1
|
Lu X, McDowell CT, Blaschke CRK, Liu L, Grimsley G, Wisniewski L, Gao C, Mehta AS, Haab BB, Angel PM, Drake RR. Bioorthogonal Chemical Labeling Probes Targeting Sialic Acid Isomers for N-Glycan MALDI Imaging Mass Spectrometry of Tissues, Cells, and Biofluids. Anal Chem 2023; 95:7475-7486. [PMID: 37126482 PMCID: PMC10193362 DOI: 10.1021/acs.analchem.2c04882] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Colin T. McDowell
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Calvin R. K. Blaschke
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Liping Liu
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Grace Grimsley
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Luke Wisniewski
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - ChongFeng Gao
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Anand S. Mehta
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Brian B. Haab
- Department
of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Peggi M. Angel
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| | - Richard R. Drake
- Department
of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425-2503, United
States
| |
Collapse
|
2
|
Recent applications of ionic liquid-based tags in glycoscience. Carbohydr Res 2022; 520:108643. [PMID: 35977445 DOI: 10.1016/j.carres.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The functionalization of glycosides with ionic compounds such as ionic liquids provides enhanced polarity for the labelled glycans thanks to the presence of a permanent positive charge. The chemical derivatisation of glycans with ionic liquids constitutes an emerging strategy to boost the detection sensitivity in MS applications. This allows the straightforward monitoring and detection of the presence of labelled glycans in complex matrices and in those cases where very limited amounts of material were available such as in biological samples and chemoenzymatic reactions. The use of ionic liquid based derivatisation agents can be further exploited for the labelling of live cells via metabolic oligosaccharide engineering for the detection of cancer biomarkers and for the tuning of live cells-surface properties with implications in cancer prognosis and progression. In this mini-review we summarise the latest development of the ionic liquid based derivatisation agents in glycoscience focussing on their use for sensitive MS applications.
Collapse
|
3
|
Savelyeva NY, Shpirt AM, Orlova AV, Chizhov AO, Kononov LO. Synthesis of triazole-linked pseudo-oligosialic acid derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Ghirardello M, Shyam R, Galan MC. Reengineering of cancer cell surface charges can modulate cell migration. Chem Commun (Camb) 2022; 58:5522-5525. [PMID: 35420600 PMCID: PMC9063860 DOI: 10.1039/d2cc00402j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to modulate the cell surface structure provides a powerful tool to understand fundamental processes and also to elicit desired cellular responses. Here we report the development of a new class of ‘clickable labels’ to reengineer the cell surface charges of live cells. The method relies on the use of metabolic oligosaccharide engineering (MOE) combined with chemo selective labeling of cell surface azido-containing sialic acids with dibenzocyclooctyne (DBCO) ionic-probes. Using this strategy, we demonstrate that reducing the negative charge induced by the overexpression of cell surface sialic acids in cancer cells leads to a reduction in cell migration without affecting drug supceptibility. Reducing the negative charges induced by the overexpression of cell surface sialic acids using cationic clickable labels leads to a reduction in cancer cell migration without affecting drug supceptibility.![]()
Collapse
Affiliation(s)
- Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - Radhe Shyam
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, UK.
| |
Collapse
|
5
|
Cheng B, Tang Q, Zhang C, Chen X. Glycan Labeling and Analysis in Cells and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:363-387. [PMID: 34314224 DOI: 10.1146/annurev-anchem-091620-091314] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As one of the major types of biomacromolecules in the cell, glycans play essential functional roles in various biological processes. Compared with proteins and nucleic acids, the analysis of glycans in situ has been more challenging. Herein we review recent advances in the development of methods and strategies for labeling, imaging, and profiling of glycans in cells and in vivo. Cellular glycans can be labeled by affinity-based probes, including lectin and antibody conjugates, direct chemical modification, metabolic glycan labeling, and chemoenzymatic labeling. These methods have been applied to label glycans with fluorophores, which enables the visualization and tracking of glycans in cells, tissues, and living organisms. Alternatively, labeling glycans with affinity tags has enabled the enrichment of glycoproteins for glycoproteomic profiling. Built on the glycan labeling methods, strategies enabling cell-selective and tissue-specific glycan labeling and protein-specific glycan imaging have been developed. With these methods and strategies, researchers are now better poised than ever to dissect the biological function of glycans in physiological or pathological contexts.
Collapse
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021; 60:66-78. [PMID: 33125942 PMCID: PMC7955280 DOI: 10.1016/j.cbpa.2020.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
7
|
Cioce A, Malaker SA, Schumann B. Generating orthogonal glycosyltransferase and nucleotide sugar pairs as next-generation glycobiology tools. Curr Opin Chem Biol 2021. [PMID: 33125942 DOI: 10.1016/jcbpa.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation fundamentally impacts biological processes. Nontemplated biosynthesis introduces unparalleled complexity into glycans that needs tools to understand their roles in physiology. The era of quantitative biology is a great opportunity to unravel these roles, especially by mass spectrometry glycoproteomics. However, with high sensitivity come stringent requirements on tool specificity. Bioorthogonal metabolic labeling reagents have been fundamental to studying the cell surface glycoproteome but typically enter a range of different glycans and are thus of limited specificity. Here, we discuss the generation of metabolic 'precision tools' to study particular subtypes of the glycome. A chemical biology tactic termed bump-and-hole engineering generates mutant glycosyltransferases that specifically accommodate bioorthogonal monosaccharides as an enabling technique of glycobiology. We review the groundbreaking discoveries that have led to applying the tactic in the living cell and the implications in the context of current developments in mass spectrometry glycoproteomics.
Collapse
Affiliation(s)
- Anna Cioce
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom
| | - Stacy A Malaker
- Department of Chemistry, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA; Department of Chemistry, Yale University, 275 Prospect Street, New Haven, CT, 06511, USA.
| | - Benjamin Schumann
- Chemical Glycobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom; Department of Chemistry, Imperial College London, 80 Wood Lane, W12 0BZ, London, United Kingdom.
| |
Collapse
|
8
|
Shajahan A, Supekar NT, Wu H, Wands AM, Bhat G, Kalimurthy A, Matsubara M, Ranzinger R, Kohler JJ, Azadi P. Mass Spectrometric Method for the Unambiguous Profiling of Cellular Dynamic Glycosylation. ACS Chem Biol 2020; 15:2692-2701. [PMID: 32809798 DOI: 10.1021/acschembio.0c00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Various biological processes at the cellular level are regulated by glycosylation which is a highly microheterogeneous post-translational modification (PTM) on proteins and lipids. The dynamic nature of glycosylation can be studied through metabolic incorporation of non-natural sugars into glycan epitopes and their detection using bio-orthogonal probes. However, this approach possesses a significant drawback due to nonspecific background reactions and ambiguity of non-natural sugar metabolism. Here, we report a probe-free strategy for their direct detection by glycoproteomics and glycomics using mass spectrometry (MS). The method dramatically simplifies the detection of non-natural functional group bearing monosaccharides installed through promiscuous sialic acid, N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc) biosynthetic pathways. Multistage enrichment of glycoproteins by cellular fractionation, subsequent ZIC-HILIC (zwitterionic-hydrophilic interaction chromatography) based glycopeptide enrichment, and a spectral enrichment algorithm for the MS data processing enabled direct detection of non-natural monosaccharides that are incorporated at low abundance on the N/O-glycopeptides along with their natural counterparts. Our approach allowed the detection of both natural and non-natural sugar bearing glycopeptides, N- and O-glycopeptides, differentiation of non-natural monosaccharide types on the glycans and also their incorporation efficiency through quantitation. Through this, we could deduce interconversion of monosaccharides during their processing through glycan salvage pathway and subsequent incorporation into glycan chains. The study of glycosylation dynamics through this method can be conducted in high throughput, as few sample processing steps are involved, enabling understanding of glycosylation dynamics under various external stimuli and thereby could bolster the use of metabolic glycan engineering in glycosylation functional studies.
Collapse
Affiliation(s)
- Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Nitin T. Supekar
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ganapati Bhat
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Aravind Kalimurthy
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Masaaki Matsubara
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Rene Ranzinger
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Sun S, Hu Y, Ao M, Shah P, Chen J, Yang W, Jia X, Tian Y, Thomas S, Zhang H. N-GlycositeAtlas: a database resource for mass spectrometry-based human N-linked glycoprotein and glycosylation site mapping. Clin Proteomics 2019; 16:35. [PMID: 31516400 PMCID: PMC6731604 DOI: 10.1186/s12014-019-9254-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N-linked glycoprotein is a highly interesting class of proteins for clinical and biological research. The large-scale characterization of N-linked glycoproteins accomplished by mass spectrometry-based glycoproteomics has provided valuable insights into the interdependence of glycoprotein structure and protein function. However, these studies focused mainly on the analysis of specific sample type, and lack the integration of glycoproteomic data from different tissues, body fluids or cell types. METHODS In this study, we collected the human glycosite-containing peptides identified through their de-glycosylated forms by mass spectrometry from over 100 publications and unpublished datasets generated from our laboratory. A database resource termed N-GlycositeAtlas was created and further used for the distribution analyses of glycoproteins among different human cells, tissues and body fluids. Finally, a web interface of N-GlycositeAtlas was created to maximize the utility and value of the database. RESULTS The N-GlycositeAtlas database contains more than 30,000 glycosite-containing peptides (representing > 14,000 N-glycosylation sites) from more than 7200 N-glycoproteins from different biological sources including human-derived tissues, body fluids and cell lines from over 100 studies. CONCLUSIONS The entire human N-glycoproteome database as well as 22 sub-databases associated with individual tissues or body fluids can be downloaded from the N-GlycositeAtlas website at http://nglycositeatlas.biomarkercenter.org.
Collapse
Affiliation(s)
- Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
- College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Minghui Ao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Jing Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Xingwang Jia
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
10
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
11
|
Wen X, Yuan B, Zhang J, Meng X, Guo Q, Li L, Li Z, Jiang H, Wang K. Enhanced visualization of cell surface glycans via a hybridization chain reaction. Chem Commun (Camb) 2019; 55:6114-6117. [DOI: 10.1039/c9cc02069a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply a DNA hybridization chain reaction (HCR) to achieve sensitively amplified imaging of cell surface glycosylation.
Collapse
Affiliation(s)
- Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Baoyin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Junxun Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Zenghui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Huishan Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
12
|
On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Commun Chem 2018. [DOI: 10.1038/s42004-018-0087-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
14
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Liao CH, Wang YH, Chang WW, Yang BC, Wu TJ, Liu WL, Yu AL, Yu J. Leucine-Rich Repeat Neuronal Protein 1 Regulates Differentiation of Embryonic Stem Cells by Post-Translational Modifications of Pluripotency Factors. Stem Cells 2018; 36:1514-1524. [PMID: 29893054 DOI: 10.1002/stem.2862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/12/2023]
Abstract
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs before differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG, and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG, and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. Stem Cells 2018;36:1514-1524.
Collapse
Affiliation(s)
- Chien-Huang Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Hui Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Wei Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Bei-Chia Yang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wei-Li Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Yuan B, Chen Y, Sun Y, Guo Q, Huang J, Liu J, Meng X, Yang X, Wen X, Li Z, Li L, Wang K. Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET. Anal Chem 2018; 90:6131-6137. [PMID: 29696967 DOI: 10.1021/acs.analchem.8b00424] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.
Collapse
Affiliation(s)
- Baoyin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Yuanyuan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Yuqiong Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Zenghui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering , Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082 , China
| |
Collapse
|
17
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David R. Spiciarich
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Rosalie Nolley
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sophia L. Maund
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Sean C. Purcell
- College of Chemistry; University of California, Berkeley; Berkeley CA 94720 USA
| | - Jason Herschel
- Department of Mathematics; California State University; East Bay Hayward CA 94542 USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility; UC Berkeley; Berkeley CA 94720 USA
| | - Donna M. Peehl
- Department of Urology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Carolyn R. Bertozzi
- Department of Chemistry; Stanford University; Stanford CA 94305-4401 USA
- Howard Hughes Medical Institute; USA
| |
Collapse
|
18
|
Spiciarich DR, Nolley R, Maund SL, Purcell SC, Herschel J, Iavarone AT, Peehl DM, Bertozzi CR. Bioorthogonal Labeling of Human Prostate Cancer Tissue Slice Cultures for Glycoproteomics. Angew Chem Int Ed Engl 2017. [PMID: 28649697 DOI: 10.1002/anie.201701424] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell-surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide-functionalized sialic acid biosynthetic precursor Ac4 ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.
Collapse
Affiliation(s)
- David R Spiciarich
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sophia L Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean C Purcell
- College of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jason Herschel
- Department of Mathematics, California State University, East Bay Hayward, CA, 94542, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, 94720, USA
| | - Donna M Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305-4401, USA.,Howard Hughes Medical Institute, USA
| |
Collapse
|
19
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Li L, Zhang Z. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction. Molecules 2016; 21:E1393. [PMID: 27783053 PMCID: PMC6273301 DOI: 10.3390/molecules21101393] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/24/2022] Open
Abstract
The emergence of bioorthogonal reactions has greatly broadened the scope of biomolecule labeling and detecting. Of all the bioorthogonal reactions that have been developed, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the most widely applied one, mainly because of its relatively fast kinetics and high efficiency. However, the introduction of copper species to in vivo systems raises the issue of potential toxicity. In order to reduce the copper-induced toxicity and further improve the reaction kinetics and efficiency, different strategies have been adopted, including the development of diverse copper chelating ligands to assist the catalytic cycle and the development of chelating azides as reagents. Up to now, the optimization of CuAAC has facilitated its applications in labeling and identifying either specific biomolecule species or on the omics level. Herein, we mainly discuss the efforts in the development of CuAAC to better fit the bioorthogonal reaction criteria and its bioorthogonal applications both in vivo and in vitro.
Collapse
Affiliation(s)
- Li Li
- School of Life Sciences, Peking University, Beijing 100871, China.
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
21
|
Exploring human glycosylation for better therapies. Mol Aspects Med 2016; 51:125-43. [DOI: 10.1016/j.mam.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
|
22
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
23
|
Zhang X, Li R, Chen Y, Zhang S, Wang W, Li F. Applying DNA rolling circle amplification in fluorescence imaging of cell surface glycans labeled by a metabolic method. Chem Sci 2016; 7:6182-6189. [PMID: 30034758 PMCID: PMC6024553 DOI: 10.1039/c6sc02089e] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022] Open
Abstract
Glycans on the cell surfaces are essential for cellular communication. Metabolically labeling glycans can introduce unnatural sugars into cellular glycans, which can facilitate further labeling. We report herein imaging cell surface glycosylation by using click chemistry and DNA rolling circle amplification (RCA) to improve detection sensitivity. Through the RCA amplification, the image resolution of a cell was significantly improved and much fewer unnatural sugars were used than required previously. The advantage of this method is that it avoids introducing too much unnatural sugar, which can interfere with normal, physiological cell function. Simultaneously, the enhanced fluorescence intensity conveniently facilitates the detection of cells' own biosynthetic glycans by simply using a microplate reader. The results indicate that the metabolically labelling ability is different for different carbohydrates and different cells. Next, the RCA technique was adopted in a fluorescence resonance energy transfer (FRET)-based methodology that facilitated the glycan imaging of specific proteins on the cell surface. This method is broadly applicable to imaging the glycosylation of cellular proteins. Our results highlight the applications of RCA in metabolic glycan labeling, which can be used to monitor the glycosylation status on cells, and study the means by which glycosylation regulates cell function.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker , Ministry of Education , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Ruijuan Li
- Key Laboratory of Sensor Analysis of Tumor Marker , Ministry of Education , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yuanyuan Chen
- Key Laboratory of Sensor Analysis of Tumor Marker , Ministry of Education , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers , College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China .
| | - Wenshuang Wang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology , Shandong University , Jinan 250100 , P. R. China .
| | - Fuchuan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology , Shandong University , Jinan 250100 , P. R. China .
| |
Collapse
|
24
|
Benito-Alifonso D, Tremell S, Sadler JC, Berry M, Galan MC. Imidazolium-tagged glycan probes for non-covalent labeling of live cells. Chem Commun (Camb) 2016; 52:4906-9. [DOI: 10.1039/c5cc10040b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use imidazolium tagged-mannosamine derivative for the non-covalent, rapid and site-specific labeling of sialic acid containing glycoproteins using commercial N-nitrilotriacetate fluorescent reagents in a range of live cells is reported.
Collapse
Affiliation(s)
| | | | | | - Monica Berry
- School of Physics
- University of Bristol
- NSQI
- Bristol BS8 1F
- UK
| | | |
Collapse
|
25
|
Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc Natl Acad Sci U S A 2015; 112:13057-62. [PMID: 26438868 DOI: 10.1073/pnas.1516991112] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence and mortality rate of oral cancer continue to rise, partly due to the lack of effective early diagnosis and increasing environmental exposure to cancer-causing agents. To identify new markers for oral cancer, we used a sialylation probe to investigate the glycoproteins differentially expressed on oral cancer cells. Of the glycoproteins identified, B7 Homolog 3 (B7-H3) was significantly overexpressed in oral squamous cell carcinoma (OSCC), and its overexpression correlated with larger tumor size, advanced clinical stage, and low survival rate in OSCC patients. In addition, knockdown of B7-H3 suppressed tumor cell proliferation, and restoration of B7-H3 expression enhanced tumor growth. It was also found that the N-glycans of B7-H3 from Ca9-22 oral cancer cells contain the terminal α-galactose and are more diverse with higher fucosylation and better interaction with DC-SIGN [DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin] and Langerin on immune cells than that from normal cells, suggesting that the glycans on B7-H3 may also play an important role in the disease.
Collapse
|
26
|
Ogura A, Tanaka K. Azaelectrocyclization on cell surface: convenient and general approach to chemical biology research. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
A chemoenzymatic approach toward the preparation of site-specific antibody–drug conjugates. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Identification of sialylated glycoproteins from metabolically oligosaccharide engineered pancreatic cells. Clin Proteomics 2015; 12:11. [PMID: 25987888 PMCID: PMC4434541 DOI: 10.1186/s12014-015-9083-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 03/23/2015] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.
Collapse
|
29
|
Delcourt N, Quevedo C, Nonne C, Fons P, O'Brien D, Loyaux D, Diez M, Autelitano F, Guillemot JC, Ferrara P, Muriana A, Callol C, Hérault JP, Herbert JM, Favre G, Bono F. Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis. J Biol Chem 2015; 290:3405-17. [PMID: 25384978 PMCID: PMC4319010 DOI: 10.1074/jbc.m114.618611] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The formation of new vessels in the tumor, termed angiogenesis, is essential for primary tumor growth and facilitates tumor invasion and metastasis. Hypoxia has been described as one trigger of angiogenesis. Indeed, hypoxia, which is characterized by areas of low oxygen levels, is a hallmark of solid tumors arising from an imbalance between oxygen delivery and consumption. Hypoxic conditions have profound effects on the different components of the tumoral environment. For example, hypoxia is able to activate endothelial cells, leading to angiogenesis but also thereby initiating a cascade of reactions involving neutrophils, smooth muscle cells, and fibroblasts. In addition, hypoxia directly regulates the expression of many genes for which the role and the importance in the tumoral environment remain to be completely elucidated. In this study, we used a method to selectively label sialoglycoproteins to identify new membrane and secreted proteins involved in the adaptative process of endothelial cells by mass spectrometry-based proteomics. We used an in vitro assay under hypoxic condition to observe an increase of protein expression or modifications of glycosylation. Then the function of the identified proteins was assessed in a vasculogenesis assay in vivo by using a morpholino strategy in zebrafish. First, our approach was validated by the identification of sialoglycoproteins such as CD105, neuropilin-1, and CLEC14A, which have already been described as playing key roles in angiogenesis. Second, we identified several new proteins regulated by hypoxia and demonstrated for the first time the pivotal role of GLUT-1, TMEM16F, and SDF4 in angiogenesis.
Collapse
Affiliation(s)
- Nicolas Delcourt
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France, Centre de recherche en Cancérologie de Toulouse, INSERM UMR1037, Université de Toulouse, 20-24 rue du pont Saint-Pierre, 31057 Toulouse, France
| | - Celia Quevedo
- Biobide, S. L., Paseo Mikeletegi 58, 20009 San Sebastián-Donostia, Spain, and BBD-BioPhenix S. L.-Bionaturis group, Paseo Mikeletegi 56, 20009 San Sebastián-Donostia, Spain
| | - Christelle Nonne
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Pierre Fons
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Donogh O'Brien
- Donogh O'Brien BioConsulting, Les Poirioux, 18310 St. Outrille, France
| | - Denis Loyaux
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Maria Diez
- Biobide, S. L., Paseo Mikeletegi 58, 20009 San Sebastián-Donostia, Spain, and
| | - François Autelitano
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | | | - Pascual Ferrara
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Arantza Muriana
- BBD-BioPhenix S. L.-Bionaturis group, Paseo Mikeletegi 56, 20009 San Sebastián-Donostia, Spain
| | - Carlos Callol
- Biobide, S. L., Paseo Mikeletegi 58, 20009 San Sebastián-Donostia, Spain, and
| | - Jean-Pascal Hérault
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Jean-Marc Herbert
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France
| | - Gilles Favre
- Centre de recherche en Cancérologie de Toulouse, INSERM UMR1037, Université de Toulouse, 20-24 rue du pont Saint-Pierre, 31057 Toulouse, France
| | - Françoise Bono
- From Sanofi Research and Development, 195 route d'Espagne, 31000 Toulouse, France,
| |
Collapse
|
30
|
Rouhanifard SH, López-Aguilar A, Wu P. CHoMP: a chemoenzymatic histology method using clickable probes. Chembiochem 2014; 15:2667-73. [PMID: 25403986 DOI: 10.1002/cbic.201402433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/29/2022]
Abstract
The characterization of aberrant glycosylation patterns in biopsied patient samples represents a remarkable challenge for scientists and medical doctors due to the lack of specific methods for detection. Here, we report the development of a histological method, dubbed CHoMP-chemoenzymatic histology of membrane polysaccharides-for analyzing glycosylation patterns in mammalian tissues. This method exploits a recombinant glycosyltransferase to transfer a monosaccharide analogue equipped with a chemical handle to a specific cell-surface glycan target, which can then be derivatized with imaging probes by using bioorthogonal click chemistry for visualization. We applied CHoMP to survey changes in expression of N-acetyllactosamine (LacNAc) in human samples from patients afflicted with lung adenocarcinoma and observed a sharp decrease in expression levels between normal and early grade tumors, thus suggesting a potential application of this technique in early cancer diagnosis.
Collapse
Affiliation(s)
- Sara H Rouhanifard
- Department of Biochemistry, Albert Einstein College of Medicine, Price Center for Genetics and Translational Medicine, 1301 Morris Park Avenue, Room 513, Bronx, NY 10461 (USA)
| | | | | |
Collapse
|
31
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
32
|
Shie JJ, Liu YC, Lee YM, Lim C, Fang JM, Wong CH. An Azido-BODIPY Probe for Glycosylation: Initiation of Strong Fluorescence upon Triazole Formation. J Am Chem Soc 2014; 136:9953-61. [DOI: 10.1021/ja5010174] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiun-Jie Shie
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Chih Liu
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ming Lee
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jim-Min Fang
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Huey Wong
- The
Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
33
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
34
|
Hayashi T, Sun Y, Tamura T, Kuwata K, Song Z, Takaoka Y, Hamachi I. Semisynthetic Lectin–4-Dimethylaminopyridine Conjugates for Labeling and Profiling Glycoproteins on Live Cell Surfaces. J Am Chem Soc 2013; 135:12252-8. [DOI: 10.1021/ja4043214] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takahiro Hayashi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Yedi Sun
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Keiko Kuwata
- Institute of Transformative
Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Zhining Song
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Yousuke Takaoka
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic
Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura,
Kyoto 615-8510, Japan
| |
Collapse
|
35
|
B-cell maturation antigen is modified by a single N-glycan chain that modulates ligand binding and surface retention. Proc Natl Acad Sci U S A 2013; 110:10928-33. [PMID: 23776238 DOI: 10.1073/pnas.1309417110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glycosylation, an important posttranslational modification process, can modulate the structure and function of proteins, but its effect on the properties of plasma cells is largely unknown. In this study, we identified a panel of glycoproteins by click reaction with alkynyl sugar analogs in plasma cells coupled with mass spectrometry analysis. The B-cell maturation antigen (BCMA), an essential membrane protein for maintaining the survival of plasma cells, was identified as a glycoprotein exhibiting complex-type N-glycans at a single N-glycosylation site, asparagine 42. We then investigated the effect of N-glycosylation on the function of BCMA and found that the dexamethasone-induced apoptosis in malignant plasma cells can be rescued by treatment with BCMA ligands, such as a proliferation-inducing ligand (APRIL) and B-cell-activating factor (BAFF), whereas removal of terminal sialic acid on plasma cells further potentiated the ligand-mediated protection. This effect is associated with the increased surface retention of BCMA, leading to its elevated level on cell surface. In addition, the α1-3,-4 fucosylation, but not the terminal sialylation, assists the binding of BCMA with ligands in an in vitro binding assay. Together, our results highlight the importance of N-glycosylation on BCMA in the regulation of ligand binding and functions of plasma cells.
Collapse
|
36
|
Zheng T, Jiang H, Wu P. Single-stranded DNA as a cleavable linker for bioorthogonal click chemistry-based proteomics. Bioconjug Chem 2013; 24:859-64. [PMID: 23627610 DOI: 10.1021/bc400093x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this communication, we report a new class of cleavable linker based on automatically synthesized, single-stranded DNAs. We incorporated a DNA oligo into an azide-functionalized biotin (biotin-DNA-N3) and used the probe to enrich for alkyne-tagged glycoproteins from mammalian cell lysates. Highly efficient and selective release of the captured proteins from streptavidin agarose resins was achieved using DNase treatment under very mild conditions. A total of 36 sialylated glycoproteins were identified from the lysates of HL60 cells, an acute human promyeloid leukemia cell line. These sialylated glycoproteins were involved in many different biological processes ranging from glycan biosynthesis to cell adhesion events.
Collapse
Affiliation(s)
- Tianqing Zheng
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, New York 10461, United States
| | | | | |
Collapse
|
37
|
Gautam S, Gniadek TJ, Kim T, Spiegel DA. Exterior design: strategies for redecorating the bacterial surface with small molecules. Trends Biotechnol 2013; 31:258-67. [PMID: 23490213 DOI: 10.1016/j.tibtech.2013.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 02/02/2023]
Abstract
Recombinant techniques for expressing heterologous proteins and sugars on the surface of bacteria have been known since the 1980s, and have proven useful in a variety of settings from biocatalysis to vaccinology. The past decade has also seen the emergence of novel methods that allow modification of bacterial surfaces with small non-biological compounds. Such technologies enable researchers to harness the unique properties of synthetic materials on a live bacterial platform, opening the door to an exciting new set of applications. Here we review strategies for bacterial surface display and describe how they have been applied thus far. We believe that chemical surface display holds great potential for advancing research in basic bacteriology and applied fields of biotechnology and biomedicine.
Collapse
Affiliation(s)
- Samir Gautam
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
38
|
Ma X, Tang Q, Ke J, Wang H, Zou W, Shao H. A convenient and highly stereoselective method for synthesis of octahydropyrano[3,2-b]pyrrole derivatives. Carbohydr Res 2013; 366:55-62. [DOI: 10.1016/j.carres.2012.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 11/19/2012] [Indexed: 01/07/2023]
|
39
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
40
|
Abstract
Glycosylation is an abundant post-translational modification that alters the fate and function of its substrate proteins. To aid in understanding the significance of protein glycosylation, identification of target proteins is key. As with all proteomics experiments, mass spectrometry has been established as the desired method for substrate identification. However, these approaches require selective enrichment and purification of modified proteins. Chemical reporters in combination with bioorthogonal reactions have emerged as robust tools for identifying post-translational modifications including glycosylation. We provide here a method for the use of bioorthogonal chemical reporters for isolation and identification of glycosylated proteins. More specifically, this protocol is a representative procedure from our own work using an alkyne-bearing O-GlcNAc chemical reporter (GlcNAlk) and a chemically cleavable azido-azo-biotin probe for the identification of O-GlcNAc-modified proteins.
Collapse
Affiliation(s)
- Balyn W Zaro
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | | | |
Collapse
|
41
|
Surface markers in stem cells and cancer from the perspective of glycomic analysis. Int J Biol Markers 2012; 27:e344-52. [PMID: 23250773 DOI: 10.5301/jbm.2012.10361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/20/2022]
Abstract
Most cancers are detected when patients present with symptoms, and at that point the disease is usually quite advanced and often not curable. Therefore, new biomarkers are needed for detection and therapy. The recent success of using monoclonal antibodies against nonprotein gangliosides for the treatment of high-risk neuroblastoma provides an incentive to search for new glycan-targeted immunotherapies for cancer using markers found through glycomic analysis as targets. Since more than 85% of cell surface components are glycosylated, glycomic analysis is useful to probe systematically the cancer cell surface, in search for novel glycoproteins and glycolipids. Furthermore, cancer cells tend to dedifferentiate and express many oncofetoproteins, since human embryonic stem cells (ESCs) are derived from epiblast of embryo, representing the early stage of normal embryonic development before gastrulation. Unique ESC surface markers are likely to be found in cancer cells, but not in normal mature tissues. Moreover, stem cells and cancer cells share several common features in related regulatory mechanisms and signaling pathways. Thus, identification of the cancer stem cells in cancer and definition of the glycoproteomic changes that accompany their transformation are important for the development of strategies for early detection and treatment of cancer.
Collapse
|
42
|
Rouhanifard SH, Nordstrøm LU, Zheng T, Wu P. Chemical probing of glycans in cells and organisms. Chem Soc Rev 2012; 42:4284-96. [PMID: 23257905 DOI: 10.1039/c2cs35416k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Among the four major building blocks of life, glycans play essential roles in numerous physiological and pathological processes. Due to their non-templated biosynthesis, advances towards elucidating the molecular details of glycan functions are relatively slow compared with the pace of protein and nucleic acid research. Over the past 30 years, chemical tools have emerged as powerful allies to genetics and molecular biology in the study of glycans in their native environment. This tutorial review will provide an overview of the recent technological developments in the field, as well as the progress in the application of these techniques to probe glycans in cells and organisms.
Collapse
Affiliation(s)
- Sara H Rouhanifard
- Department of Biochemistry, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
43
|
Ramya TNC, Weerapana E, Cravatt BF, Paulson JC. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans. Glycobiology 2012; 23:211-21. [PMID: 23070960 DOI: 10.1093/glycob/cws144] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of "robust enrichment" afforded by covalent-labeling techniques and "specificity for glycoproteins" typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status.
Collapse
Affiliation(s)
- T N C Ramya
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Pan PW, Zhang Q, Hou J, Liu Z, Bai F, Cao MR, Sun T, Bai G. Cell surface glycoprotein profiling of cancer cells based on bioorthogonal chemistry. Anal Bioanal Chem 2012; 403:1661-70. [DOI: 10.1007/s00216-012-5989-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/09/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023]
|
45
|
Chaubard JL, Krishnamurthy C, Yi W, Smith DF, Hsieh-Wilson LC. Chemoenzymatic probes for detecting and imaging fucose-α(1-2)-galactose glycan biomarkers. J Am Chem Soc 2012; 134:4489-92. [PMID: 22339094 PMCID: PMC3303202 DOI: 10.1021/ja211312u] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Indexed: 12/14/2022]
Abstract
The disaccharide motif fucose-α(1-2)-galactose (Fucα(1-2)Gal) is involved in many important physiological processes, such as learning and memory, inflammation, asthma, and tumorigenesis. However, the size and structural complexity of Fucα(1-2)Gal-containing glycans have posed a significant challenge to their detection. We report a new chemoenzymatic strategy for the rapid, sensitive detection of Fucα(1-2)Gal glycans. We demonstrate that the approach is highly selective for the Fucα(1-2)Gal motif, detects a variety of complex glycans and glycoproteins, and can be used to profile the relative abundance of the motif on live cells, discriminating malignant from normal cells. This approach represents a new potential strategy for biomarker detection and expands the technologies available for understanding the roles of this important class of carbohydrates in physiology and disease.
Collapse
Affiliation(s)
- Jean-Luc Chaubard
- Division of Chemistry and Chemical
Engineering, California Institute of Technology and Howard
Hughes Medical Institute, 1200 East California Boulevard,
Pasadena, California 91125, United States
| | - Chithra Krishnamurthy
- Division of Chemistry and Chemical
Engineering, California Institute of Technology and Howard
Hughes Medical Institute, 1200 East California Boulevard,
Pasadena, California 91125, United States
| | - Wen Yi
- Division of Chemistry and Chemical
Engineering, California Institute of Technology and Howard
Hughes Medical Institute, 1200 East California Boulevard,
Pasadena, California 91125, United States
| | - David F. Smith
- Department of Biochemistry and
the Glycomics Center, Emory University School of Medicine, Atlanta Georgia 30322, United States
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical
Engineering, California Institute of Technology and Howard
Hughes Medical Institute, 1200 East California Boulevard,
Pasadena, California 91125, United States
| |
Collapse
|
46
|
Abstract
The glycome, the full complement of glycans that cells produce, is an attractive target for molecular imaging. Imaging of the glycome in living systems has recently been enabled via bioorthogonal chemical reporter-based approaches. In this chapter, we describe two approaches to introduce bioorthogonal chemical reporters (tags) onto cell surface fucosylated glycans and glycans bearing LacNAc disaccharides, respectively. The tagged glycans can then be conjugated to imaging probes via bioorthogonal click chemistry. Similar approaches can be extended to image other sectors of the glycome in living systems.
Collapse
Affiliation(s)
- Boyangzi Li
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | | | | |
Collapse
|
47
|
Zheng T, Rouhanifard SH, Jalloh AS, Wu P. Click Triazoles for Bioconjugation. TOPICS IN HETEROCYCLIC CHEMISTRY 2012; 28:163-183. [PMID: 25431628 PMCID: PMC4243930 DOI: 10.1007/7081_2011_72] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Click Chemistry is a set of rapid, selective and robust reactions that give near-quantitative yield of the desired product in aqueous solutions. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) that forms 1,4-disubstituted triazoles is a prototypical example of click chemistry that features exquisite selectivity and bioorthogonality-that is, non-interacting with biological components while proceeding under physiological conditions. Over the past ten years, CuAAC has found extensive applications in the field of chemical biology. In this chapter, we describe the discovery of Cu(I) catalysts for this transformation and the recent development of the strain-promoted azide-alkyne cycloaddition that eliminate the use of copper. We also highlight several recent applications toward conjugating biomolecules, including proteins, nucleic acids, lipids and glycans, with biophysical probes for both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Tianqing Zheng
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Sara H. Rouhanifard
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Abubakar S. Jalloh
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
48
|
Koopmans T, Dekker FJ, Martin NI. A photocleavable affinity tag for the enrichment of alkyne-modified biomolecules. RSC Adv 2012. [DOI: 10.1039/c2ra20082a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Tanaka K, Yokoi S, Morimoto K, Iwata T, Nakamoto Y, Nakayama K, Koyama K, Fujiwara T, Fukase K. Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling. Bioorg Med Chem 2011; 20:1865-8. [PMID: 22257530 DOI: 10.1016/j.bmc.2011.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
Versatile method for living cell labeling has been established. Cell surfaces are initially biotinylated by azaelectrocyclization, and then treated with the fluorescence-labeled avidin or the anti-biotin antibody.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu TW, Kaji H, Togayachi A, Ito H, Sato T, Narimatsu H. A chemoenzymatic approach toward the identification of fucosylated glycoproteins and mapping of N-glycan sites. Glycobiology 2011; 22:630-7. [PMID: 22203233 DOI: 10.1093/glycob/cwr189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fucose (Fuc)-containing glycoconjugates play important roles in numerous physiological and pathological processes. Given the biological importance of post-translational glycosylation, a specific and robust strategy for the identification of fucosylated glycoproteins is highly desirable. In this study, we demonstrate an alternative way of labeling of fucosylated structures by metabolic engineering, using a chemoenzymatic approach. In this approach, the activities of Bacteroides fragilis 9343 L-fucokinase/guanosine-5'-diphosphate-Fuc pyrophosphorylase and human α1,3-fucosyltransferase 9 are combined in a Namalwa cellular model. Interestingly, this system could be applied to labeling of alkyne-modified fucosylated glycoproteins. N-Glycan site mapping and identification were done using an in vitro selective chemical ligation reaction and isotope-coded glycosylation site-specific tagging, subsequent to liquid chromatography-tandem mass spectrometry analysis. This work illustrates the use of a click chemistry-based strategy combined with a glycoproteomic technique to get further insight into the pattern of Fuc-mediated biological processes and functions.
Collapse
Affiliation(s)
- Ta-Wei Liu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2 OSL, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | |
Collapse
|