1
|
Zhuang Y, Noviello CM, Hibbs RE, Howard RJ, Lindahl E. Differential interactions of resting, activated, and desensitized states of the α7 nicotinic acetylcholine receptor with lipidic modulators. Proc Natl Acad Sci U S A 2022; 119:e2208081119. [PMID: 36251999 PMCID: PMC9618078 DOI: 10.1073/pnas.2208081119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that modulates neuronal excitability, largely by allowing Ca2+ permeation. Agonist binding promotes transition from a resting state to an activated state, and then rapidly to a desensitized state. Recently, cryogenic electron microscopy (cryo-EM) structures of the human α7 receptor in nanodiscs were reported in multiple conformations. These were selectively stabilized by inhibitory, activating, or potentiating compounds. However, the functional annotation of these structures and their differential interactions with unresolved lipids and ligands remain incomplete. Here, we characterized their ion permeation, membrane interactions, and ligand binding using computational electrophysiology, free-energy calculations, and coarse-grained molecular dynamics. In contrast to nonconductive structures in apparent resting and desensitized states, the structure determined in the presence of the potentiator PNU-120596 was consistent with an activated state permeable to Ca2+. Transition to this state was associated with compression and rearrangement of the membrane, particularly in the vicinity of the peripheral MX helix. An intersubunit transmembrane site was implicated in selective binding of either PNU-120596 in the activated state or cholesterol in the desensitized state. This substantiates functional assignment of all three lipid-embedded α7-receptor structures with ion-permeation simulations. It also proposes testable models of their state-dependent interactions with lipophilic ligands, including a mechanism for allosteric modulation at the transmembrane subunit interface.
Collapse
Affiliation(s)
- Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, PO Box 1031, Solna, 171 21 Sweden
| | - Colleen M. Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ryan E. Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rebecca J. Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, PO Box 1031, Solna, 171 21 Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, PO Box 1031, Solna, 171 21 Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, PO Box 1031, Solna, 171 21 Sweden
| |
Collapse
|
2
|
Yuan X, Zhang D, Mao S, Wang Q. Filling the Gap in Understanding the Mechanism of GABA AR and Propofol Using Computational Approaches. J Chem Inf Model 2021; 61:1889-1901. [PMID: 33823589 DOI: 10.1021/acs.jcim.0c01290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
γ-Aminobutyric acid type-A receptors (GABAARs) play a critical role in neural transmission by mediating the inhibitory neural firing and are the target of many psychiatric drugs. Among them, propofol is one of the most widely used and important general anesthetics in clinics. Recent advances in structural biology revealed the structure of a human GABAAR in both open and closed states. Yet, the detailed mechanism of the receptor and propofol remains to be fully understood. Therefore, in this study, based on the previous successes in structural biology, a variety of computational techniques were applied to fill the gap between previous experimental studies. This study investigated the ion-conducting mechanism of GABAAR, predicted the possible binding mechanism of propofol, and revealed a new motion mechanism of transmembrane domain (TMD) helices. We hope that this study may contribute to future studies on ion-channel receptors, general anesthetics, and drug development.
Collapse
Affiliation(s)
- Xinghang Yuan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Ray D, Andricioaei I. Free Energy Landscape and Conformational Kinetics of Hoogsteen Base Pairing in DNA vs. RNA. Biophys J 2020; 119:1568-1579. [PMID: 32946766 DOI: 10.1016/j.bpj.2020.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/10/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022] Open
Abstract
Genetic information is encoded in the DNA double helix, which, in its physiological milieu, is characterized by the iconical Watson-Crick nucleo-base pairing. Recent NMR relaxation experiments revealed the transient presence of an alternative, Hoogsteen (HG) base pairing pattern in naked DNA duplexes, and estimated its relative stability and lifetime. In contrast with DNA, such structures were not observed in RNA duplexes. Understanding HG base pairing is important because the underlying "breathing" motion between the two conformations can significantly modulate protein binding. However, a detailed mechanistic insight into the transition pathways and kinetics is still missing. We performed enhanced sampling simulation (with combined metadynamics and adaptive force-bias method) and Markov state modeling to obtain accurate free energy, kinetics, and the intermediates in the transition pathway between Watson-Crick and HG base pairs for both naked B-DNA and A-RNA duplexes. The Markov state model constructed from our unbiased MD simulation data revealed previously unknown complex extrahelical intermediates in the seemingly simple process of base flipping in B-DNA. Extending our calculation to A-RNA, for which HG base pairing is not observed experimentally, resulted in relatively unstable, single-hydrogen-bonded, distorted Hoogsteen-like bases. Unlike B-DNA, the transition pathway primarily involved base paired and intrahelical intermediates with transition timescales much longer than that of B-DNA. The seemingly obvious flip-over reaction coordinate (i.e., the glycosidic torsion angle) is unable to resolve the intermediates. Instead, a multidimensional picture involving backbone dihedral angles and distance between hydrogen bond donor and acceptor atoms is required to gain insight into the molecular mechanism.
Collapse
Affiliation(s)
| | - Ioan Andricioaei
- Department of Chemistry; Department of Physics and Astronomy, University of California Irvine, Irvine, California.
| |
Collapse
|
4
|
Cottone G, Chiodo L, Maragliano L. Thermodynamics and Kinetics of Ion Permeation in Wild-Type and Mutated Open Active Conformation of the Human α7 Nicotinic Receptor. J Chem Inf Model 2020; 60:5045-5056. [PMID: 32803965 PMCID: PMC8011927 DOI: 10.1021/acs.jcim.0c00549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Molecular
studies of human pentameric ligand-gated ion channels
(LGICs) expressed in neurons and at neuromuscular junctions are of
utmost importance in the development of therapeutic strategies for
neurological disorders. We focus here on the nicotinic acetylcholine
receptor nAChR-α7, a homopentameric channel widely expressed
in the human brain, with a proven role in a wide spectrum of disorders
including schizophrenia and Alzheimer’s disease. By exploiting
an all-atom structural model of the full (transmembrane and extracellular)
protein in the open, agonist-bound conformation we recently developed,
we evaluate the free energy and the mean first passage time of single-ion
permeation using molecular dynamics simulations and the milestoning
method with Voronoi tessellation. The results for the wild-type channel
provide the first available mapping of the potential of mean force
in the full-length α7 nAChR, reveal its expected cationic nature,
and are in good agreement with simulation data for other channels
of the LGIC family and with experimental data on nAChRs. We then investigate
the role of a specific mutation directly related to ion selectivity
in LGICs, the E-1′ → A-1′ substitution at the
cytoplasmatic selectivity filter. We find that the mutation strongly
affects sodium and chloride permeation in opposite directions, leading
to a complete inversion of selectivity, at variance with the limited
experimental results available that classify this mutant as cationic.
We thus provide structural determinants for the observed cationic-to-anionic
inversion, revealing a key role of the protonation state of residue
rings far from the mutation, in the proximity of the hydrophobic channel
gate.
Collapse
Affiliation(s)
- Grazia Cottone
- Department of Physics and Chemistry-Emilio Segrè, University of Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| |
Collapse
|
5
|
Cetin H, Epstein M, Liu WW, Maxwell S, Rodriguez Cruz PM, Cossins J, Vincent A, Webster R, Biggin PC, Beeson D. Muscle acetylcholine receptor conversion into chloride conductance at positive potentials by a single mutation. Proc Natl Acad Sci U S A 2019; 116:21228-21235. [PMID: 31570625 PMCID: PMC6800317 DOI: 10.1073/pnas.1908284116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context.
Collapse
Affiliation(s)
- Hakan Cetin
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Max Epstein
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Wei W Liu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Susan Maxwell
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Pedro M Rodriguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Richard Webster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DS, United Kingdom;
| |
Collapse
|
6
|
Gharpure A, Teng J, Zhuang Y, Noviello CM, Walsh RM, Cabuco R, Howard RJ, Zaveri NT, Lindahl E, Hibbs RE. Agonist Selectivity and Ion Permeation in the α3β4 Ganglionic Nicotinic Receptor. Neuron 2019; 104:501-511.e6. [PMID: 31488329 DOI: 10.1016/j.neuron.2019.07.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are pentameric ion channels that mediate fast chemical neurotransmission. The α3β4 nicotinic receptor subtype forms the principal relay between the central and peripheral nervous systems in the autonomic ganglia. This receptor is also expressed focally in brain areas that affect reward circuits and addiction. Here, we present structures of the α3β4 nicotinic receptor in lipidic and detergent environments, using functional reconstitution to define lipids appropriate for structural analysis. The structures of the receptor in complex with nicotine, as well as the α3β4-selective ligand AT-1001, complemented by molecular dynamics, suggest principles of agonist selectivity. The structures further reveal much of the architecture of the intracellular domain, where mutagenesis experiments and simulations define residues governing ion conductance.
Collapse
Affiliation(s)
- Anant Gharpure
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuxuan Zhuang
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard M Walsh
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rico Cabuco
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden
| | | | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna 17121, Sweden; Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna 17121, Sweden
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Kucukkal TG, Alsaiari F, Stuart SJ. Modeling ion permeation in wild-type and mutant human α7 nachr ion channels. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations of wild type and two mutant (T248F and L251T) human [Formula: see text]7 nicotinic acetylcholine receptors (nAChR) have been performed. The channel transmembrane domains were modeled from the closed channel structure from torpedo ray (PDB ID 2BG9) and embedded in DPPC lipid bilayers, surrounded by physiological saline solution. An external electric field was used to obtain stable open channel structures. The adaptive biasing force (ABF) method was used to obtain potential of mean force (PMF) profiles for Na[Formula: see text] ion translocation through the wild type and mutant receptors. Based on the geometry and PMF profiles, the channel gate was found to be at one of the two hydrophobic conserved regions (V249-L251) near the lower end of the channel. The L251T mutation reduced the energetic barrier by 1.9[Formula: see text]kcal/mol, consistent with a slight increase in the channel radius in the bottleneck region. On the other hand, the T248F mutation caused a significant decrease in the channel radius (0.4 Å) and a substantial increase of 3.9[Formula: see text]kcal/mol in the energetic barrier. Ion permeation in all three structures was compared and found to be consistent with barrier height values. Using an external field in an incrementally increasing manner was found to be an effective way to obtain stable open, conducting channel structures.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Science, Technology and Mathematics, Gallaudet University, 800 Florida Ave North East Washington, District of Columbia 20002, USA
| | - Feras Alsaiari
- Park View High School, 400 West Laurel Avenue, Sterling, Virginia 20164, USA
| | - Steven J Stuart
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
8
|
Abstract
![]()
Several apical iodide translocation
pathways have been proposed
for iodide efflux out of thyroid follicular cells, including a pathway
mediated by the sodium-coupled monocarboxylate transporter 1 (SMCT1),
which remains controversial. Herein, we evaluate structural and functional
similarities between SMCT1 and the well-studied sodium-iodide symporter
(NIS) that mediates the first step of iodide entry into the thyroid.
Free-energy calculations using a force field with electronic polarizability
verify the presence of a conserved iodide-binding pocket between the
TM2, TM3, and TM7 segments in hNIS, where iodide is coordinated by
Phe67, Gln72, Cys91, and Gln94. We demonstrate the mutation of residue
Gly93 of hNIS to a larger amino acid expels the side chain of a critical
tryptophan residue (Trp255) into the interior of the binding pocket,
partially occluding the iodide binding site and reducing iodide affinity,
which is consistent with previous reports associating mutation of
this residue with iodide uptake deficiency and hypothyroidism. Furthermore,
we find that the position of Trp255 in this hNIS mutant mirrors that
of Trp253 in wild-type hSMCT1, where a threonine (Thr91) occupies
the position homologous to that occupied by glycine in wild-type hNIS
(Gly93). Correspondingly, mutation of Thr91 to glycine in hSMCT1 makes
the pocket structure more like that of wild-type hNIS, increasing
its iodide affinity. These results suggest that wild-type hSMCT1 in
the inward-facing conformation may bind iodide only very weakly, which
may have implications for its ability to transport iodide.
Collapse
Affiliation(s)
- Ariela Vergara-Jaque
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca , 2 Norte 685, Talca 3460000, Chile.,Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States
| | - Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine , Manhattan, Kansas 66506, United States
| | - Jeffrey Comer
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Kansas State University , Manhattan, Kansas 66506, United States.,Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine , Manhattan, Kansas 66506, United States
| |
Collapse
|
9
|
Zhang JL, Zheng QC, Yu LY, Li ZQ, Zhang HX. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter. J Chem Inf Model 2016; 56:1539-46. [PMID: 27472561 DOI: 10.1021/acs.jcim.6b00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China.,Department of Chemistry and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Qing-Chuan Zheng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Li-Ying Yu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|
10
|
Pothula KR, Solano CJF, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1760-71. [PMID: 26721326 DOI: 10.1016/j.bbamem.2015.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Karunakar R Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Carlos J F Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
11
|
Cao Y, Wu X, Lee I, Wang X. Molecular dynamics of water and monovalent-ions transportation mechanisms of pentameric sarcolipin. Proteins 2015; 84:73-81. [DOI: 10.1002/prot.24956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Yipeng Cao
- Institute of Physics, Nankai University; Tianjin China
| | - Xue Wu
- Institute of Physics, Nankai University; Tianjin China
| | - Imshik Lee
- Institute of Physics, Nankai University; Tianjin China
| | - Xinyu Wang
- Institute of Physics, Nankai University; Tianjin China
| |
Collapse
|
12
|
Di Maio D, Chandramouli B, Brancato G. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 2015; 10:e0140258. [PMID: 26465896 PMCID: PMC4605793 DOI: 10.1371/journal.pone.0140258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022] Open
Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested.
Collapse
Affiliation(s)
- Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- * E-mail:
| |
Collapse
|
13
|
Yoluk Ö, Lindahl E, Andersson M. Conformational gating dynamics in the GluCl anion-selective chloride channel. ACS Chem Neurosci 2015; 6:1459-67. [PMID: 25992588 DOI: 10.1021/acschemneuro.5b00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cys-loop receptors are central to propagation of signals in the nervous system. The gating of the membrane-spanning pore is triggered by structural rearrangements in the agonist-binding site, located some 50 Å away from the pore. A sequential conformational change, propagating from the ligand-binding site to the pore, has been proposed to govern gating in all Cys-loop receptors. Here, we identify structural and dynamic components of the conformational gating in the eukaryotic glutamate-gated chloride channel (GluCl) by means of molecular dynamics (MD) simulations with and without the l-glutamate agonist bound. A significant increase in pore opening and accompanying hydration is observed in the presence of glutamate. Potential of mean force calculations reveal that the barrier for ion passage drops from 15 kcal/mol to 5-10 kcal/mol with the agonist bound. This appears to be explained by agonist binding that leads to significant changes in the intersubunit hydrogen-bonding pattern, which induce a slight tilt of the extracellular domain relative to the transmembrane domain in the simulations. This rearrangement is subtle, but correspond to the direction of the quaternary twist observed as a key difference between open and closed X-ray structures. While the full reversible gating is still a much slower process, the observed structural dynamics sheds new light on the early stages of how the agonist influences the extracellular domain, how the extracellular domain interacts with the transmembrane domain, and how changes in the transmembrane domain alter the free energy of ion passage.
Collapse
Affiliation(s)
- Özge Yoluk
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Erik Lindahl
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Magnus Andersson
- Science for Life Laboratory, Stockholm and Uppsala, 171 21 Stockholm, Sweden
- Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
A structural model for facultative anion channels in an oligomeric membrane protein: the yeast TRK (K+) system. Pflugers Arch 2015; 467:2447-60. [DOI: 10.1007/s00424-015-1712-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
|
15
|
Chandramouli B, Di Maio D, Mancini G, Barone V, Brancato G. Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism. PLoS One 2015; 10:e0120196. [PMID: 25825909 PMCID: PMC4380313 DOI: 10.1371/journal.pone.0120196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.
Collapse
Affiliation(s)
| | - Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| |
Collapse
|
16
|
Modi N, Bárcena-Uribarri I, Bains M, Benz R, Hancock REW, Kleinekathöfer U. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP. ACS Chem Biol 2015; 10:441-51. [PMID: 25333751 DOI: 10.1021/cb500399j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cell envelope of the Gram negative opportunistic pathogen Pseudomonas aeruginosa is poorly permeable to many classes of hydrophilic molecules including antibiotics due to the presence of the narrow and selective porins. Here we focused on one of the narrow-channel porins, that is, OprP, which is responsible for the high-affinity uptake of phosphate ions. Its two central binding sites for phosphate contain a number of positively charged amino acids together with a single negatively charged residue (D94). The presence of this negatively charged residue in a binding site for negatively charged phosphate ions is highly surprising due to the potentially reduced binding affinity. The goal of this study was to better understand the role of D94 in phosphate binding, selectivity, and transport using a combination of mutagenesis, electrophysiology, and free-energy calculations. The presence of a negatively charged residue in the binding site is critical for this specific porin OprP as emphasized by the evolutionary conservation of such negatively charged residue in the binding site of several anion-selective porins. Mutations of D94 in OprP to any positively charged or neutral residue increased the binding affinity of phosphate for OprP. Detailed analysis indicated that this anionic residue in the phosphate binding site of OprP, despite its negative charge, maintained energetically favorable phosphate binding sites in the central region of the channel and at the same time decreased residence time thus preventing excessively strong binding of phosphate that would oppose phosphate flux through the channel. Intriguingly mutations of D94 to positively charged residues, lysine and arginine, resulted in very different binding affinities and free energy profiles, indicating the importance of side chain conformations of these positively charged residues in phosphate binding to OprP.
Collapse
Affiliation(s)
- Niraj Modi
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Iván Bárcena-Uribarri
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roland Benz
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Kleinekathöfer
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
17
|
Comer J, Gumbart JC, Hénin J, Lelièvre T, Pohorille A, Chipot C. The adaptive biasing force method: everything you always wanted to know but were afraid to ask. J Phys Chem B 2014; 119:1129-51. [PMID: 25247823 PMCID: PMC4306294 DOI: 10.1021/jp506633n] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
In the host of numerical schemes
devised to calculate free energy
differences by way of geometric transformations, the adaptive biasing
force algorithm has emerged as a promising route to map complex free-energy
landscapes. It relies upon the simple concept that as a simulation
progresses, a continuously updated biasing force is added to the equations
of motion, such that in the long-time limit it yields a Hamiltonian
devoid of an average force acting along the transition coordinate
of interest. This means that sampling proceeds uniformly on a flat
free-energy surface, thus providing reliable free-energy estimates.
Much of the appeal of the algorithm to the practitioner is in its
physically intuitive underlying ideas and the absence of any requirements
for prior knowledge about free-energy landscapes. Since its inception
in 2001, the adaptive biasing force scheme has been the subject of
considerable attention, from in-depth mathematical analysis of convergence
properties to novel developments and extensions. The method has also
been successfully applied to many challenging problems in chemistry
and biology. In this contribution, the method is presented in a comprehensive,
self-contained fashion, discussing with a critical eye its properties,
applicability, and inherent limitations, as well as introducing novel
extensions. Through free-energy calculations of prototypical molecular
systems, many methodological aspects are examined, from stratification
strategies to overcoming the so-called hidden barriers in orthogonal
space, relevant not only to the adaptive biasing force algorithm but
also to other importance-sampling schemes. On the basis of the discussions
in this paper, a number of good practices for improving the efficiency
and reliability of the computed free-energy differences are proposed.
Collapse
Affiliation(s)
- Jeffrey Comer
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche CNRS n°7565, Université de Lorraine , B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Belfield WJ, Cole DJ, Martin IL, Payne MC, Chau PL. Constrained geometric simulation of the nicotinic acetylcholine receptor. J Mol Graph Model 2014; 52:1-10. [PMID: 24955489 DOI: 10.1016/j.jmgm.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Constrained geometric simulations have been performed for the recently published closed-channel state of the nicotinic acetylcholine receptor. These simulations support the theory that correlated motion in the flexible β-sheet structure of the extracellular domain helps to communicate a "conformational wave", spreading from the acetylcholine binding pocket. Furthermore, we have identified key residues that act at the interface between subunits and between domains that could potentially facilitate rapid communication between the binding site and the transmembrane gate.
Collapse
Affiliation(s)
- William J Belfield
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Daniel J Cole
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom; Department of Chemistry, Yale University, New Haven, CT 06520-8107, United States
| | - Ian L Martin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Mike C Payne
- Theory of Condensed Matter Group, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - P-L Chau
- Bioinformatique Structurale, CNRS UMR 3528, Institut Pasteur, 75724 Paris, France.
| |
Collapse
|
19
|
Salari R, Murlidaran S, Brannigan G. Pentameric Ligand-gated Ion Channels : Insights from Computation. MOLECULAR SIMULATION 2014; 40:821-829. [PMID: 25931676 PMCID: PMC4412168 DOI: 10.1080/08927022.2014.896462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) conduct upon the binding of an agonist and are fundamental to neurotransmission. New insights into the complex mechanisms underlying pLGIC gating, ion selectivity, and modulation have recently been gained via a series of crystal structures in prokaryotes and C .elegans, as well as computational studies relying on these structures. Here we review contributions from a variety of computational approaches, including normal mode analysis, automated docking, and fully atomistic molecular dynamics simulation. Examples from our own research, particularly concerning interactions with general anesthetics and lipids, are used to illustrate predictive results complementary to crystallographic studies.
Collapse
Affiliation(s)
- Reza Salari
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ
- Department of Physics, Rutgers University, Camden, NJ
| | - Sruthi Murlidaran
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ
- Department of Physics, Rutgers University, Camden, NJ
| |
Collapse
|
20
|
Chen J, Tomich JM. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2319-25. [PMID: 24582709 DOI: 10.1016/j.bbamem.2014.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/21/2014] [Indexed: 12/16/2022]
Abstract
Significant progresses have been made in the design, synthesis, modeling and in vitro testing of channel-forming peptides derived from the second transmembrane domain of the α-subunit of the glycine receptor (GlyR). The latest designs, including p22 (KKKKP ARVGL GITTV LTMTT QS), are highly soluble in water with minimal aggregation propensity and insert efficiently into cell membranes to form highly conductive ion channels. The last obstacle to a potential lead sequence for channel replacement treatment of CF patients is achieving adequate chloride selectivity. We have performed free energy simulation to analyze the conductance and charge selectivity of M2GlyR-derived synthetic channels. The results reveal that the pentameric p22 pore is non-selective. Moderate barriers for permeation of both K(+) and Cl(-) are dominated by the desolvation cost. Despite previous evidence suggesting a potential role of threonine side chains in anion selectivity, the hydroxyl group is not a good surrogate of water for coordinating these ions. We have also tested initial ideas of introducing additional rings of positive changes to various positions along the pore to increase anion selectivity. The results support the feasibility of achieving anion selectivity by modifying the electrostatic properties of the pore, but at the same time suggest that the peptide assembly and pore topology may also be dramatically modified, which could abolish the effects of modified electrostatics on anion selectivity. This was confirmed by subsequent two-electrode voltage clamp measurements showing that none of the tested mono-, di- and tri-Dap substituted sequences was selective. The current study thus highlights the importance of controlling channel topology besides modifying pore electrostatics for achieving anion selectivity. Several strategies are now being explored in our continued efforts to design an anion selective peptide channel with suitable biophysical, physiological and pharmacological properties as a potential treatment modality for channel replacement therapy. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Jianhan Chen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| | - John M Tomich
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
21
|
daCosta CJB, Baenziger JE. Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. Structure 2014; 21:1271-83. [PMID: 23931140 DOI: 10.1016/j.str.2013.06.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/31/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic communication by converting chemical signals into an electrical response. Recently solved agonist-bound and agonist-free structures greatly extend our understanding of these complex molecular machines. A key challenge to a full description of function, however, is the ability to unequivocally relate determined structures to the canonical resting, open, and desensitized states. Here, we review current understanding of pLGIC structure, with a focus on the conformational changes underlying channel gating. We compare available structural information and review the evidence supporting the assignment of each structure to a particular conformational state. We discuss multiple factors that may complicate the interpretation of crystal structures, highlighting the potential influence of lipids and detergents. We contend that further advances in the structural biology of pLGICs will require deeper insight into the nature of pLGIC-lipid interactions.
Collapse
Affiliation(s)
- Corrie J B daCosta
- Receptor Biology Laboratory, Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Bukovnik U, Sala-Rabanal M, Francis S, Frazier SJ, Schultz BD, Nichols CG, Tomich JM. Effect of diaminopropionic acid (Dap) on the biophysical properties of a modified synthetic channel-forming peptide. Mol Pharm 2013; 10:3959-66. [PMID: 24010543 DOI: 10.1021/mp4002377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Channel replacement therapy, based on synthetic channel-forming peptides (CFPs) with the ability to supersede defective endogenous ion channels, is a novel treatment modality that may augment existing interventions against multiple diseases. Previously, we derived CFPs from the second transmembrane segment of the α-subunit of the glycine receptor, M2GlyR, which forms chloride-selective channels in its native form. The best candidate, NK4-M2GlyR T19R, S22W (p22-T19R, S22W), was water-soluble, incorporated into cell membranes and was nonimmunogenic, but lacked the structural properties for high conductance and anion selectivity when assembled into a pore. Further studies suggested that the threonine residues at positions 13, 17, and 20 line the pore of assembled p22-T19R, S22W, and here we used 2,3-diaminopropionic acid (Dap) substitutions to introduce positive charges to the pore-lining interface of the predicted p22-T19R, S22W channel. Dap-substituted p22-T19R, S22W peptides retained the α-helical secondary structure characteristic of their parent peptide, and induced short-circuit transepithelial currents when exposed to the apical membrane of Madin-Darby canine kidney (MDCK) cells; the sequences containing multiple Dap-substituted residues induced larger currents than the peptides with single or no Dap substitutions. To gain further insights into the effects of Dap residues on the properties of the putative pore, we performed two-electrode voltage clamp electrophysiology on Xenopus oocytes exposed to p22-T19R, S22W or its Dap-modified analogues. We observed that Dap-substituted peptides also induced significantly larger voltage-dependent currents than the parent compound, but there was no apparent change in reversal potential upon replacement of external Na+, Cl- or K+, indicating that these currents remained nonselective. These results suggest that the introduction of positively charged side chains in predicted pore-lining residues does not improve anion-to-cation selectivity, but results in higher conductance, perhaps due to higher oligomerization numbers.
Collapse
Affiliation(s)
- Urska Bukovnik
- Department of Biochemistry and ⊥Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas 66506, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Structural analysis and ion translocation mechanisms of the muscle-type acetylcholine receptor channel. J Appl Biomater Funct Mater 2013; 11:e53-60. [PMID: 23728540 DOI: 10.5301/jabfm.5000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this work is to analyze the conformational changes in the acetylcholine receptor caused by channel opening and to investigate the electrostatic profile during ion translocation through the channel. METHODS A computational model of the human muscle-type acetylcholine receptor (AChR) was built and used to analyze channel structure and its interactions with different ions. Using the Torpedo AChR crystal structure as a homologous template, the 3D structure of the human muscle-type AChR was reconstructed. RESULTS This first model is optimized and an open structure of the channel is generated using Normal Mode Analysis in order to assess morphologic and energetic differences between open and closed structures. In addition, the issue of ion translocation is investigated in further detail. Results elucidate different aspects of the channel: channel gate structure, channel interactions with translocating ions, differences between muscle-type AChR and previous neuronal-type AChR models. CONCLUSIONS The model constructed here is ideal for further computational studies on muscle-type AChR and its pathologic mutations.
Collapse
|
24
|
Xie HB, Wang J, Sha Y, Cheng MS. Molecular dynamics investigation of Cl(-) transport through the closed and open states of the 2α12β2γ2 GABA(A) receptor. Biophys Chem 2013; 180-181:1-9. [PMID: 23771165 DOI: 10.1016/j.bpc.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 01/16/2023]
Abstract
The α1β2γ2 gamma-aminobutyric type A receptor (GABA(A)R) is one of the most widely expressed GABA(A)R subtypes in the mammalian brain. GABA(A)Rsbelonging to the Cys-loop superfamily of ligand-gated ion channels have been identified as key targets for many clinical drugs, and the motions that govern the gating mechanism are still not well understood. In this study, an open-state GABA(A)R was constructed using the structure of the glutamate-gated chloride channel (GluCl), which has a high sequence identity to GABA(A)R. A closed-state model was constructed using the structure of the nicotinic acetylcholine receptor (nAChR). Molecular dynamics simulations of the open-state and closed-state GABA(A)R were performed. We calculated the electrostatic potential of the two conformations, the pore radius of the two ion channels and the root-mean-square fluctuation. We observed the presence of two positively charged girdles around the ion channel and found flexible regions in the GABA(A)R. Then, the free-energy of chloride ion permeations through the closed-state and open-state G GABA(A)R has been estimated using adaptive biasing force (ABF) simulation. For the closed-state G GABA(A)R, we observed two major energy barriers for chloride ion translocation in the transmembrane domain (TMD). For the open-state GABA(A)R, there was only one energy barrier formed by two Thr261 (α1), two Thr255 (β2) and one Thr271 (γ2). By using ABF simulation, the overall free-energy profile is obtained for Cl(-) transporting through GABA(A)R, which gives a complete map of the ion channel of Cl(-) permeation.
Collapse
Affiliation(s)
- Hong-Bo Xie
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | |
Collapse
|
25
|
Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. EMBO J 2013; 32:728-41. [PMID: 23403925 PMCID: PMC3590989 DOI: 10.1038/emboj.2013.17] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/07/2013] [Indexed: 12/14/2022] Open
Abstract
To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6' and Thr2') that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6' is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6' actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed.
Collapse
|
26
|
Modi N, Benz R, Hancock REW, Kleinekathöfer U. Modeling the Ion Selectivity of the Phosphate Specific Channel OprP. J Phys Chem Lett 2012; 3:3639-3645. [PMID: 26290999 DOI: 10.1021/jz301637d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ion selectivity of transport systems is an essential property of membranes from living organisms. These entities are used to regulate multifarious biological processes by virtue of selective participation of specific ions in transport processes. To understand this process, we studied the phosphate selectivity of the OprP porin from Pseudomonas aeruginosa using all-atom free-energy molecular dynamics simulations. These calculations were performed to define the energetics of phosphate, sulfate, chloride, and potassium ion transport through OprP. Atomic-level analysis revealed that the overall electrostatic environment of the channel was responsible for the anion selectivity of the channel, whereas the particular balance of interactions between the permeating ions and water as well as channel residues drove the selectivity between different anions. The selectivity of OprP is discussed in light of well-studied ion channels that are highly selective for potassium or chloride.
Collapse
Affiliation(s)
- Niraj Modi
- †School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany and
| | - Roland Benz
- †School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany and
| | - Robert E W Hancock
- ‡Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Ulrich Kleinekathöfer
- †School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany and
| |
Collapse
|
27
|
Cheng MH, Coalson RD. Energetics and ion permeation characteristics in a glutamate-gated chloride (GluCl) receptor channel. J Phys Chem B 2012; 116:13637-43. [PMID: 23088363 DOI: 10.1021/jp3074915] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An invertebrate glutamate-gated chloride channel (GluCl) has recently been crystallized in an open-pore state. This channel is homologous to the human Cys-loop receptor family of pentameric ligand-gated ion channels, including anion-selective GlyR and GABAR and cation-selective nAChR and 5HT(3). We implemented molecular dynamics (MD) in conjunction with an elastic network model to perturb the X-ray structure of GluCl and investigated the open channel stability and its ion permeation characteristics. Our study suggests that TM2 helical tilting may close GluCl near the hydrophobic constriction L254 (L9'), similar to its cation-selective homologues. Ion permeation characteristics were determined by Brownian dynamics simulations using a hybrid MD/continuum electrostatics approach to evaluate the free energy profiles for ion transport. Near the selectivity filter region (P243 or P-2'), the free energy barrier for Na(+) transport is over 4 k(B)T higher than that for Cl(-), indicating anion selectivity of the channel. Furthermore, three layers of positivity charged rings in the extracellular domain also contribute to charge selectivity and facilitate Cl(-) permeability over Na(+). Collectively, the charge selectivity of GluCl may be determined by overall electrostatic and ion dehydration effects, perhaps not deriving from a single region of the channel (the selectivity filter region near the intracellular entrance).
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
28
|
Abstract
Molecular dynamics (MD) simulation holds the promise of revealing the mechanisms of biological processes in their ultimate detail. It is carried out by computing the interaction forces acting on each atom and then propagating the velocities and positions of the atoms by numerical integration of Newton's equations of motion. In this review, we present an overview of how the MD simulation can be conducted to address computational toxicity problems. The study cases will cover a standard MD simulation performed to investigate the overall flexibility of a cytochrome P450 (CYP) enzyme and a set of more advanced MD simulations to examine the barrier to ion conduction in a human α7 nicotinic acetylcholine receptor (nAChR).
Collapse
|
29
|
Gumbart J. Exploring substrate diffusion in channels using biased molecular dynamics simulations. Methods Mol Biol 2012; 914:337-350. [PMID: 22976037 DOI: 10.1007/978-1-62703-023-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Substrate transport and diffusion through membrane-bound channels are processes that can span a range of time scales, with only the fastest ones being amenable to most atomic-scale equilibrium molecular dynamics (MD) simulations. However, the application of forces within a simulation can greatly accelerate diffusion processes, revealing important structural and energetic features of the channel. Here, we demonstrate the use of two methods for applying biases to a substrate in a simulation, using the ammonia/ammonium transporter AmtB as an example. The first method, steered MD, applies a constant force or velocity constraint to the substrate, permitting the exploration of potential substrate pathways and the barriers encountered, although typically far outside of equilibrium. On the other hand, the second method, adaptive biasing forces, is quasi-equilibrium, permitting the derivation of a potential of mean force, which characterizes the free energy of the substrate during transport.
Collapse
Affiliation(s)
- James Gumbart
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
30
|
Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM, Ferrer-Montiel A. Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 2011; 3:932-53. [PMID: 24309315 PMCID: PMC3857065 DOI: 10.3390/pharmaceutics3040932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 01/21/2023] Open
Abstract
Ion channels are involved in a broad range of physiological and pathological processes. The implications of ion channels in a variety of diseases, including diabetes, epilepsy, hypertension, cancer and even chronic pain, have signaled them as pivotal drug targets. Thus far, drugs targeting ion channels were developed without detailed knowledge of the molecular interactions between the lead compounds and the target channels. In recent years, however, the emergence of high-resolution structures for a plethora of ion channels paves the way for computer-assisted drug design. Currently, available functional and structural data provide an attractive platform to generate models that combine substrate-based and protein-based approaches. In silico approaches include homology modeling, quantitative structure-activity relationships, virtual ligand screening, similarity and pharmacophore searching, data mining, and data analysis tools. These strategies have been frequently used in the discovery and optimization of novel molecules with enhanced affinity and specificity for the selected therapeutic targets. In this review we summarize recent applications of in silico methods that are being used for the development of ion channel drugs.
Collapse
|
31
|
Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents. J Neurosci 2011; 31:14095-106. [PMID: 21976494 DOI: 10.1523/jneurosci.1985-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK-293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mm). Our main finding is that glycine and GABA receptors "sense" chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation selective or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane.
Collapse
|
32
|
Bouzat C. New insights into the structural bases of activation of Cys-loop receptors. ACTA ACUST UNITED AC 2011; 106:23-33. [PMID: 21995938 DOI: 10.1016/j.jphysparis.2011.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 09/07/2011] [Accepted: 09/26/2011] [Indexed: 11/27/2022]
Abstract
Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur and CONICET, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
33
|
Bukovnik U, Gao J, Cook GA, Shank LP, Seabra MB, Schultz BD, Iwamoto T, Chen J, Tomich JM. Structural and biophysical properties of a synthetic channel-forming peptide: designing a clinically relevant anion selective pore. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1039-48. [PMID: 21835162 DOI: 10.1016/j.bbamem.2011.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/25/2011] [Indexed: 12/15/2022]
Abstract
The design, synthesis, modeling and in vitro testing of channel-forming peptides derived from the cys-loop superfamily of ligand-gated ion channels are part of an ongoing research focus. Over 300 different sequences have been prepared based on the M2 transmembrane segment of the spinal cord glycine receptor α-subunit. A number of these sequences are water-soluble monomers that readily insert into biological membranes where they undergo supramolecular assembly, yielding channels with a range of selectivities and conductances. Selection of a sequence for further modifications to yield an optimal lead compound came down to a few key biophysical properties: low solution concentrations that yield channel activity, greater ensemble conductance, and enhanced ion selectivity. The sequence NK(4)-M2GlyR T19R, S22W (KKKKPARVGLGITTVLTMRTQW) addressed these criteria. The structure of this peptide has been analyzed by solution NMR as a monomer in detergent micelles, simulated as five-helix bundles in a membrane environment, modified by cysteine-scanning and studied for insertion efficiency in liposomes of selected lipid compositions. Taken together, these results define the structural and key biophysical properties of this sequence in a membrane. This model provides an initial scaffold from which rational substitutions can be proposed and tested to modulate anion selectivity. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- U Bukovnik
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fritsch S, Ivanov I, Wang H, Cheng X. Ion selectivity mechanism in a bacterial pentameric ligand-gated ion channel. Biophys J 2011; 100:390-8. [PMID: 21244835 PMCID: PMC3021669 DOI: 10.1016/j.bpj.2010.11.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 11/29/2022] Open
Abstract
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2') at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl⁻ in the middle of the pore for both GLIC and the E-2'A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.
Collapse
Affiliation(s)
- Sebastian Fritsch
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Hailong Wang
- Receptor Biology Laboratory, Departments of Physiology and Biomedical Engineering and Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiaolin Cheng
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
35
|
Cheng MH, Coalson RD, Tang P. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel. J Am Chem Soc 2010; 132:16442-9. [PMID: 20979415 PMCID: PMC3071019 DOI: 10.1021/ja105001a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.
Collapse
Affiliation(s)
| | - Rob D. Coalson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
36
|
Willenbring D, Xu Y, Tang P. The role of structured water in mediating general anesthetic action on alpha4beta2 nAChR. Phys Chem Chem Phys 2010; 12:10263-9. [PMID: 20661501 PMCID: PMC3265171 DOI: 10.1039/c003573d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Water is an essential component for many biological processes. Pauling proposed that water might play a critical role in general anesthesia by forming water clathrates around anesthetic molecules. To examine potential involvement of water in general anesthesia, we analyzed water within alpha4beta2 nAChR, a putative protein target hypersensitive to volatile anesthetics. Experimental structure-derived closed- and open-channel nAChR systems in a fully hydrated lipid bilayer were examined using all-atom molecular dynamics simulations. At the majority of binding sites in alpha4beta2 nAChR, halothane replaced the slow-exchanging water molecules and caused a regional water population decrease. Only two binding sites had an increased quantity of water in the presence of halothane, where water arrangements resemble clathrate-like structures. The small number of such clathrate-like water clusters suggests that the formation of water clathrates is unlikely to be a primary cause for anesthesia. Despite the decrease in water population at most of the halothane binding sites, the number of sites that can be occupied transiently by water is actually increased in the presence of halothane. Many of these water sites were located between two subunits or in regions containing agonist binding sites or critical structural elements for transducing agonist binding to channel gating. Changes in water sites in the presence of halothane affected water-mediated protein-protein interactions and the protein dynamics, which can have direct impact on protein function. Collectively, water contributes to the action of anesthetics in proteins by mediating interactions between protein subunits and altering protein dynamics, instead of forming water clathrates around anesthetics.
Collapse
Affiliation(s)
- Dan Willenbring
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Computational Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
37
|
Pittel I, Witt-Kehati D, Degani-Katzav N, Paas Y. Probing pore constriction in a ligand-gated ion channel by trapping a metal ion in the pore upon agonist dissociation. J Biol Chem 2010; 285:26519-31. [PMID: 20466725 PMCID: PMC2924088 DOI: 10.1074/jbc.m110.102327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/24/2010] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic pentameric ligand-gated ion channels (pLGICs) are receptors activated by neurotransmitters to rapidly transport ions across cell membranes, down their electrochemical gradients. Recent crystal structures of two prokaryotic pLGICs were interpreted to imply that the extracellular side of the transmembrane pore constricts to close the channel (Hilf, R. J., and Dutzler, R. (2009) Nature 457, 115-118; Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J. P., Delarue, M., and Corringer, P. J. (2009) Nature 457, 111-114). Here, we utilized a eukaryotic acetylcholine (ACh)-serotonin chimeric pLGIC that was engineered with histidines to coordinate a metal ion within the channel pore, at its cytoplasmic side. In a previous study, the access of Zn(2+) ions to the engineered histidines had been explored when the channel was either at rest (closed) or active (open) (Paas, Y., Gibor, G., Grailhe, R., Savatier-Duclert, N., Dufresne, V., Sunesen, M., de Carvalho, L. P., Changeux, J. P., and Attali, B. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 15877-15882). In this study, the interactions of Zn(2+) with the pore were probed upon agonist (ACh) dissociation that triggers the transition of the receptor from the active conformation to the resting conformation (i.e. during deactivation). Application of Zn(2+) onto ACh-bound open receptors obstructed their pore and prevented ionic flow. Removing ACh from its extracellular binding sites to trigger deactivation while Zn(2+) is still bound led to tight trapping of Zn(2+) within the pore. Together with single-channel recordings, made to explore single pore-blocking events, we show that dissociation of ACh causes the gate to shut on a Zn(2+) ion that effectively acts as a "foot in the door." We infer that, upon deactivation, the cytoplasmic side of the pore of the ACh-serotonin receptor chimera constricts to close the channel.
Collapse
Affiliation(s)
- Ilya Pittel
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dvora Witt-Kehati
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Nurit Degani-Katzav
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
38
|
Herrera AI, Al-Rawi A, Cook GA, Gao J, Iwamoto T, Prakash O, Tomich JM, Chen J. Structural characterization of two pore-forming peptides: consequences of introducing a C-terminal tryptophan. Proteins 2010; 78:2238-50. [PMID: 20544961 PMCID: PMC2909830 DOI: 10.1002/prot.22736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic channel-forming peptides that can restore chloride conductance across epithelial membranes could provide a novel treatment of channelopathies such as cystic fibrosis. Among a series of 22-residue peptides derived from the second transmembrane segment of the glycine receptor alpha(1)-subunit (M2GlyR), p22-S22W (KKKKP ARVGL GITTV LTMTT QW) is particularly promising with robust membrane insertion and assembly. The concentration to reach one-half maximal short circuit current is reduced to 45 +/- 6 microM from that of 210 +/- 70 microM of peptide p22 (KKKKP ARVGL GITTV LTMTT QS). However, this is accompanied with nearly 50% reduction in conductance. Toward obtaining a molecular level understanding of the channel activities, we combine information from solution NMR, existing biophysical data, and molecular modeling to construct atomistic models of the putative pentameric channels of p22 and p22-S22W. Simulations in membrane bilayers demonstrate that these structural models, even though highly flexible, are stable and remain adequately open for ion conductance. The membrane-anchoring tryptophan residues not only rigidify the whole channel, suggesting increased stability, but also lead to global changes in the pore profile. Specifically, the p22-S22W pore has a smaller opening on average, consistent with lower measured conductance. Direct observation of several incidences of chloride transport suggests several qualitative features of how these channels might selectively conduct anions. The current study thus helps to rationalize the functional consequences of introducing a single C-terminal tryptophan. Availability of these structural models also paves the way for future work to rationally modify and improve M2GlyR-derived peptides toward potential peptide-based channel replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Jian Gao
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Takeo Iwamoto
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Om Prakash
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - John M. Tomich
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| | - Jianhan Chen
- Department of Biochemistry, Kansas State University, Manhattan KS 66506, USA
| |
Collapse
|
39
|
In silico point mutation and evolutionary trace analysis applied to nicotinic acetylcholine receptors in deciphering ligand-binding surfaces. J Mol Model 2010; 16:1651-70. [PMID: 20204665 DOI: 10.1007/s00894-010-0670-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 12/13/2009] [Indexed: 10/19/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily and contain ligand gated ion channels (LGIC). These receptors are located mostly in the central nervous system (CNS) and peripheral nervous system (PNS). nAChRs reside at pre-synaptic regions to mediate acetylcholine neurotransmission and in the post synaptic membrane to propagate nerve impulses through neurons via acetylcholine. Malfunction of this neurotransmitter receptor is believed to cause various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and schizophrenia, and nAChRs are thus important drug targets. In the present work, starting from an earlier model of pentameric alpha7nAChR, a considerable effort has been taken to investigate interaction with ligands by performing docking studies with a diverse array of agonists and antagonists. Analysis of these docking complexes reveals identification of possible ligand-interacting residues. Some of these residues, e.g. Ser34, Gln55, Ser146, and Tyr166, which are evolutionarily conserved, were specifically subjected to virtual mutations based on their amino acid properties and found to be highly sensitive in the presence of antagonists by docking. Further, the study was extended using evolutionary trace analysis, revealing conserved and class-specific residues close to the putative ligand-binding site, further supporting the results of docking experiments.
Collapse
|
40
|
Corringer PJ, Baaden M, Bocquet N, Delarue M, Dufresne V, Nury H, Prevost M, Van Renterghem C. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 2010; 588:565-72. [PMID: 19995852 PMCID: PMC2828131 DOI: 10.1113/jphysiol.2009.183160] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are widely expressed in the animal kingdom and are key players of neurotransmission by acetylcholine (ACh), gamma-amminobutyric acid (GABA), glycine and serotonin. It is now established that this family has a prokaryotic origin, since more than 20 homologues have been discovered in bacteria. In particular, the GLIC homologue displays a ligand-gated ion channel function and is activated by protons. The prokaryotic origin of these membrane proteins facilitated the X-ray structural resolution of the first members of this family. ELIC was solved at 3.3 A in a closed-pore conformation, and GLIC at up to 2.9 A in an apparently open-pore conformation. These data reveal many structural features, notably the architecture of the pore, including its gate and its selectivity filter, and the interactions between the protein and lipids. In addition, comparison of the structures of GLIC and ELIC hints at a mechanism of channel opening, which consists of both a quaternary twist and a tertiary deformation. This mechanism couples opening-closing motions of the channel with a global reorganization of the protein, including the subunit interface that holds the neurotransmitter binding sites in eukaryotic pLGICs.
Collapse
Affiliation(s)
- Pierre-Jean Corringer
- Pasteur Institute, G5 Group of Channel-Receptor, CNRS URA 2182, 75015 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Song C, Corry B. Ion conduction in ligand-gated ion channels: Brownian dynamics studies of four recent crystal structures. Biophys J 2010; 98:404-11. [PMID: 20141753 PMCID: PMC2814205 DOI: 10.1016/j.bpj.2009.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 01/12/2023] Open
Abstract
Four x-ray crystal structures of prokaryotic homologs of ligand-gated ion channels have recently been determined: ELIC from Erwinia chrysanthemi, two structures of a proton-activated channel from Gloebacter violaceus (GLIC1 and GLIC2) and that of the E221A mutant (GLIC1M). The availability of numerous structures of channels in this family allows for aspects of channel gating and ion conduction to be examined. Here, we determine the likely conduction states of the four structures as well as IV curves, ion selectivity, and steps involved in ion permeation by performing extensive Brownian dynamics simulations. Our results show that the ELIC structure is indeed nonconductive, but that GLIC1 and GLIC1M are both conductive of ions with properties different from those seen in experimental studies of the channel. GLIC2 appears to reflect an open state of the channel with a predicted conductance of 10.8-12.4 pS in 140 mM NaCl solution, which is comparable to the experimental value 8 +/- 2 pS. The extracellular domain of the channel is shown to have an important influence on the channel current, but a less significant role in ion selectivity.
Collapse
Affiliation(s)
| | - Ben Corry
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Western Australia
| |
Collapse
|
42
|
Arias HR. Positive and negative modulation of nicotinic receptors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:153-203. [PMID: 21109220 DOI: 10.1016/b978-0-12-381264-3.00005-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (AChRs) are one of the best characterized ion channels from the Cys-loop receptor superfamily. The study of acetylcholine binding proteins and prokaryotic ion channels from different species has been paramount for the understanding of the structure-function relationship of the Cys-loop receptor superfamily. AChR function can be modulated by different ligand types. The neurotransmitter ACh and other agonists trigger conformational changes in the receptor, finally opening the intrinsic cation channel. The so-called gating process couples ligand binding, located at the extracellular portion, to the opening of the ion channel, located at the transmembrane region. After agonist activation, in the prolonged presence of agonists, the AChR becomes desensitized. Competitive antagonists overlap the agonist-binding sites inhibiting the pharmacological action of agonists. Positive allosteric modulators (PAMs) do not bind to the orthostetic binding sites but allosterically enhance the activity elicited by agonists by increasing the gating process (type I) and/or by decreasing desensitization (type II). Instead, negative allosteric modulators (NAMs) produce the opposite effects. Interestingly, this negative effect is similar to that found for another class of allosteric drugs, that is, noncompetitive antagonists (NCAs). However, the main difference between both categories of drugs is based on their distinct binding site locations. Although both NAMs and NCAs do not bind to the agonist sites, NACs bind to sites located in the ion channel, whereas NAMs bind to nonluminal sites. However, this classification is less clear for NAMs interacting at the extracellular-transmembrane interface where the ion channel mouth might be involved. Interestingly, PAMs and NAMs might be developed as potential medications for the treatment of several diseases involving AChRs, including dementia-, skin-, and immunological-related diseases, drug addiction, and cancer. More exciting is the potential combination of specific agonists with specific PAMs. However, we are still in the beginning of understanding how these compounds act and how these drugs can be used therapeutically.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
43
|
Hénin J, Fiorin G, Chipot C, Klein ML. Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables. J Chem Theory Comput 2009; 6:35-47. [PMID: 26614317 DOI: 10.1021/ct9004432] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new implementation of the adaptive biasing force (ABF) method is described. This implementation supports a wide range of collective variables and can be applied to the computation of multidimensional energy profiles. It is provided to the community as part of a code that implements several analogous methods, including metadynamics. ABF and metadynamics have not previously been tested side by side on identical systems. Here, numerical tests are carried out on processes including conformational changes in model peptides and translocation of a halide ion across a lipid membrane through a peptide nanotube. On the basis of these examples, we discuss similarities and differences between the ABF and metadynamics schemes. Both approaches provide enhanced sampling and free energy profiles in quantitative agreement with each other in different applications. The method of choice depends on the dimension of the reaction coordinate space, the height of the barriers, and the relaxation times of degrees of freedom in the orthogonal space, which are not explicitly described by the chosen collective variables.
Collapse
Affiliation(s)
- Jérome Hénin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Giacomo Fiorin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Christophe Chipot
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| | - Michael L Klein
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, and Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820
| |
Collapse
|
44
|
Liu LT, Willenbring D, Xu Y, Tang P. General anesthetic binding to neuronal alpha4beta2 nicotinic acetylcholine receptor and its effects on global dynamics. J Phys Chem B 2009; 113:12581-9. [PMID: 19697903 DOI: 10.1021/jp9039513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR) is a target for general anesthetics. Currently available experimental structural information is inadequate to understand where anesthetics bind and how they modulate the receptor motions essential to function. Using our published open-channel structure model of alpha4beta2 nAChR, we identified and evaluated six amphiphilic interaction sites for the volatile anesthetic halothane via flexible ligand docking and subsequent 20-ns molecular dynamics simulations. Halothane binding energies ranged from -6.8 to -2.4 kcal/mol. The primary binding sites were located at the interface of extracellular and transmembrane domains, where halothane perturbed conformations of, and widened the gap among, the Cys loop, the beta1-beta2 loop, and the TM2-TM3 linker. The halothane with the highest binding affinity at the interface between the alpha4 and beta2 subunits altered interactions between the protein and nearby lipids by competing for hydrogen bonds. Gaussian network model analyses of the alpha4beta2 nAChR structures at the end of 20-ns simulations in the absence or presence of halothane revealed profound changes in protein residue mobility. The concerted motions critical to protein function were also perturbed considerably. Halothane's effect on protein dynamics was not confined to the residues adjacent to the binding sites, indicating an action on a more global scale.
Collapse
Affiliation(s)
- Lu Tian Liu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
45
|
Law RJ, Lightstone FC. Modeling neuronal nicotinic and GABA receptors: important interface salt-links and protein dynamics. Biophys J 2009; 97:1586-94. [PMID: 19751663 DOI: 10.1016/j.bpj.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 05/21/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022] Open
Abstract
Protein motions in the Cys-loop ligand-gated ion receptors that govern the gating mechanism are still not well understood. The details as to how motions in the ligand-binding domain are translated to the transmembrane domain and how subunit rotations are linked to bring about the cooperative movements involved in gating are under investigation. Homology models of the alpha4beta2 nicotinic acetylcholine (nACh) and beta2alpha1gamma2 GABA receptors were constructed based on the torpedo neuromuscular-like nicotinic receptor structure. The template constructed for the full electron microscopy structure must be considered more reliable for structure-function studies due to the preservation of the E45-R209 salt-link. Many other salt-links are seen to transiently form, including switching off of the E45-R209 link, within a network of potential salt-links at the binding domain to the transmembrane domain interface region. Several potentially important intersubunit salt-links form in both the nAChR and GABAR structures during the simulation and appear conserved across many subunit combinations, such as the salt-link between alpha4.E262 and beta2.K255 in nAChR (beta2.E262 and alpha1.K263 in GABAR), at the top of the pore-lining M2 helices, and the intersubunit link of R210 on the M1-linker to E168 on the beta8-sheet of the adjacent subunit in the GABA receptor (E175-K46 being the structurally equivalent link in the nAChR, with reversed polarity). A network of other salt-links may be vital for transmitting the cooperative gating motions between subunits that become biased upon ligand binding. The changes seen in the simulations suggest that this network of salt-links helps to set limits and specific states for the conformational changes involved in gating of the receptor. We hope that these hypotheses will be tested experimentally in the near future.
Collapse
Affiliation(s)
- Richard J Law
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | |
Collapse
|
46
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
47
|
Wei C, Pohorille A. Permeation of membranes by ribose and its diastereomers. J Am Chem Soc 2009; 131:10237-45. [PMID: 19621967 DOI: 10.1021/ja902531k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It was recently found that ribose permeates membranes an order of magnitude faster than its diastereomers arabinose and xylose (Sacerdote, M. G.; Szostak, J. W. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6004). On this basis it was hypothesized that differences in membrane permeability to aldopentoses provide a mechanism for preferential delivery of ribose to primitive cells for subsequent selective incorporation into nucleotides and their polymers. However, the origins of these unusually large differences have not been well understood. We address this issue in molecular dynamics simulations combined with free energy calculations. It is found that the free energy of transferring ribose from water to the bilayer is lower by 1.5-2 kcal/mol than the barrier for transferring the other two aldopentoses. The calculated and measured permeability coefficients are in excellent agreement. The sugar structures that permeate the membrane are beta-pyranoses, with a possible contribution of the alpha-anomer for arabinose. The furanoid form of ribose is not substantially involved in permeation, even though it is non-negligibly populated in aqueous solution. The differences in free energy of transfer between ribose and arabinose or xylose are attributed, at least in part, to stronger highly cooperative, intramolecular interactions between consecutive exocyclic hydroxyl groups, which are stable in nonpolar media but rare in water. Water/hexadecane partition coefficients of the sugars obtained from separate molecular dynamics simulations correlate with the calculated permeability coefficients, in qualitative agreement with the Overton rule. The relevance of our calculations to understanding the origins of life is discussed.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Mail Stop 229-1, Moffett Field, California 94035, USA
| | | |
Collapse
|
48
|
Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys J 2009; 96:4502-13. [PMID: 19486673 DOI: 10.1016/j.bpj.2009.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human alpha7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | | | | | | | |
Collapse
|
49
|
Selectivity and cooperativity of modulatory ions in a neurotransmitter receptor. Biophys J 2009; 96:1751-60. [PMID: 19254535 DOI: 10.1016/j.bpj.2008.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/13/2008] [Indexed: 02/02/2023] Open
Abstract
Ions play a modulatory role in many proteins. Kainate receptors, members of the ionotropic glutamate receptor family, require both monovalent anions and cations in the extracellular milieu for normal channel activity. Molecular dynamics simulations and extensive relative binding free energy calculations using thermodynamic integration were performed to elucidate the rank order of binding of monovalent cations, using x-ray crystal structures of the GluR5 kainate receptor dimers with bound cations from the alkali metal family. The simulations show good agreement with experiments and reveal that the underlying backbone structure of the binding site is one of the most rigid regions of the protein. A simplified model where the partial charge of coordinating oxygens was varied suggests that selectivity arises from the presence of two carboxylate groups. Furthermore, using a potential of mean force derived from umbrella sampling, we show that the presence of cations lower the energy barrier for anion approach and binding in the buried anion binding cavity.
Collapse
|
50
|
Song C, Corry B. Role of acetylcholine receptor domains in ion selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1466-73. [PMID: 19397891 DOI: 10.1016/j.bbamem.2009.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/09/2009] [Accepted: 04/21/2009] [Indexed: 02/06/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand gated ion channel protein, composed of three domains: a transmembrane domain (TM-domain), extracellular domain (EC-domain), and intracellular domain (IC-domain). Due to its biological importance, much experimental and theoretical research has been carried out to explore its mechanisms of gating and selectivity, but there are still many unresolved issues, especially on the ion selectivity. Moreover, most of the previous theoretical work has concentrated on the TM-domain or EC-domain of nAChR, which may be insufficient to understand the entire structure-function relation. In this work, we perform molecular dynamics, Brownian dynamics simulations and continuum electrostatic calculations to investigate the role of different nAChR domains in ion conduction and selectivity. The results show that although both the EC and IC domains contain strong negative charges that create large cation concentrations at either end of the pore, this alone is not sufficient to create the observed cation selectivity and may play a greater role in determining the channel conductance. The presence of cations in the wide regions of the pore can screen out the protein charge allowing anions to enter, meaning that local regions of the TM-domain are most likely responsible for discriminating between ions. These new results complement our understanding about the ion conduction and selectivity mechanism of nAChR.
Collapse
Affiliation(s)
- Chen Song
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley WA 6009, Australia
| | | |
Collapse
|