell membranes with nanometer spatial resolution. By quantifying the effective binding affinity of IgG monoclonal antibodies to engineered antigen sensors, we discover sharp gradients in crowding within a few nanometers of the crowded membrane surface. Our measurements on human cancer cells support the hypothesis that raft-like membrane domains exclude bulky membrane proteins and glycoproteins. Our facile and high-throughput method to quantify spatial crowding heterogeneities on live cell membranes may facilitate monoclonal antibody design and provide a mechanistic understanding of plasma membrane biophysical organization.
Collapse
Affiliation(s)
- Daniel P Arnold
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yaxin Xu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
8
|
Wehrum S, Siukstaite L, Williamson DJ, Branson TR, Sych T, Madl J, Wildsmith GC, Dai W, Kempmann E, Ross JF, Thomsen M, Webb ME, Römer W, Turnbull WB. Membrane Fusion Mediated by Non-covalent Binding of Re-engineered Cholera Toxin Assemblies to Glycolipids. ACS Synth Biol 2022; 11:3929-3938. [PMID: 36367814 PMCID: PMC9764410 DOI: 10.1021/acssynbio.2c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.
Collapse
Affiliation(s)
- Sarah Wehrum
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Lina Siukstaite
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Daniel J. Williamson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Thomas R. Branson
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Taras Sych
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Josef Madl
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Gemma C. Wildsmith
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Wenyue Dai
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Erik Kempmann
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - James F. Ross
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Maren Thomsen
- School of
Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Michael E. Webb
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..
| | - Winfried Römer
- Faculty
of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany,Bioss-Centre
for Biological Signalling Studies, Albert-Ludwigs-University
Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany,Freiburg
Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany,
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, U.K..,
| |
Collapse
|
9
|
Han L, Nguyen L, Schmidt EN, Esmaili M, Kitova EN, Overduin M, Macauley MS, Klassen JS. How Choice of Model Membrane Affects Protein–Glycosphingolipid Interactions: Insights from Native Mass Spectrometry. Anal Chem 2022; 94:16042-16049. [PMID: 36367338 DOI: 10.1021/acs.analchem.2c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB5) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles. We find that direct ESI-MS analysis of CTB5 binding to GM1 is unreliable due to non-uniform response factors, incomplete extraction of bound GM1 in the gas phase, and nonspecific CTB5-GM1 interactions. Conversely, indirect proxy ligand ESI-MS measurements show that the intrinsic (per binding site) association constants of CTB5 for PDs, NDs, and SMALPs are similar and comparable to the affinity of soluble GM1 pentasaccharide (GM1os). The observed affinity decreases with increasing GM1 content due to molecular crowding stemming from GM1 clustering. Unlike the smaller model membranes, the observed affinity of CTB5 toward GM1 liposomes is ∼10-fold weaker than GM1os and relatively insensitive to the GM1 content. GM1 glycomicelles exhibit the lowest affinity, ∼35-fold weaker than GM1os. Together, the results highlight experimental design considerations for quantitative GBP-GSL binding studies involving multisubunit GBPs and factors to consider when comparing results obtained with different membrane systems. Notably, they suggest that bilayer islands with a low percentage of GSL, wherein clustering is minimized, are ideal for assessing intrinsic strength of GBP-GSL interactions in a membrane environment, while binding to liposomes, which is sub-optimal due to extensive clustering, may be more representative of authentic cellular environments.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Edward N. Schmidt
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Elena N. Kitova
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
10
|
Roy A, Byrne S, Sarangi NK, Murphy PV, Keyes TE. A cell free biomembrane platform for multimodal study of influenza virus hemagglutinin and for evaluation of entry-inhibitors against hemagglutinin. Front Mol Biosci 2022; 9:1017338. [PMID: 36310596 PMCID: PMC9608630 DOI: 10.3389/fmolb.2022.1017338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 09/07/2024] Open
Abstract
Seasonal periodic pandemics and epidemics caused by Influenza A viruses (IAVs) are associated with high morbidity and mortality worldwide. They are frequent and unpredictable in severity so there is a need for biophysical platforms that can be used to provide both mechanistic insights into influenza virulence and its potential treatment by anti-IAV agents. Host membrane viral association through the glycoprotein hemagglutinin (HA) of IAVs is one of the primary steps in infection. HA is thus a potential target for drug discovery and development against influenza. Deconvolution of the multivalent interactions of HA at the interfaces of the host cell membrane can help unravel therapeutic targets. In this contribution, we reported the effect of a multivalent HA glycoprotein association on various glycosphingolipid receptors (GD1a, GM3, GM1) doped asymmetrically into an artificial host membrane spanned across an aqueous filled microcavity array. The extent of HA association and its impact on membrane resistance, capacitance, and diffusivity was measured using highly sensitive electrochemical impedance spectroscopy (EIS) and fluorescence lifetime correlation spectroscopy (FLCS). Furthermore, we investigated the inhibition of the influenza HA glycoprotein association with the host mimetic surface by natural and synthetic sialic acid-based inhibitors (sialic acid, Siaα2,3-GalOMe, FB127, 3-sialyl lactose) using electrochemical impedance spectroscopy and observe that while all inhibit, they do not prevent host binding. Overall, the work demonstrates the platform provides a label-free screening platform for the biophysical evaluation of new inhibitors in the development of potential therapeutics for IAV infection prevention and treatment.
Collapse
Affiliation(s)
- Arpita Roy
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sylvester Byrne
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Paul V. Murphy
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
11
|
Lam A, Yuan DS, Ahmed SH, Rawle RJ. Viral Size Modulates Sendai Virus Binding to Cholesterol-Stabilized Receptor Nanoclusters. J Phys Chem B 2022; 126:6802-6810. [PMID: 36001793 PMCID: PMC9484459 DOI: 10.1021/acs.jpcb.2c03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Binding to the host membrane is the initial infection step for animal viruses. Sendai virus (SeV), the model respirovirus studied here, utilizes sialic-acid-conjugated glycoproteins and glycolipids as receptors for binding. In a previous report studying single virus binding to supported lipid bilayers (SLBs), we found a puzzling mechanistic difference between the binding of SeV and influenza A virus (strain X31, IAVX31). Both viruses use similar receptors and exhibit similar cooperative binding behavior, but whereas IAVX31 binding was altered by SLB cholesterol concentration, which can stabilize receptor nanoclusters, SeV was not. Here, we propose that differences in viral size distributions can explain this discrepancy; viral size could alter the number of virus-receptor interactions in the contact area and, therefore, the sensitivity to receptor nanoclusters. To test this, we compared the dependence of SeV binding on SLB cholesterol concentration between size-filtered and unfiltered SeV. At high receptor density, the unfiltered virus showed little dependence, but the size-filtered virus exhibited a linear cholesterol dependence, similar to IAVX31. However, at low receptor densities, the unfiltered virus did exhibit a cholesterol dependence, indicating that receptor nanoclusters enhance viral binding only when the number of potential virus-receptor interactions is small enough. We also studied the influence of viral size and receptor nanoclusters on viral mobility following binding. Whereas differences in viral size greatly influenced mobility, the effect of receptor nanoclusters on mobility was small. Together, our results highlight the mechanistic salience of both the distribution of viral sizes and the lateral distribution of receptors in a viral infection.
Collapse
Affiliation(s)
- Amy Lam
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Daniel S. Yuan
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Samir H. Ahmed
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| | - Robert J. Rawle
- Department of Chemistry, Williams
College, Williamstown, Massachusetts01267, United States
| |
Collapse
|
12
|
Wirth D, Paul MD, Pasquale EB, Hristova K. Direct quantification of ligand-induced lipid and protein microdomains with distinctive signaling properties. CHEMSYSTEMSCHEM 2022; 4:e202200011. [PMID: 36337751 PMCID: PMC9634703 DOI: 10.1002/syst.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Lipid rafts are ordered lipid domains that are enriched in saturated lipids, such as the ganglioside GM1. While lipid rafts are believed to exist in cells and to serve as signaling platforms through their enrichment in signaling components, they have not been directly observed in the plasma membrane without treatments that artificially cluster GM1 into large lattices. Here, we report that microscopic GM1-enriched domains can form, in the plasma membrane of live mammalian cells expressing the EphA2 receptor tyrosine kinase in response to its ligand ephrinA1-Fc. The GM1-enriched microdomains form concomitantly with EphA2-enriched microdomains. To gain insight into how plasma membrane heterogeneity controls signaling, we quantify the degree of EphA2 segregation and study initial EphA2 signaling steps in both EphA2-enriched and EphA2-depleted domains. By measuring dissociation constants, we demonstrate that the propensity of EphA2 to oligomerize is similar in EphA2-enriched and -depleted domains. However, surprisingly, EphA2 interacts preferentially with its downstream effector SRC in EphA2-depleted domains. The ability to induce microscopic GM1-enriched domains in live cells using a ligand for a transmembrane receptor will give us unprecedented opportunities to study the biophysical chemistry of lipid rafts.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Michael D. Paul
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Road, La Jolla, CA 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
- Program in Molecular Biophysics, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218
| |
Collapse
|
13
|
Grusky DS, Moss FR, Boxer SG. Recombination between 13C and 2H to Form Acetylide ( 13C 22H -) Probes Nanoscale Interactions in Lipid Bilayers via Dynamic Secondary Ion Mass Spectrometry: Cholesterol and GM 1 Clustering. Anal Chem 2022; 94:9750-9757. [PMID: 35759338 PMCID: PMC10075087 DOI: 10.1021/acs.analchem.2c01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it is thought that there is lateral heterogeneity of lipid and protein components within biological membranes, probing this heterogeneity has proven challenging. The difficulty in such experiments is due to both the small length scale over which such heterogeneity can occur, and the significant perturbation resulting from fluorescent or spin labeling on the delicate interactions within bilayers. Atomic recombination during dynamic nanoscale secondary ion imaging mass spectrometry (NanoSIMS) is a non-perturbative method for examining nanoscale bilayer interactions. Atomic recombination is a variation on conventional NanoSIMS imaging, whereby an isotope on one molecule combines with a different isotope on another molecule during the ionization process, forming an isotopically enriched polyatomic ion in a distance-dependent manner. We show that the recombinant ion, 13C22H-, is formed in high yield from 13C- and 2H-labeled lipids. The low natural abundance of triply labeled acetylide also makes it an ideal ion to probe GM1 clusters in model membranes and the effects of cholesterol on lipid-lipid interactions. We find evidence supporting the cholesterol condensation effect as well as the presence of nanoscale GM1 clusters in model membranes.
Collapse
Affiliation(s)
- Dashiel S Grusky
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Sarmento MJ, Owen MC, Ricardo JC, Chmelová B, Davidović D, Mikhalyov I, Gretskaya N, Hof M, Amaro M, Vácha R, Šachl R. The impact of the glycan headgroup on the nanoscopic segregation of gangliosides. Biophys J 2021; 120:5530-5543. [PMID: 34798138 PMCID: PMC8715245 DOI: 10.1016/j.bpj.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023] Open
Abstract
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Joana C Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Chmelová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - David Davidović
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ilya Mikhalyov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow Ul. Miklukho-Maklaya, Moscow 117997, Russia
| | - Natalia Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Science, Moscow Ul. Miklukho-Maklaya, Moscow 117997, Russia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
15
|
Bint E Naser SF, Su H, Liu HY, Manzer ZA, Chao Z, Roy A, Pappa AM, Salleo A, Owens RM, Daniel S. Detection of Ganglioside-Specific Toxin Binding with Biomembrane-Based Bioelectronic Sensors. ACS APPLIED BIO MATERIALS 2021; 4:7942-7950. [DOI: 10.1021/acsabm.1c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samavi Farnush Bint E Naser
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hui Su
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zachary A. Manzer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Arpita Roy
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Nagao M, Uemura T, Horiuchi T, Hoshino Y, Miura Y. Screening of a glycopolymer library for GM1 mimetics synthesized by the "carbohydrate module method". Chem Commun (Camb) 2021; 57:10871-10874. [PMID: 34585193 DOI: 10.1039/d1cc04394c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The "carbohydrate module method" is a promising approach for oligosaccharide mimetics using polymeric materials. However, it is difficult to predict the optimal structure for a particular oligosaccharide mimetic, and an efficient strategy for the synthesis and evaluation of glycopolymers is desirable. In this study, a screening of glycopolymers for the "carbohydrate module method" by a combination of photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization and surface plasmon resonance imaging (SPRI) is demonstrated. The facile and fast screening of synthetic glycomimetics was achieved, and the glycopolymer with the optimal structure as a GM1 mimetic strongly interacted with the cholera toxin B subunit.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Uemura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tasuku Horiuchi
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
17
|
Lee D, Green A, Wu H, Kwon JS. Hybrid
PDE‐kMC
modeling approach to simulate multivalent lectin‐glycan binding process. AIChE J 2021. [DOI: 10.1002/aic.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dongheon Lee
- Department of Biomedical Engineering Duke University Durham North Carolina USA
| | - Aaron Green
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Hung‐Jen Wu
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| | - Joseph Sang‐Il Kwon
- Artie McFerrin Department of Chemical Engineering Texas A&M University Texas USA
| |
Collapse
|
18
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
19
|
Ahyayauch H, García-Arribas AB, Masserini ME, Pantano S, Goñi FM, Alonso A. β-Amyloid (1-42) peptide adsorbs but does not insert into ganglioside-containing phospholipid membranes in the liquid-disordered state: modelling and experimental studies. Int J Biol Macromol 2020; 164:2651-2658. [PMID: 32846182 DOI: 10.1016/j.ijbiomac.2020.08.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
β-Amyloid (Aβ) is a 39-43 residue peptide involved in the pathogenesis of Alzheimer's disease. Aβ deposits onto the cells and gives rise to the plaques that are characteristic of the disease. In an effort to understand the molecular mechanism of plaque formation, we have examined the interaction of Aβ42, considered to be the most pathogenic of the peptides, with lipid bilayers consisting of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to which small amounts of GM1 ganglioside (1-5 mol%) were incorporated. POPC bilayers exist in the fluid, or liquid-disordered state at room temperature, mimicking the fluidity of cell membranes. An Aβ42 preparation consisting essentially of peptide monomers was used. A combination of molecular dynamics (MD), isothermal calorimetry and Langmuir balance measurements was applied. Our results show that Aβ binds POPC bilayers, and that binding increases (ΔG of binding decreases) with GM1, but only up to 3 mol% of the ganglioside, larger concentrations appearing to have a lower effect. MD and Langmuir balance measurements concur in showing that the peptide adsorbs onto the bilayer surface, but does not become inserted into it at surface pressures compatible with the cell membrane conditions. Thioflavin T measurements agree with MD in revealing a very low degree of peptide oligomerization/aggregation under our conditions. This is in contrast with previous studies showing peptide aggregation and insertion when interacting with membranes in the liquid-ordered state. The present contribution underlines the importance of bilayer lipid composition and properties for Aβ plaque formation.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain; Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat, Morocco; Neuroendocrinology Unit, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, Kénitra, Morocco
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
20
|
Han L, Xue X, Roy R, Kitova EN, Zheng RB, St-Pierre Y, Lowary TL, Klassen JS. Neoglycolipids as Glycosphingolipid Surrogates for Protein Binding Studies Using Nanodiscs and Native Mass Spectrometry. Anal Chem 2020; 92:14189-14196. [PMID: 32940034 DOI: 10.1021/acs.analchem.0c03344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) in the membranes of cells are implicated in a wide variety of normal and pathophysiological processes. Despite the critical biological roles these interactions play, the GSL ligands of most GBPs have not yet been identified. The limited availability of purified GSLs represents a significant challenge to the discovery and characterization of biologically relevant GBP-GSL interactions. The present work investigates the use of neoglycolipids (NGLs) as surrogates for GSLs for catch-and-release-electrospray ionization mass spectrometry (CaR-ESI-MS)-based screening, implemented with nanodiscs, for the discovery of GSL ligands. Three pairs of NGLs based on the blood group type A and B trisaccharides, with three different lipid head groups but all with "ring-closed" monosaccharide residue at the reducing end, were synthesized. The incorporation efficiencies (into nanodiscs) of the NGLs and their affinities for a fragment of family 51 carbohydrate-binding module (CBM) identified an amide-linked 1,3-di-O-hexadecyl-glycerol moiety as the optimal lipid structure. Binding measurements performed on cholera toxin B subunit homopentamer (CTB5) and nanodiscs containing an NGL consisting of the optimal lipid moiety and the GM1 ganglioside pentasaccharide yielded affinities similar, within a factor of 2, to those of native GM1. Finally, nanodiscs containing the optimal A and B trisaccharide NGLs, as well as the corresponding NGLs of lactose, A type 2 tetrasaccharide, and the GM1 and GD2 pentasaccharides were screened against the family 51 CBM, human galectin-7, and CTB5 to illustrate the potential of NGLs to accelerate the discovery of GSL ligands of GBPs.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xiaochao Xue
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rashmi Roy
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ruixiang Blake Zheng
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
21
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
22
|
Minamiki T, Ichikawa Y, Kurita R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15903-15910. [PMID: 32134238 DOI: 10.1021/acsami.0c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring new strategies for simple and on-demand methods of manipulating the sensing ability of sensor devices functionalized with artificial receptors embedded in a molecular assembly is important to realizing high-throughput on-site sensing systems based on integrated and miniaturized devices such as field-effect transistors (FETs). Although FET-based chemical sensors can be used for rapid, quantitative, and simultaneous determination of various desired analytes, detectable targets in conventional FET sensors are currently restricted owing to the complicated processes used to prepare sensing materials. In this study, we investigated the relationship between the sensing features of FETs and the nanostructures of mixed self-assembled monolayers (mSAMs) for the detection of biomolecules. The FET devices were systematically functionalized using mixtures of benzenethiol derivatives (4-mercaptobenzoic acid and benzenethiol), which changed the nanostructure of the SAMs formed on gold sensing electrodes. The obtained cross-reactivity in the FETs modified with the mSAMs was derived from the multidimensional variations of the SAM characteristics. Our successful demonstration of continuous control of the molecular recognition ability in the FETs by applying the mSAM system could lead to the development of next-generation versatile analyzers, including chemical sensor arrays for the determination of multiple analytes anytime, anywhere.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
23
|
Surface Sensitive Analysis Device using Model Membrane and Challenges for Biosensor-chip. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Di Iorio D, Lu Y, Meulman J, Huskens J. Recruitment of receptors at supported lipid bilayers promoted by the multivalent binding of ligand-modified unilamellar vesicles. Chem Sci 2020; 11:3307-3315. [PMID: 34122838 PMCID: PMC8152591 DOI: 10.1039/d0sc00518e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a better understanding of biomolecular processes, such as the recruitment of receptors at interfaces, at the molecular level. Here we report a model system based on supported lipid bilayers (SLBs) for the investigation of the clustering of receptors at their interface. Biotinylated SLBs, used as cell membrane mimics, were functionalized with streptavidin (SAv), used here as receptor. Subsequently, biotinylated small (SUVs) and giant (GUVs) unilamellar vesicles were bound to the SAv-functionalized SLBs by multivalent interactions and found to induce the recruitment of both SAv on the SLB surface and the biotin moieties in the vesicles. The recruitment of receptors was investigated with quartz crystal microbalance with dissipation monitoring (QCM-D), which allowed the identification of the biotin and SAv densities necessary to obtain receptor recruitment. At approx. 0.6% of biotin in the vesicles, a transition between dense and low vesicle packing was observed, which coincided with the transitions between recruitment in the vesicles vs. recruitment in the SLB and between full and partial use of the biotin moieties in the vesicle. Direct optical visualization of the clustering at the interface of individual GUVs with the SLB platform was achieved with fluorescence microscopy, showing recruitment of SAv at the contact area as well as the deformation of the vesicles upon binding. Different vesicle binding regimes were observed for lower and higher biotin densities in the vesicles and at the SLBs. A more quantitative analysis of the molecular parameters implied in the interaction, indicated that approx. 10% of the vesicle area constitutes the contact area. Moreover, the SUV binding and recruitment appeared to be fast on the analysis time scale, whereas the binding of GUVs is slower due to the larger SLB area over which SAv recruitment needs to occur. The mechanisms revealed in this study may provide insight in biological processes in which recruitment occurs. The development of model systems that mimic biological interactions and allow the control of both receptor and ligand densities, is essential for a molecular understanding of biomolecular processes, such as the recruitment of receptors at interfaces.![]()
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Yao Lu
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Joris Meulman
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente P.O. Box 217 Enschede 7500 AE The Netherlands
| |
Collapse
|
25
|
Biomembrane-based organic electronic devices for ligand–receptor binding studies. Anal Bioanal Chem 2020; 412:6265-6273. [DOI: 10.1007/s00216-020-02449-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
|
26
|
Han L, Kitov PI, Li J, Kitova EN, Klassen JS. Probing Heteromultivalent Protein–Glycosphingolipid Interactions using Native Mass Spectrometry and Nanodiscs. Anal Chem 2020; 92:3923-3931. [DOI: 10.1021/acs.analchem.9b05419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Pavel I. Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Jianing Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - Elena N. Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta Canada T6G 2G2
| |
Collapse
|
27
|
Berselli GB, Sarangi NK, Gimenez AV, Murphy PV, Keyes TE. Microcavity array supported lipid bilayer models of ganglioside – influenza hemagglutinin1 binding. Chem Commun (Camb) 2020; 56:11251-11254. [DOI: 10.1039/d0cc04276e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The binding of influenza receptor (HA1) to membranes containing different glycosphingolipid receptors was investigated at Microcavity Supported Lipid Bilayers (MSLBs).
Collapse
Affiliation(s)
| | | | | | - Paul V. Murphy
- School of Chemistry NUI Galway University Road
- Galway
- Ireland
| | - Tia E. Keyes
- School of Chemical Sciences
- Dublin City University
- Dublin
- Ireland
| |
Collapse
|
28
|
Di Iorio D, Huskens J. Surface Modification with Control over Ligand Density for the Study of Multivalent Biological Systems. ChemistryOpen 2020; 9:53-66. [PMID: 31921546 PMCID: PMC6948118 DOI: 10.1002/open.201900290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
In the study of multivalent interactions at interfaces, as occur for example at cell membranes, the density of the ligands or receptors displayed at the interface plays a pivotal role, affecting both the overall binding affinities and the valencies involved in the interactions. In order to control the ligand density at the interface, several approaches have been developed, and they concern the functionalization of a wide range of materials. Here, different methods employed in the modification of surfaces with controlled densities of ligands are being reviewed. Examples of such methods encompass the formation of self-assembled monolayers (SAMs), supported lipid bilayers (SLBs) and polymeric layers on surfaces. Particular emphasis is given to the methods employed in the study of different types of multivalent biological interactions occurring at the functionalized surfaces and their working principles.
Collapse
Affiliation(s)
- Daniele Di Iorio
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
29
|
Mojumdar EH, Grey C, Sparr E. Self-Assembly in Ganglioside‒Phospholipid Systems: The Co-Existence of Vesicles, Micelles, and Discs. Int J Mol Sci 2019; 21:ijms21010056. [PMID: 31861839 PMCID: PMC6982371 DOI: 10.3390/ijms21010056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ganglioside lipids have been associated with several physiological processes, including cell signaling. They have also been associated with amyloid aggregation in Parkinson’s and Alzheimer’s disease. In biological systems, gangliosides are present in a mix with other lipid species, and the structure and properties of these mixtures strongly depend on the proportions of the different components. Here, we study self-assembly in model mixtures composed of ganglioside GM1 and a zwitterionic phospholipid, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC). We characterize the structure and molecular dynamics using a range of complementary techniques, including cryo-TEM, polarization transfer solid state NMR, diffusion NMR, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and calorimetry. The main findings are: (1) The lipid acyl chains are more rigid in mixtures containing both lipid species compared to systems that only contain one of the lipids. (2) The system containing DOPC with 10 mol % GM1 contains both vesicles and micelles. (3) At higher GM1 concentrations, the sample is more heterogenous and also contains small disc-like or rod-like structures. Such a co-existence of structures can have a strong impact on the overall properties of the lipid system, including transport, solubilization, and partitioning, which can be crucial to the understanding of the role of gangliosides in biological systems.
Collapse
Affiliation(s)
- Enamul Haque Mojumdar
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
- Correspondence: (E.H.M.); (E.S.); Tel.: +46-46-222-33-32 (E.H.M.); +46-46-222-15-36 (E.S.)
| | - Carl Grey
- Division of Biotechnology, Lund University, 221 00 Lund, Sweden;
| | - Emma Sparr
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
- Correspondence: (E.H.M.); (E.S.); Tel.: +46-46-222-33-32 (E.H.M.); +46-46-222-15-36 (E.S.)
| |
Collapse
|
30
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phase-Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019; 58:17805-17813. [PMID: 31529754 PMCID: PMC6899692 DOI: 10.1002/anie.201910148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Indexed: 11/22/2022]
Abstract
The receptor lipid Gb3 is responsible for the specific internalization of Shiga toxin (STx) into cells. The head group of Gb3 defines the specificity of STx binding, and the backbone with different fatty acids is expected to influence its localization within membranes impacting membrane organization and protein internalization. To investigate this influence, a set of Gb3 glycosphingolipids labeled with a BODIPY fluorophore attached to the head group was synthesized. C24 fatty acids, saturated, unsaturated, α-hydroxylated derivatives, and a combination thereof, were attached to the sphingosine backbone. The synthetic Gb3 glycosphingolipids were reconstituted into coexisting liquid-ordered (lo )/liquid-disordered (ld ) giant unilamellar vesicles (GUVs), and STx binding was verified by fluorescence microscopy. Gb3 with the C24:0 fatty acid partitioned mostly in the lo phase, while the unsaturated C24:1 fatty acid distributes more into the ld phase. The α-hydroxylation does not influence its partitioning.
Collapse
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
- Max Planck Institute for Dynamics and Self OrganizationAm Faßberg 1737077GöttingenGermany
| |
Collapse
|
31
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb
3
Glycosphingolipids with Labeled Head Groups: Distribution in Phase‐Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
- Max Planck Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| |
Collapse
|
32
|
Azouz M, Cullin C, Lecomte S, Lafleur M. Membrane domain modulation of Aβ 1-42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. NANOSCALE 2019; 11:20857-20867. [PMID: 31657431 DOI: 10.1039/c9nr06361g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease is a devastating pathology affecting an increasing number of individuals following the general rise in life expectancy. Amyloid peptide Aβ1-42 has been identified as one of the main culprits of the disease. The peptide has been shown to have major effects on lipid membranes, including membrane fragmentation. The membrane composition has been identified as a factor that plays a pivotal role in regulating peptide/membrane interactions and several results suggest that lipid domains, or rafts, can promote peptide-induced membrane damage. In this work, we examined the effects of lipid segregation on the membrane-perturbing ability of Aβ1-42 and an oligomeric mutant (G37C), a peptide that shares common features with the suspected toxic intermediates involved in the neurodegeneration process. Atomic force microscopy (AFM) was used to determine the impact of these peptides on the supported lipid bilayers of various compositions. In 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/cholesterol) and DOPC/sphingomyelin/cholesterol ternary mixtures, two systems exhibiting liquid-liquid phase separations, it was shown that Aβ1-42 and G37C exclusively aggregated on liquid-disordered-phase domains, creating large deposits and even causing membrane fragmentation for the latter composition. Cholesterol and ganglioside GM1, the two most documented lipids in the context of Alzheimer's disease, are also considered to play a crucial role in promoting detrimental interactions with amyloid peptides. We show that, in model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, the presence of either cholesterol or GM1 in a proportion of 10 mol%, a content supposed to lead to domain formation, favoured the association of both Aβ1-42 and G37C, leading to a harmful membrane fragmentation. The AFM results established that the presence of domains favoured membrane perturbations induced by the amyloid peptides. It is proposed that lipid packing defects at the domain interface could act as adsorption and nucleation sites for the amyloid peptides. The more extensive bilayer perturbations induced by G37C compared to Aβ1-42 supported this hypothesis, indicating that oligomers that cannot mature to the fibril state can present considerable toxicity.
Collapse
Affiliation(s)
- Mehdi Azouz
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France and Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| | - Christophe Cullin
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France
| | - Sophie Lecomte
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
33
|
Jordan LR, Blauch ME, Baxter AM, Cawley JL, Wittenberg NJ. Influence of brain gangliosides on the formation and properties of supported lipid bilayers. Colloids Surf B Biointerfaces 2019; 183:110442. [DOI: 10.1016/j.colsurfb.2019.110442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 01/04/2023]
|
34
|
Owen MC, Karner A, Šachl R, Preiner J, Amaro M, Vácha R. Force Field Comparison of GM1 in a DOPC Bilayer Validated with AFM and FRET Experiments. J Phys Chem B 2019; 123:7504-7517. [PMID: 31397569 DOI: 10.1021/acs.jpcb.9b05095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The great physiological relevance of glycolipids is being increasingly recognized, and glycolipid interactions have been shown to be central to cell-cell recognition, neuronal plasticity, protein-ligand recognition, and other important processes. However, detailed molecular-level understanding of these processes remains to be fully resolved. Molecular dynamics simulations could reveal the details of the glycolipid interactions, but the results may be influenced by the choice of the employed force field. Here, we have compared the behavior and properties of GM1, a common, biologically important glycolipid, using the CHARMM36, OPLS, GROMOS, and Amber99-GLYCAM06 (in bilayers comprising SLIPIDS and LIPID14 lipids) force fields in bilayers comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids and compared the results to atomic force microscopy and fluorescence resonance energy transfer experiments. We found discrepancies within the GM1 behavior displayed between the investigated force fields. Based on a direct comparison with complementary experimental results derived from fluorescence and AFM measurements, we recommend using the Amber99-GLYCAM force field in bilayers comprising LIPID14 or SLIPIDS lipids followed by CHARMM36 and OPLS force fields in simulations. The GROMOS force field is not recommended for reproducing the properties of the GM1 head group.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Radek Šachl
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S., v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Mariana Amaro
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the C.A.S., v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Berselli GB, Sarangi NK, Ramadurai S, Murphy PV, Keyes TE. Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition. ACS APPLIED BIO MATERIALS 2019; 2:3404-3417. [DOI: 10.1021/acsabm.9b00378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guilherme B. Berselli
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Paul V. Murphy
- School of Chemistry, NUI Galway, University Road, Galway, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
36
|
Yeung SY, Sergeeva Y, Dam T, Jönsson P, Pan G, Chaturvedi V, Sellergren B. Lipid Bilayer-like Mixed Self-Assembled Monolayers with Strong Mobility and Clustering-Dependent Lectin Affinity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8174-8181. [PMID: 31117738 DOI: 10.1021/acs.langmuir.9b01452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glycans at the surface of cellular membranes modulate biological activity via multivalent association with extracellular messengers. The lack of tuneable simplified models mimicking this dynamic environment complicates basic studies of these phenomena. We here present a series of mixed reversible self-assembled monolayers (rSAMs) that addresses this deficiency. Mixed rSAMs were prepared in water by simple immersion of a negatively charged surface in a mixture of sialic acid- and hydroxy-terminated benzamidine amphiphiles. Surface compositions derived from infrared reflection-absorption spectroscopy (IRAS) and film thickness information (atomic force microscopy, ellipsometry) suggest the latter to be statistically incorporated in the monolayer. These surfaces' affinity for the lectin hemagglutinin revealed a strong dependence of the affinity on the presentation, density, and mobility of the sialic acid ligands. Hence, a spacer length of 4 ethylene glycol and a surface density of 15% resulted in a dissociation constant Kd,multi of 1.3 × 10-13 M, on par with the best di- or tri-saccharide-based binders reported to date, whereas a density of 20% demonstrated complete resistance to hemagglutinin binding. These results correlated with ligand mobility measured by fluorescence recovery after photobleaching which showed a dramatic drop in the same interval. The results have a direct bearing on biological cell surface multivalent recognition involving lipid bilayers and may guide the design of model surfaces and sensors for both fundamental and applied studies.
Collapse
Affiliation(s)
- Sing Yee Yeung
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Yulia Sergeeva
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Tommy Dam
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Peter Jönsson
- Division of Physical Chemistry , Lund University , Box 124, 22100 Lund , Sweden
| | - Guoqing Pan
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Vivek Chaturvedi
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| | - Börje Sellergren
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and Society , Malmö University , 205 06 Malmö , Sweden
| |
Collapse
|
37
|
Kociurzynski R, Beck SD, Bouhon JB, Römer W, Knecht V. Binding of SV40's Viral Capsid Protein VP1 to Its Glycosphingolipid Receptor GM1 Induces Negative Membrane Curvature: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3534-3544. [PMID: 30802059 DOI: 10.1021/acs.langmuir.8b03765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The binding of the pentameric capsid protein VP1 of simian virus 40 to its glycosphingolipid receptor GM1 is a key step for the entry of the virus into the host cell. Recent experimental studies have shown that the interaction of variants of soluble VP1 pentamers with giant unilamellar vesicles composed of GM1, DOPC, and cholesterol leads to the formation of tubular membrane invaginations to the inside of the vesicles, mimicking the initial steps of endocytosis. We have used coarse-grained and atomistic molecular dynamics (MD) simulations to study the interaction of VP1 with GM1/DOPC/cholesterol bilayers. In the presence of one VP1 protein, we monitor the formation of small local negative curvature and membrane thinning at the protein binding site as well as reduction of area per lipid. These membrane deformations are also observed under cholesterol-free conditions. However, here, the number of GM1 molecules attached to the VP1 binding pockets increases. The membrane curvature is slightly increased for asymmetric GM1 distribution that mimics conditions in vivo, compared to symmetric GM1 distributions which are often applied in experiments. Slightly smaller inward curvature was observed in atomistic control simulations. Binding of four VP1 proteins leads to an increase of the average intrinsic area per lipid in the protein binding leaflet. Membrane fluctuations appear to be the driving force of VP1 aggregation, as was previously shown for membrane-adhering particles because no VP1 aggregation is observed in the absence of a lipid membrane.
Collapse
Affiliation(s)
- Raisa Kociurzynski
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
| | - Sophie D Beck
- Materials Theory , ETH Zürich , Wolfgang-Pauli-Straße 27 , CH-8093 Zürich , Switzerland
| | - Jean-Baptiste Bouhon
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Winfried Römer
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| | - Volker Knecht
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| |
Collapse
|
38
|
Madhu S, Gonnade RG, Das T, Vanka K, Sanjayan GJ. Twelve-Armed Hexaphenylbenzene-Based Giant Supramolecular Framework for Entrapping Guest Molecules. Chempluschem 2018; 83:1032-1037. [PMID: 31950723 DOI: 10.1002/cplu.201800478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 11/11/2022]
Abstract
Host-guest chemistry is a functional model in supramolecular chemistry for understanding specific process occurring in biological systems. Herein, we describe a rationally designed giant multiarmed hexaphenylbenzene (HPB)-based supramolecular frameworks which encapsulate a variety of guest molecules in the voids of their crystal lattice through the cooperative interplay of multivalency, noncovalent forces and backbone rigidity. In this connection, pseudo-axially substituted twelve-armed hexaphenylbenzene was synthesized and its molecular entrapping nature was studied by varying number of H-bond donor-acceptor sites in the arms. The per-methyl esterified HPB acted as a cavitand to include nonpolar and polar aprotic guests in its crystal structure via C-H⋅⋅⋅π, C-H⋅⋅⋅O and C-H⋅⋅⋅N interactions. The corresponding amidated HPB showed unprecedented inclusion of ammonia and segregation of the guest molecules according to their polarity in the lattice. Furthermore, this molecular entrapping system has been used to obtain the crystal structure of a hitherto unproven 2-azaallenium intermediate, which had been proposed to be involved in aminomethylation of activated arenes.
Collapse
Affiliation(s)
- Suresh Madhu
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| | - Rajesh G Gonnade
- Center for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Tamal Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Gangadhar J Sanjayan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110001, India
| |
Collapse
|
39
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
40
|
Lee D, Mohr A, Kwon JSI, Wu HJ. Kinetic Monte Carlo modeling of multivalent binding of CTB proteins with GM1 receptors. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Slator PJ, Burroughs NJ. A Hidden Markov Model for Detecting Confinement in Single-Particle Tracking Trajectories. Biophys J 2018; 115:1741-1754. [PMID: 30274829 PMCID: PMC6226389 DOI: 10.1016/j.bpj.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
State-of-the-art single-particle tracking (SPT) techniques can generate long trajectories with high temporal and spatial resolution. This offers the possibility of mechanistically interpreting particle movements and behavior in membranes. To this end, a number of statistical techniques have been developed that partition SPT trajectories into states with distinct diffusion signatures, allowing a statistical analysis of diffusion state dynamics and switching behavior. Here, we develop a confinement model, within a hidden Markov framework, that switches between phases of free diffusion and confinement in a harmonic potential well. By using a Markov chain Monte Carlo algorithm to fit this model, automated partitioning of individual SPT trajectories into these two phases is achieved, which allows us to analyze confinement events. We demonstrate the utility of this algorithm on a previously published interferometric scattering microscopy data set, in which gold-nanoparticle-tagged ganglioside GM1 lipids were tracked in model membranes. We performed a comprehensive analysis of confinement events, demonstrating that there is heterogeneity in the lifetime, shape, and size of events, with confinement size and shape being highly conserved within trajectories. Our observations suggest that heterogeneity in confinement events is caused by both individual nanoparticle characteristics and the binding-site environment. The individual nanoparticle heterogeneity ultimately limits the ability of interferometric scattering microscopy to resolve molecule dynamics to the order of the tag size; homogeneous tags could potentially allow the resolution to be taken below this limit by deconvolution methods. In a wider context, the presented harmonic potential well confinement model has the potential to detect and characterize a wide variety of biological phenomena, such as hop diffusion, receptor clustering, and lipid rafts.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom; Systems Biology Doctoral Training Centre, University of Warwick, Coventry, United Kingdom
| | - Nigel J Burroughs
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
42
|
Lee D, Singla A, Wu HJ, Kwon JSI. An integrated numerical and experimental framework for modeling of CTB and GD1b ganglioside binding kinetics. AIChE J 2018. [DOI: 10.1002/aic.16209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dongheon Lee
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Akshi Singla
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Hung-Jen Wu
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| | - Joseph Sang-Il Kwon
- Artie McFerrin Dept. of Chemical Engineering; Texas A&M University; College Station TX 77840
| |
Collapse
|
43
|
Lin J, Wang K, Xia X, Shen L. Quantification of Multivalency in Protein-Oligomer-Coated Nanoparticles Targeting Dynamic Membrane Glycan Receptors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8415-8421. [PMID: 29958494 DOI: 10.1021/acs.langmuir.8b01605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multivalent binding of proteins to glycan receptors on the host cell quantitatively controls the initial adhesion of most viruses. However, quantifying such multivalency in terms of binding valency has always been a challenge because of the hierarchy of multivalency involving multiple protein oligomers on the virus, limiting our understanding of virus adhesion and virulence. To address this challenge, we mimicked virus adhesion to cell surfaces by attaching protein-oligomer-coated nanoparticles (NPs) to fluidic glycolipid membranes with surface glycan density varying over 4 orders of magnitude. Using total internal reflection fluorescence microscopy to track single attached NPs, we show that the binding isotherms exhibit two regions, attributed to monovalent and multivalent protein/glycan interactions at low and high glycan densities, respectively. The bimodal binding curve allows the quantification of the different valency and binding constants of monovalent and multivalent interactions. In addition, the competitive inhibition of multivalency by the glycopolymer presenting multiple glycan moieties is quantitatively appreciated. This work is essential to mapping and understanding the complex binding specificities of glycan-binding proteins and inhibitory drug designs and applications.
Collapse
Affiliation(s)
- Jiake Lin
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kang Wang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiaoyu Xia
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
44
|
Li J, Han L, Li J, Kitova EN, Xiong ZJ, Privé GG, Klassen JS. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1493-1504. [PMID: 29654535 DOI: 10.1007/s13361-018-1936-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jun Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Jianing Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Zi Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
45
|
Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, Radoi V, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanović‐Talisman T, Vukojević V. Dynamic lateral organization of opioid receptors (kappa, mu wt and mu N40D ) in the plasma membrane at the nanoscale level. Traffic 2018; 19:690-709. [PMID: 29808515 PMCID: PMC6120469 DOI: 10.1111/tra.12582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt ), and its naturally occurring isoform (MOPN40D ) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble-averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside-enriched domains and partial association with cholesterol-enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor-specific. KOP-containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D . Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt , whereas this effect was not observed for MOPN40D .
Collapse
Affiliation(s)
- Maciej K. Rogacki
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Tianyi Li
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Huiying Zhang
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Vlad Radoi
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Yu Ming
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Daniel Ganjali
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Athanasios Sideris
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Alexander R. Small
- Department of Physics and AstronomyCalifornia State Polytechnic UniversityPomonaCalifornia
| | - Lars Terenius
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
- Department of Molecular and Cellular NeurosciencesThe Scripps Research InstituteLa JollaCalifornia
| | | | - Vladana Vukojević
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| |
Collapse
|
46
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
47
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
48
|
Chen CY, Wang CM, Li HH, Chan HH, Liao WS. Wafer-scale bioactive substrate patterning by chemical lift-off lithography. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:311-320. [PMID: 29441274 PMCID: PMC5789397 DOI: 10.3762/bjnano.9.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/17/2018] [Indexed: 05/06/2023]
Abstract
The creation of bioactive substrates requires an appropriate interface molecular environment control and adequate biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable pattern feature and size, large-area fabrication, high resolution and fidelity control, and the ability to functionalize versatile bioarrays. With the interface-contact-induced reaction, a preformed alkanethiol self-assembled monolayer on a Au surface is ruptured and a unique defect-rich diluted matrix is created. This post lift-off region is found to be suitable for insertion of a variety of biological probes, which allows for the creation of different types of bioactive substrates. Depending on the modifications to the experimental conditions, the processes of direct probe insertion, molecular structure change-required recognition, and bulky biological species binding are all accomplished with minimum nonspecific adhesion. Furthermore, multiplexed arrays via the integration of microfluidics are also achieved, which enables diverse applications of as-prepared substrates. By embracing the properties of well-tunable pattern feature dimension and geometry, great local molecular environment control, and wafer-scale fabrication characteristics, this chemical lift-off process has advanced conventional bioactive substrate fabrication into a more convenient route.
Collapse
Affiliation(s)
- Chong-You Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Hua Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hong-Hseng Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
49
|
Kim HS, Hyun JY, Park SH, Shin I. Analysis of binding properties of pathogens and toxins using multivalent glycan microarrays. RSC Adv 2018; 8:14898-14905. [PMID: 35541319 PMCID: PMC9080041 DOI: 10.1039/c8ra01285g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/15/2018] [Indexed: 11/28/2022] Open
Abstract
Pathogens infect hosts often through initial binding of their cell surface lectins to glycans expressed on the exterior of host cells. Thus, methods to evaluate the glycan-binding properties of pathogens are of great importance. Because of the multivalent nature of interactions of pathogens with glycans, the ability to assess the glycan density-dependent binding of pathogens is particularly important. In this study, we developed a facile technique to construct multivalent carbohydrate microarrays through immobilization of unmodified glycans on multivalent hydrazide-derivatized glass surfaces. This immobilization strategy does not require the use of multivalent glycoconjugates, which are typically prepared by using multistep sequences. The results of analysis of microarray images, obtained after incubation of multivalent glycan microarrays with cholera toxin B and pathogens such as uropathogenic E. coli and H. pylori, show that the binding affinities of toxins and pathogens for glycans are highly glycan density-dependent. Specifically, toxins and pathogens bind to glycans more strongly as the valency of the glycans on the microarrays is increased from 1 to 4. It is anticipated that the newly developed immobilization method will be applicable to the preparation of multivalent carbohydrate microarrays that are employed to evaluate multivalent glycan binding properties of a variety of pathogens and toxins. Microarrays constructed by immobilizing free glycans on multivalent hydrazide-coated surfaces were applied to evaluate multivalent glycan binding properties of pathogens.![]()
Collapse
Affiliation(s)
- Hyoung Sub Kim
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Injae Shin
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
50
|
Kabbani AM, Kelly CV. Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy. Biophys J 2017; 113:1795-1806. [PMID: 29045873 DOI: 10.1016/j.bpj.2017.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
For endocytosis and exocytosis, membranes transition among planar, budding, and vesicular topographies through nanoscale reorganization of lipids, proteins, and carbohydrates. However, prior attempts to understand the initial stages of nanoscale bending have been limited by experimental resolution. Through the implementation of polarized localization microscopy, this article reports the inherent membrane bending capability of cholera toxin subunit B (CTxB) in quasi-one-component-supported lipid bilayers. Membrane buds were first detected with <50 nm radius, grew to >200 nm radius, and extended into longer tubules with dependence on the membrane tension and CTxB concentration. Compared to the concentration of the planar-supported lipid bilayers, CTxB was (12 ± 4)× more concentrated on the positive curvature top and (26 ± 11)× more concentrated on the negative Gaussian curvature neck of the nanoscale membrane buds. CTxB is frequently used as a marker for liquid-ordered lipid phases; however, the coupling between CTxB and membrane bending provides an alternate understanding of CTxB-induced membrane reorganization. These findings allow for the reinterpretation of prior observations by correlating CTxB clustering and diffusion to CTxB-induced membrane bending. Single-particle tracking was performed on single lipids and CTxB to reveal the correlations among single-molecule diffusion, CTxB accumulation, and membrane topography. Slowed lipid and CTxB diffusion was observed at the nanoscale bud locations, suggesting a local increase in the effective membrane viscosity or molecular crowding upon membrane bending. These results suggest inherent CTxB-induced membrane bending as a mechanism for initiating CTxB internalization in cells that could be independent of clathrin, caveolin, actin, and lipid phase separation.
Collapse
Affiliation(s)
- Abir M Kabbani
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|