1
|
Gholam S, Hadermann J. The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction. Ultramicroscopy 2024; 266:114022. [PMID: 39154615 DOI: 10.1016/j.ultramic.2024.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). It was observed that, in the integration process, Rint increases as the beam energy is reduced, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently ignore inelastic scattering effects.
Collapse
Affiliation(s)
- Saleh Gholam
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Joke Hadermann
- EMAT, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| |
Collapse
|
2
|
Yadav S, Deshmukh V, Tiwari S, Rawat R, Sathe V, Singh K. Effect of Sr substitution on the structural, dielectric and ferroelectric property of BaTiO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:495403. [PMID: 39191276 DOI: 10.1088/1361-648x/ad7435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
We have performed a comprehensive study to explore the effect of Sr substitution on the structural and ferroelectric properties of BaTiO3(BTO) with compositions Ba1-xSrxTiO3for 0 ⩽x⩽ 1. The room temperature structural investigation inferred that the samples with compositionsx> 0.30 has cubic phase instead of tetragonal as for pristine BTO. The temperature dependent dielectric studies illustrate that all well-known three structural phase transitions of BTO are coming closer to each other and the cubic phase is shifted towards lower temperature with increasing Sr content. The frequency dependent dielectric measurements show that there exists the mesoscopic subdomain, whose relaxation time decreases with increasing Sr concentration. The Sr substitution enhanced the ferroelectric properties and maximum remnant polarization at room temperature is observed for 20% Sr substituted sample. The frequency dependent dielectric measurements illustrate the relaxation which could be due to the mesoscopic subdomain, and its relaxation time decreases with increasing Sr concentration. The frequency dependentP-Emeasurements at room temperature infer that for 30% Sr substituted sample, the ferroelectric domain switching is dominated by the rate of nucleation whereas in other compositions forx< 0.3, it is governed by the domain wall speed. The Raman measurements infer the rearrangement of the domain configuration with Sr substitution. Modification in the intensity of the E(TO4) and A(TO3) Raman modes with electric field is also observed for 30% Sr substituted sample and the origin of this is also discussed.
Collapse
Affiliation(s)
- Satish Yadav
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| | - Vaidehi Deshmukh
- Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India
| | - Shivendra Tiwari
- School of Physics, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India
| | - R Rawat
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| | - Vasant Sathe
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| | - Kiran Singh
- Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India
| |
Collapse
|
3
|
Kanayama K, Toyoura K. First-principles study of non-linear thermal expansion in cadmium titanate by molecular dynamics incorporating nuclear quantum effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:445404. [PMID: 39074498 DOI: 10.1088/1361-648x/ad68b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/28/2024] [Indexed: 07/31/2024]
Abstract
First-principles molecular dynamics (FPMD) simulations were applied for analyzing structural evolutions around the paraelectric-ferroelectric phase transition temperature in the perovskite-type cadmium titanate, CdTiO3. Since the phase transition is reported to occur at the low temperature around 80 K, the quantum thermal bath (QTB) method was utilized in this study, which incorporates the nuclear quantum effects (NQEs). The structural evolutions in the QTB-FPMD simulations are in reasonable agreement with the experimental results, by contrast in the conventional FPMD simulations using the classical thermal bath (CTB-FPMD). Especially, the non-linear thermal expansion of lattice constants around the phase transition temperature was well reproduced in the QTB-FPMD with the NQEs. Thus, the NQEs are of importance in phase transitions at low temperatures, particularly below the room temperature, and the QTB is useful in that it incorporates the NQEs in MD simulations with low computational costs comparable to the conventional CTB.
Collapse
Affiliation(s)
- Kansei Kanayama
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuaki Toyoura
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Sha T, Zhang X, Zhou R, Du G, Xiong Y, Pan Q, Yao J, Feng Z, Gao X, You Y. Organic-Inorganic Hybrid Perovskite Ferroelectric Nanosheets Synthesized by a Room-Temperature Antisolvent Method. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400636. [PMID: 38778554 PMCID: PMC11304249 DOI: 10.1002/advs.202400636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Over the past years, the application potential of ferroelectric nanomaterials with unique physical properties for modern electronics is highlighted to a large extent. However, it is relatively challenging to fabricate inorganic ferroelectric nanomaterials, which is a process depending on a vacuum atmosphere at high temperatures. As significant complements to inorganic ferroelectric nanomaterials, the nanomaterials of molecular ferroelectrics are rarely reported. Here a low-cost room-temperature antisolvent method is used to synthesize free-standing 2D organic-inorganic hybrid perovskite (OIHP) ferroelectric nanosheets (NSs), that is, (CHA)2PbBr4 NSs (CHA = cyclohexylammonium), with an average lateral size of 357.59 nm and a thickness ranging from 10 to 70 nm. This method shows high repeatability and produces NSs with excellent crystallinity. Moreover, ferroelectric domains in single NSs can be clearly visualized and manipulated using piezoresponse force microscopy (PFM). The domain switching and PFM-switching spectroscopy indicate the robust in-plane ferroelectricity of the NSs. This work not only introduces a feasible, low-cost, and scalable method for preparing molecular ferroelectric NSs but also promotes the research on molecular ferroelectric nanomaterials.
Collapse
Affiliation(s)
- Tai‐Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Chen Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Ru‐Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Guo‐Wei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Yu‐An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Zi‐Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| | - Xing‐Sen Gao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and Institute for Advanced MaterialsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Yu‐Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular FerroelectricsSoutheast UniversityNanjing211189P. R. China
| |
Collapse
|
5
|
Muraleedharan AK, Co K, Vallet M, Zaki A, Karolak F, Bogicevic C, Perronet K, Dkhil B, Paillard C, Fiorini-Debuisschert C, Treussart F. Ferroelectric Texture of Individual Barium Titanate Nanocrystals. ACS NANO 2024; 18:18355-18367. [PMID: 38952163 DOI: 10.1021/acsnano.4c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.
Collapse
Affiliation(s)
- Athulya K Muraleedharan
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Kevin Co
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Maxime Vallet
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Abdelali Zaki
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Fabienne Karolak
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Christine Bogicevic
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Karen Perronet
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Brahim Dkhil
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Charles Paillard
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
- Smart Ferroic Materials Center, Institute for Nanoscience & Engineering and Department of Physics, University of Arkansas, Fayetteville, 72701 Arkansas, United States
| | | | - François Treussart
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Shen B, Zhang JH, Liu Y, Ma J, Li Y, Hao X, Zhang R. Enhanced Absolute Recovered Energy under Low Electric Field in All-Inorganic 0-3 Nanocomposition Thick Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309486. [PMID: 38174606 DOI: 10.1002/smll.202309486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Inorganic thick-film dielectric capacitors with ultrahigh absolute recovered energy at low electric fields are extremely desired for their wide application in pulsed power systems. However, a long-standing technological bottleneck exists between high absolute energy and large recovered energy density. A new strategy is offered to fabricate selected all-inorganic 0-3 composite thick films up to 10 µm by a modified sol-slurry method. Here, the ceramic powder is dispersed into the sol-gel matrix to form a uniform suspension, assisted by powder, therefore, the 2 µm-thickness after single layer spin coating. To enhance the energy-storage performances, the composites process is thoroughly optimized by ultrafine powder (<50 nm) technique based on a low-cost coprecipitation method instead of the solid-state and sol-gel methods. 0D coprecipitation powder has a similar dielectric constant to the corresponding 3D films, thus uneven electrical field distributions is overcome. Moreover, the increase of interfacial polarization is realized due to the larger specific surface area. A maximum recoverable energy density of 14.62 J cm-3 is obtained in coprecipitation thick films ≈2.2 times that of the solid-state powder and ≈1.3 times for sol-gel powder. This study provides a new paradigm for further guiding the design of composite materials.
Collapse
Affiliation(s)
- Bingzhong Shen
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jia-Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yang Liu
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Jinpeng Ma
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Yong Li
- Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, P. R. China
| | - Xihong Hao
- Inner Mongolia Key Laboratory of Ferroelectric-Related New Energy Materials and Devices, Inner Mongolia University of Science and Technology, Baotou, 014010, P. R. China
| | - Rui Zhang
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, P. R. China
| |
Collapse
|
7
|
Jeong C, Lee J, Jo H, Oh J, Baik H, Go KJ, Son J, Choi SY, Prosandeev S, Bellaiche L, Yang Y. Revealing the three-dimensional arrangement of polar topology in nanoparticles. Nat Commun 2024; 15:3887. [PMID: 38719801 PMCID: PMC11078976 DOI: 10.1038/s41467-024-48082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
In the early 2000s, low dimensional ferroelectric systems were predicted to have topologically nontrivial polar structures, such as vortices or skyrmions, depending on mechanical or electrical boundary conditions. A few variants of these structures have been experimentally observed in thin film model systems, where they are engineered by balancing electrostatic charge and elastic distortion energies. However, the measurement and classification of topological textures for general ferroelectric nanostructures have remained elusive, as it requires mapping the local polarization at the atomic scale in three dimensions. Here we unveil topological polar structures in ferroelectric BaTiO3 nanoparticles via atomic electron tomography, which enables us to reconstruct the full three-dimensional arrangement of cation atoms at an individual atom level. Our three-dimensional polarization maps reveal clear topological orderings, along with evidence of size-dependent topological transitions from a single vortex structure to multiple vortices, consistent with theoretical predictions. The discovery of the predicted topological polar ordering in nanoscale ferroelectrics, independent of epitaxial strain, widens the research perspective and offers potential for practical applications utilizing contact-free switchable toroidal moments.
Collapse
Affiliation(s)
- Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyesung Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewhan Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junwoo Son
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Sergey Prosandeev
- Smart Ferroic Materials Center (SFMC), Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Laurent Bellaiche
- Smart Ferroic Materials Center (SFMC), Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Semiconductor Technology, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Lombardi J, Yang L, Farahmand N, Ruffino A, Younes A, Spanier JE, Billinge SJL, O'Brien S. Structure and phase transitions in niobium and tantalum derived nanoscale transition metal perovskites, Ba(Ti,MV)O3, M=Nb,Ta. J Chem Phys 2024; 160:134702. [PMID: 38573849 DOI: 10.1063/5.0192488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
The prospect of creating ferroelectric or high permittivity nanomaterials provides motivation for investigating complex transition metal oxides of the form Ba(Ti, MV)O3, where M = Nb or Ta. Solid state processing typically produces mixtures of crystalline phases, rarely beyond minimally doped Nb/Ta. Using a modified sol-gel method, we prepared single phase nanocrystals of Ba(Ti, M)O3. Compositional and elemental analysis puts the empirical formulas close to BaTi0.5Nb0.5O3-δ and BaTi0.5Ta0.5O3-δ. For both materials, a reversible temperature dependent phase transition (non-centrosymmetric to symmetric) is observed in the Raman spectrum in the region 533-583 K (260-310 °C); for Ba(Ti, Nb)O3, the onset is at 543 K (270 °C); and for Ba(Ti, Ta)O3, the onset is at 533 K (260 °C), which are comparable with 390-393 K (117-120 °C) for bulk BaTiO3. The crystal structure was resolved by examination of the powder x-ray diffraction and atomic pair distribution function (PDF) analysis of synchrotron total scattering data. It was postulated whether the structure adopted at the nanoscale was single or double perovskite. Double perovskites (A2B'B″O6) are characterized by the type and extent of cation ordering, which gives rise to higher symmetry crystal structures. PDF analysis was used to examine all likely candidate structures and to look for evidence of higher symmetry. The feasible phase space that evolves includes the ordered double perovskite structure Ba2(Ti, MV)O6 (M = Nb, Ta) Fm-3m, a disordered cubic structure, as a suitable high temperature analog, Ba(Ti, MV)O3Pm-3m, and an orthorhombic Ba(Ti, MV)O3Amm2, a room temperature structure that presents an unusually high level of lattice displacement, possibly due to octahedral tilting, and indication of a highly polarized crystal.
Collapse
Affiliation(s)
- Julien Lombardi
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, New York 10031, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10016, USA
| | - Long Yang
- School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Nasim Farahmand
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, New York 10031, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10016, USA
| | - Anthony Ruffino
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ali Younes
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave., New York, New York 10065, USA
| | - Jonathan E Spanier
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Simon J L Billinge
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 West 120th Street, New York, New York 10027, USA
| | - Stephen O'Brien
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, New York 10031, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center, The City University of New York, New York, New York 10016, USA
| |
Collapse
|
9
|
Hwang J, Goh Y, Jeon S. Physics, Structures, and Applications of Fluorite-Structured Ferroelectric Tunnel Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305271. [PMID: 37863823 DOI: 10.1002/smll.202305271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/11/2023] [Indexed: 10/22/2023]
Abstract
The interest in ferroelectric tunnel junctions (FTJ) has been revitalized by the discovery of ferroelectricity in fluorite-structured oxides such as HfO2 and ZrO2 . In terms of thickness scaling, CMOS compatibility, and 3D integration, these fluorite-structured FTJs provide a number of benefits over conventional perovskite-based FTJs. Here, recent developments involving all FTJ devices with fluorite structures are examined. The transport mechanism of fluorite-structured FTJs is explored and contrasted with perovskite-based FTJs and other 2-terminal resistive switching devices starting with the operation principle and essential parameters of the tunneling electroresistance effect. The applications of FTJs, such as neuromorphic devices, logic-in-memory, and physically unclonable function, are then discussed, along with several structural approaches to fluorite-structure FTJs. Finally, the materials and device integration difficulties related to fluorite-structure FTJ devices are reviewed. The purpose of this review is to outline the theories, physics, fabrication processes, applications, and current difficulties associated with fluorite-structure FTJs while also describing potential future possibilities for optimization.
Collapse
Affiliation(s)
- Junghyeon Hwang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Youngin Goh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
10
|
Li Q, Allahyarov E, Ju T, Lin Z, Zhu L. Nonlinear ferroelectric characteristics of barium titanate nanocrystals determined via a polymer nanocomposite approach. NANOSCALE 2024; 16:3606-3621. [PMID: 38270516 DOI: 10.1039/d3nr05185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The growing demand for high energy storage materials has garnered substantial attention towards lead-free ferroelectric nanocrystals (NCs), such as BaTiO3 (BTO), for next-generation multilayer ceramic capacitors. Notably, it remains challenging to accurately measure the dielectric constant and polarization-electric field (P-E) hysteresis loop for BTO NCs. Herein, we report on nonlinear ferroelectric characteristics of BTO NCs via a polymer nanocomposite approach. Specifically, poly(vinyl pyrrolidone) (PVP)/BTO nanocomposite films of 3-10 μm thickness, containing 380 nm tetragonal-phased and 60 nm cubic-phased BTO NCs with uniform particle dispersion, were prepared. Theoretical deconvolution of the broad experimental P-E loops of the PVP/BTO NC composite films revealed three contributions, that is, the linear deformational polarization of the nanocomposites, the polarization of BTO NCs (Pp), and the polarization from strong particle-particle interactions. Using different mixing rules and nonlinear dielectric analysis, the overall dielectric constants of BTO NCs were obtained, from which the internal field in the BTO NCs (Ep) was estimated. Consequently, the Pp-Ep hysteresis loops were obtained for the BTO380 and BTO60 NCs. Interestingly, BTO380 exhibited square-shaped ferroelectric loops, whereas BTO60 displayed slim paraelectric loops. This work presents a robust and versatile route to extract the Pp-Ep loops of ferroelectric NCs from polymer/ceramic nanocomposites.
Collapse
Affiliation(s)
- Qiong Li
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Elshad Allahyarov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
- Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN), 13/19 Izhorskaya Street, Moscow 125412, Russia
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, USA
| | - Tianxiong Ju
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
11
|
Zhilyaev P, Brekhov K, Mishina E, Tantardini C. Ultrafast Polarization Switching in BaTiO 3 Nanomaterials: Combined Density Functional Theory and Coupled Oscillator Study. ACS OMEGA 2024; 9:4594-4599. [PMID: 38313501 PMCID: PMC10831999 DOI: 10.1021/acsomega.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
The challenge of achieving ultrafast switching of electric polarization in ferroelectric materials remains unsolved as there is no experimental evidence of such switching to date. In this study, we developed an enhanced model that describes switching within a two-dimensional space of generalized coordinates at THz pulses. Our findings indicate that stable switching in barium titanate cannot be achieved through a single linearly polarized pulse. When the intensity of the linearly polarized pulse reaches a certain threshold, the sample experiences depolarization but not stable switching. Our study also reveals that phonon friction plays a minor role in the switching dynamics and provides an estimate of the optimal parameters for the perturbing pulse with the lowest intensity that results in the depolarization of an initially polarized sample.
Collapse
Affiliation(s)
- Petr Zhilyaev
- MIREA—Russian
Technological University, Vernadsky Avenue 78, Moscow 119454, Russia
| | - Kirill Brekhov
- MIREA—Russian
Technological University, Vernadsky Avenue 78, Moscow 119454, Russia
| | - Elena Mishina
- MIREA—Russian
Technological University, Vernadsky Avenue 78, Moscow 119454, Russia
| | - Christian Tantardini
- Hylleraas
Center, UiT the Arctic University of Norway, P.O. Box 6050 Langnes, Tromsø N-9037, Norway
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States of America
- Institute
of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128, Russian Federation
| |
Collapse
|
12
|
Huang ZX, Li LW, Huang YZ, Rao WX, Jiang HW, Wang J, Zhang HH, He HZ, Qu JP. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat Commun 2024; 15:819. [PMID: 38280902 PMCID: PMC10821934 DOI: 10.1038/s41467-024-45184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Lightweight flexible piezoelectric polymers are demanded for various applications. However, the low instinctively piezoelectric coefficient (i.e. d33) and complex poling process greatly resist their applications. Herein, we show that introducing dynamic pressure during fabrication is capable for poling polyvinylidene difluoride/barium titanate (PVDF/BTO) composites with d33 of ~51.20 pC/N at low density of ~0.64 g/cm3. The melt-state dynamic pressure driven energy implantation induces structure evolutions of both PVDF and BTO are demonstrated as reasons for self-poling. Then, the porous material is employed as pressure sensor with a high output of ~20.0 V and sensitivity of ~132.87 mV/kPa. Besides, the energy harvesting experiment suggests power density of ~58.7 mW/m2 can be achieved for 10 N pressure with a long-term durability. In summary, we not only provide a high performance lightweight, flexible piezoelectric polymer composite towards sustainable self-powered sensing and energy harvesting, but also pave an avenue for electrical-free fabrication of piezoelectric polymers.
Collapse
Affiliation(s)
- Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China.
| | - Lan-Wei Li
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Yun-Zhi Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Wen-Xu Rao
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Hao-Wei Jiang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jin Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Huan-Huan Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - He-Zhi He
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, 510641, Guangzhou, China.
| |
Collapse
|
13
|
Sood A, Singhmar R, Sahoo S, Lee D, Kim CM, Kumar A, Han SS. Physicochemical, electrochemical, and biological characterization of field assisted gold nanocluster-coated barium titanate nanoparticles for biomedical applications. J Mater Chem B 2024; 12:525-539. [PMID: 38113029 DOI: 10.1039/d3tb01928d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Fluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Ritu Singhmar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Dahae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do, South Korea.
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
14
|
Xue K, Jiang Y, Mofarah SS, Doustkhah E, Zhou S, Zheng X, Huang S, Wang D, Sorrell CC, Koshy P. Composition-driven morphological evolution of BaTiO 3 nanowires for efficient piezocatalytic hydrogen production. CHEMOSPHERE 2023; 338:139337. [PMID: 37442379 DOI: 10.1016/j.chemosphere.2023.139337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Hydrogen production from water by piezocatalysis is very attractive owing to its high energy efficiency and novelty. BaTiO3, a highly piezoelectric material, is particularly suitable for this application due to its high piezoelectric potential, non-toxic nature, and physicochemical stability. Owing to the critical role of morphology on properties, one-dimensional (1D) materials are expected to exhibit superior water-splitting performance and thus there is a need to optimise the processing conditions to develop outstanding piezocatalysts. In the present work, piezoelectric BaTiO3 nanowires (NWs) were hydrothermally synthesised with precursor Ba:Ti molar ratios of 1:1, 2:1, and 4:1. The morphology, defect chemistry, and hydrogen evolution reaction (HER) efficiency of the as-synthesised BaTiO3 NWs were systematically investigated. The results showed that the morphological features, aspect ratio, structural stability and defect contents of the 1D morphologies collectively have a significant impact on the HER efficiency. The morphological evolution mechanism of the 1D structures were described in terms of ion exchange and dissolution-growth processes of template-grown BaTiO3 NWs for different Ba:Ti molar ratios. Notably, the BaTiO3 NWs synthesised with Ba:Ti molar ratio of 2:1 displayed high crystallinity, good defect concentrations, and good structural integrity under ultrasonication, resulting in an outstanding HER efficiency of 149.24 μmol h-1g-1 which is the highest obtained for nanowire morphologies. These results highlight the importance of synthesis conditions for BaTiO3 NWs for generating excellent piezocatalytic water splitting performance. Additionally, post-ultrasonication tested BaTiO3 NWs demonstrated unexpected photocatalytic activity, with the BTO-1 sample (1:1 Ba:Ti) exhibiting 56% photodegradation of RhB in 2 h of UV irradiation.
Collapse
Affiliation(s)
- Kaili Xue
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Yue Jiang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Esmail Doustkhah
- Koç University Tüpraş Energy Center (KUTEM), 34450, Istanbul, Turkey
| | - Shujie Zhou
- Particles and Catalysis Research Group, School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Suchen Huang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
15
|
Safaruddin AS, Bermundo JPS, Wu C, Uenuma M, Yamamoto A, Kimura M, Uraoka Y. High- k Solution-Processed Barium Titanate/Polysiloxane Nanocomposite for Low-Temperature Ferroelectric Thin-Film Transistors. ACS OMEGA 2023; 8:29939-29948. [PMID: 37636973 PMCID: PMC10448671 DOI: 10.1021/acsomega.2c08142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Ferroelectric nanoparticles have attracted much attention for numerous electronic applications owing to their nanoscale structure and size-dependent behavior. Barium titanate (BTO) nanoparticles with two different sizes (20 and 100 nm) were synthesized and mixed with a polysiloxane (PSX) polymer forming a nanocomposite solution for high-k nanodielectric films. Transition from the ferroelectric to paraelectric phase of BTO with different nanoparticle dimensions was evaluated through variable-temperature X-ray diffraction measurement accompanied by electrical analysis using capacitor structures. A symmetric single 200 peak was constantly detected at different measurement temperatures for the 20 nm BTO sample, marking a stable cubic crystal structure. 100 nm BTO on the other hand shows splitting of 200/002 peaks correlating to a tetragonal crystal form which further merged, thus forming a single 200 peak at higher temperatures. Smaller BTO dimension exhibits clockwise hysteresis in capacitance-voltage measurement and correlates to a cubic crystal structure which possesses paraelectric properties. Bigger BTO dimension in contrast, demonstrates counterclockwise hysteresis owing to their tetragonal crystal form. Through further Rietveld refinement analysis, we found that the tetragonality (c/a) of 100 nm BTO decreases at a higher temperature which narrows the hysteresis window. A wider hysteresis window was observed when utilizing 100 nm BTO compared to 20 nm BTO even at a lower loading ratio. The present findings imply different hysteresis mechanisms for BTO nanoparticles with varying dimensions which is crucial in understanding the role of how the BTO size tunes the crystal structures for integration in thin-film transistor devices.
Collapse
Affiliation(s)
- Aimi Syairah Safaruddin
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Juan Paolo S. Bermundo
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Chuanjun Wu
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Mutsunori Uenuma
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| | - Atsuko Yamamoto
- Display
Solutions Patterning Materials, Merck Electronics
Ltd., Shizuoka 437-1412, Japan
| | - Mutsumi Kimura
- Department
of Electronics and Informatics, Ryukoku
University, Seta 520-2194, Japan
| | - Yukiharu Uraoka
- Division
of Materials Science, Nara Institute of
Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
16
|
Sapkota B, Ogut S, Klie RF. Nanoscale Electron Energy Loss Spectroscopy (EELS) Study of Phase Transition in Barium Titanate (BaTiO3). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1676-1677. [PMID: 37613811 DOI: 10.1093/micmic/ozad067.862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Bibash Sapkota
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| | - Serdar Ogut
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| | - Robert F Klie
- University of Illinois Chicago, Department of Physics, Chicago, IL, United States
| |
Collapse
|
17
|
Jiang B, Neu J, Olds D, Kimber SAJ, Page K, Siegrist T. The curious case of the structural phase transition in SnSe insights from neutron total scattering. Nat Commun 2023; 14:3211. [PMID: 37270591 DOI: 10.1038/s41467-023-38454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 06/05/2023] Open
Abstract
At elevated temperatures SnSe is reported to undergo a structural transition from the low symmetry orthorhombic GeS-type to a higher symmetry orthorhombic TlI-type. Although increasing symmetry should likewise increase lattice thermal conductivity, many experiments on single crystals and polycrystalline materials indicate that this is not the case. Here we present temperature dependent analysis of time-of-flight (TOF) neutron total scattering data in combination with theoretical modeling to probe the local to long-range evolution of the structure. We report that while SnSe is well characterized on average within the high symmetry space group above the transition, over length scales of a few unit cells SnSe remains better characterized in the low symmetry GeS-type space group. Our finding from robust modeling provides further insight into the curious case of a dynamic order-disorder phase transition in SnSe, a model consistent with the soft-phonon picture of the high thermoelectric power above the phase transition.
Collapse
Affiliation(s)
- Bo Jiang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer Neu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
- Dept. of Physics 77 Chieftain Way, Florida State University, Tallahassee, FL, 32306-4350, USA
- Dept. of Chemistry & Biochemistry 95 Chieftain Way 118 DLC, Florida State University, Tallahassee, FL, 32306-4390, USA
- Oak Ridge National Laboratory, Nuclear Nonproliferation Division, Oak Ridge, TN, 37831, USA
| | - Daniel Olds
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Simon A J Kimber
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 avenue Alain Savary, BP 47870, F-21078, Dijon Cedex, France
| | - Katharine Page
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Theo Siegrist
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA.
| |
Collapse
|
18
|
Li Q, Ju T, Li R, Wang S, Yang Y, Ishida H, Harn YW, Chen J, Hirt B, Sehirlioglu A, Lin Z, Zhu L. Investigation into the crystal structure-dielectric property correlation in barium titanate nanocrystals of different sizes. NANOSCALE 2023; 15:7829-7844. [PMID: 37057395 DOI: 10.1039/d3nr00350g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For high capacitance multilayer ceramic capacitors, high dielectric constant and lead-free ceramic nanoparticles are highly desired. However, as the particle size decreases to a few tens of nanometers, their dielectric constant significantly decreases, and the underlying mechanism has yet to be fully elucidated. Herein, we report a systematic investigation into the crystal structure-dielectric property relationship of combustion-made BaTiO3 (BTO) nanocrystals. When the nanocrystal size was 100 nm and below, a metastable paraelectric cubic phase was found in the as-received BTO (denoted as arBTO) nanocrystals based on an X-ray diffraction (XRD) study. A stable ferroelectric tetragonal phase was present when the nanocrystal size was above 200 nm. Notably, the cubic arBTO (particle size ≤100 nm) exhibited tetragonal fluctuations as revealed by Raman spectroscopy, whereas the tetragonal arBTO (particle size ≥200 nm) contained ∼10% cubic fraction according to the Rietveld fitting of the XRD profiles. Thermal annealing of the multi-grain tetragonal arBTO at 950 °C yielded single crystals of annealed BTO (denoted as anBTO), whose dielectric constants were higher than those of arBTO. However, the single crystalline anBTO prevented the formation of 90° domains; therefore, they exhibited a low dielectric constant of ∼300. Although X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy could not identify the exact structural defects, our study revealed that surface and bulk defects formed during synthesis affect the final crystal structures and thus the dielectric properties of BTO nanocrystals with different sizes. The understanding obtained from this study will help us design high dielectric constant perovskite nanocrystals for next-generation multilayer ceramic capacitor applications.
Collapse
Affiliation(s)
- Qiong Li
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Tianxiong Ju
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Shuang Wang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hatsuo Ishida
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Yeu-Wei Harn
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Benjamin Hirt
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Alp Sehirlioglu
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
19
|
Zhang S, Fei T, Cheng T, Yang JY, Liu L. Temperature-dependent UV-Vis dielectric functions of BaTiO 3 across ferroelectric-paraelectric phase transition. OPTICS EXPRESS 2023; 31:12357-12366. [PMID: 37157397 DOI: 10.1364/oe.486729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ferroelectric BaTiO3 with an electric-field-switchable spontaneous polarization has attracted wide attention in photovoltaic applications due to its efficient charge separation for photoexcitation. The evolution of its optical properties with rising temperature especially across the ferroelectric-paraelectric phase transition is critical to peer into the fundamental photoexcitation process. Herein, by combining spectroscopic ellipsometry measurements with first-principles calculations, we obtain the UV-Vis dielectric functions of perovskite BaTiO3 at temperatures varying from 300 to 873 K and provide the atomistic insights into the temperature-driven ferroelectric-paraelectric (tetragonal-cubic) structural evolution. The main adsorption peak in dielectric function of BaTiO3 is reduced by 20.6% in magnitude and redshifted as temperature increases. The Urbach tail shows an unconventional temperature-dependent behavior due to the microcrystalline disorder across the ferroelectric-paraelectric phase transition and the decreased surface roughness at around 405 K. From ab initio molecular dynamics simulations, the redshifted dielectric function of ferroelectric BaTiO3 coincidences with the reduction of the spontaneous polarization at elevated temperature. Moreover, a positive (negative) external electric field is applied which can modulate the dielectric function of ferroelectric BaTiO3 blueshift (redshift) with a larger (smaller) spontaneous polarization since it drives the ferroelectric further away from (closer to) the paraelectric structure. This work sheds light on the temperature-dependent optical properties of BaTiO3 and provides data support for advancing its ferroelectric photovoltaic applications.
Collapse
|
20
|
Zhao X, Menzel S, Polian I, Schmidt H, Du N. Review on Resistive Switching Devices Based on Multiferroic BiFeO 3. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1325. [PMID: 37110910 PMCID: PMC10142330 DOI: 10.3390/nano13081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
This review provides a comprehensive examination of the state-of-the-art research on resistive switching (RS) in BiFeO3 (BFO)-based memristive devices. By exploring possible fabrication techniques for preparing the functional BFO layers in memristive devices, the constructed lattice systems and corresponding crystal types responsible for RS behaviors in BFO-based memristive devices are analyzed. The physical mechanisms underlying RS in BFO-based memristive devices, i.e., ferroelectricity and valence change memory, are thoroughly reviewed, and the impact of various effects such as the doping effect, especially in the BFO layer, is evaluated. Finally, this review provides the applications of BFO devices and discusses the valid criteria for evaluating the energy consumption in RS and potential optimization techniques for memristive devices.
Collapse
Affiliation(s)
- Xianyue Zhao
- Institute for Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany; (X.Z.)
- Department of Quantum Detection, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Stephan Menzel
- Peter Grünberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Ilia Polian
- Institute of Computer Science and Computer Engineering, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Heidemarie Schmidt
- Institute for Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany; (X.Z.)
- Department of Quantum Detection, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Nan Du
- Institute for Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany; (X.Z.)
- Department of Quantum Detection, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
21
|
Pătru RE, Stanciu CA, Soare EM, Surdu VA, Truşcă RD, Nicoară AI, Vasile BŞ, Boni G, Amarande L, Horchidan N, Curecheriu LP, Mitoşeriu L, Pintilie L, Pintilie I, Ianculescu AC. Grain size-driven effect on the functional properties in Ba0.6Sr0.4TiO3 ceramics consolidated by spark plasma sintering. Ann Ital Chir 2023. [DOI: 10.1016/j.jeurceramsoc.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Dielectric Characterization of Core-Shell Structured Poly(vinylidene fluoride)- grafted-BaTiO 3 Nanocomposites. Polymers (Basel) 2023; 15:polym15030595. [PMID: 36771897 PMCID: PMC9919282 DOI: 10.3390/polym15030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Dielectric properties of poly(vinylidene fluoride)-grafted-BaTiO3 (PVDF-g-BT) core-shell structured nanocomposites obtained from Reversible Addition Fragmentation chain Transfer (RAFT) polymerization of VDF were investigated by Broadband Dielectric Spectroscopy (BDS). The dielectric constant increased along with the BT content, about +50% by addition of 15 vol% of BT, which was around 40% more than expected from predictions using the usual dielectric modeling methods for composite materials, to be ascribed to the effect of the interfacial core-shell structure. The known dielectric relaxations for PVDF were observed for the neat polymer as well as for its nanocomposites, not affected by the presence of nanoparticles. A relaxation process at higher temperatures was found, due to interfacial polarization at the amorphous-crystalline interface, due to the high crystallinity of materials produced by RAFT. Isochronal BDS spectra were exploited to detect the primary relaxation of the amorphous fraction. Thermal analysis demonstrated a very broad endotherm at temperatures much lower than the usual melting peaks, possibly due to the ungrafted fraction of the polymer that is more easily removable by repeated washing of the pristine material with acetone.
Collapse
|
23
|
Zhang M, Caldwell T, Hector AL, Garcia-Araez N, Falvey J. Solvothermal synthesis of nanoscale BaTiO 3 in benzyl alcohol-water mixtures and effects of manganese oxide coating to enhance the PTCR effect. Dalton Trans 2023; 52:297-307. [PMID: 36504240 DOI: 10.1039/d2dt03307k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A solvothermal method using various benzyl alcohol/water solvent mixtures has been used to synthesise phase pure nanocrystalline BaTiO3 samples with varying particle sizes in the range of 11-139 nm. The crystallite/particle size of BaTiO3 shows an overall decrease as the benzyl alcohol percentage increases, especially at higher percentages (≥80%) of benzyl alcohol. The decrease in crystallite/particle size can be attributed to the increased viscosity of the solvent mixture when raising the percentage of benzyl alcohol. A manganese oxide coating applied to the BaTiO3 surface had a negligible impact on its microstructure and morphology, but significantly enhanced the observed positive temperature coefficient of resistance. This research has been carried out to allow the development of smaller BaTiO3 particles for use in new battery, capacitor and thermistor technologies, whilst maintaining the PTCR property of the material that is typically observed in larger particle sizes.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Thomas Caldwell
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Andrew L Hector
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Nuria Garcia-Araez
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK. .,The Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, UK
| | - Joseph Falvey
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
24
|
Li Q, Sun J, Zhang Y, Li T, Liu H, Cao Y, Zhang Q, Gu L, Honda T, Ikeda K, Otomo T, Lin K, Deng J, Xing X. Ferroelectric Ordering in Nanosized PbTiO 3. NANO LETTERS 2022; 22:9405-9410. [PMID: 36410727 DOI: 10.1021/acs.nanolett.2c03303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The insight into the three-dimensional configuration of ferroelectric ordering in ferroelectric nanomaterials is motivated by the application of the development of functional nanodevices and the structural designing. However, the atomic deciphering of the spatial distribution of ordered structure remains challenging for the limitation of dimension and probing techniques. In this paper, a neutron pair distribution function (nPDF) was utilized to analyze the spontaneous polarization distribution of zero-dimensional PbTiO3 nanoparticles in three dimensions, via the application of reverse Monte Carlo (RMC) modeling. The comprehensive identification with transmission electron microscopy verified the linear characteristics of polarization along the c-axis in the main body, while electric polarization distribution on the surface was enhanced abnormally. In addition, the correlation of dipole vectors extending to three unit cells below the surface is retained. This work shows an application of the micro/macroscale information to effectively decode the polarization structure of nanoferroelectrics, providing new views of designing nanoferroelectric devices.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanpeng Zhang
- Neutron Science Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831, United States
| | - Tianyu Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Science, Beijing 100190, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Takashi Honda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Kazutaka Ikeda
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Otomo
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
25
|
Multifunctional Performance of Hybrid SrFe 12O 19/BaTiO 3/Epoxy Resin Nanocomposites. Polymers (Basel) 2022; 14:polym14224817. [PMID: 36432944 PMCID: PMC9696728 DOI: 10.3390/polym14224817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymer matrix nanocomposites are widely studied because of the versatility of their physical and mechanical properties. When these properties are present simultaneously, responding at relative stimuli, multifunctional performance is achieved. In this study, hybrid nanocomposites of SrFe12O19 and BaTiO3 ceramic particles dispersed in an epoxy resin matrix were fabricated and characterized. The content of SrFe12O19 was varying, while the amount of BaTiO3 was kept constant. The successful fabrication of the nanocomposites and the fine dispersion of the ceramic particles was verified via the morphological and structural characterization carried out with X-ray Diffraction patterns and Scanning Electron Microscopy images. Dielectric response and related relaxation phenomena were studied by means of Broadband Dielectric Spectroscopy. Dielectric permittivity augments with filler content, while the recorded relaxations, with descending relaxation time, are: (i) interfacial polarization, (ii) glass-to-rubber transition, (iii) intermediate dipolar effect, and (iv) re-orientation of polar-side groups of the main polymer chain. SrFe12O19 nanoparticles induce magnetic properties to the nanocomposites, which alter with the magnetic filler content. Static and dynamic mechanical response improves with filler content. Thermogravimetric analysis shown that ceramic particles are beneficial to the nanocomposites' thermal stability. Glass transition temperature, determined via Differential Scanning Calorimetry, was found to slightly vary with filler content, in accordance with the results from dynamic mechanical and dielectric analysis, indicating the effect of interactions occurring between the constituents. Examined systems are suitable for energy storing/retrieving.
Collapse
|
26
|
Recent trends and morphology mechanisms of rare-earth based BiFeO3 nano perovskites with excellent photocatalytic performances. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Dantelle G, Beauquis S, Le Dantec R, Monnier V, Galez C, Mugnier Y. Solution-Based Synthesis Routes for the Preparation of Noncentrosymmetric 0-D Oxide Nanocrystals with Perovskite and Nonperovskite Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200992. [PMID: 35691941 DOI: 10.1002/smll.202200992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
With the miniaturization of electronic-based devices, the foreseen potential of new optical nanoprobes and the assessment of eventual size and shape effects, elaboration of multifunctional noncentrosymmetric nanocrystals with ferroelectric, pyroelectric, piezoelectric, and nonlinear optical properties are the subject of an increasing research interest. Here, the recent achievements from the solution-based methods (coprecipitation in homogeneous and nanostructured media, sol-gel processes including various chemistries and hydro/solvothermal techniques) to prepare 0-D perovskite and nonperovskite oxides in the 5-500 nm size range are critically reviewed. To cover a representative list of covalent- and ionic-type materials, BaTiO3 and its derivatives, niobate compounds (i.e., K/Na/LiNbO3 ), multiferroic BiFeO3, and crystals of lower symmetry including KTiOPO4 and some iodate compounds such as Fe(IO3 )3 and La(IO3 )3 are systematically in focus. The resulting size, morphology, and aggregation state are discussed in light of the proposed formation mechanisms. Because of a higher complexity related to their chemical composition and crystalline structures, improving the rational design of these multifunctional oxides in terms of finely-tuned compositions, crystalline hosts and structure-property relationships still need in the future a special attention of the research community to the detailed understanding of the reaction pathways and crystallization mechanisms.
Collapse
Affiliation(s)
- Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, 38000, France
| | | | - Ronan Le Dantec
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Virginie Monnier
- Univ Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, Ecully, 69130, France
| | - Christine Galez
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| | - Yannick Mugnier
- Université Savoie Mont Blanc, SYMME, Annecy, F-74000, France
| |
Collapse
|
28
|
Fu D, Hou Z, Chen Z, He Y, Zhang XM. Employing halogen-halogen interaction to construct high-temperature hybrid perovskite phase transition materials. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Gomaa HM, Yahia I, Zahren H, Saudi H, El-Dosokey AH. Effect of replacement of SiO2 with BaTiO3 on the cadmium calcium-borate glass: Aiming to obtain an active glass for optical and shielding applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Linker T, Nomura KI, Aditya A, Fukshima S, Kalia RK, Krishnamoorthy A, Nakano A, Rajak P, Shimmura K, Shimojo F, Vashishta P. Exploring far-from-equilibrium ultrafast polarization control in ferroelectric oxides with excited-state neural network quantum molecular dynamics. SCIENCE ADVANCES 2022; 8:eabk2625. [PMID: 35319991 PMCID: PMC8942355 DOI: 10.1126/sciadv.abk2625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Ferroelectric materials exhibit a rich range of complex polar topologies, but their study under far-from-equilibrium optical excitation has been largely unexplored because of the difficulty in modeling the multiple spatiotemporal scales involved quantum-mechanically. To study optical excitation at spatiotemporal scales where these topologies emerge, we have performed multiscale excited-state neural network quantum molecular dynamics simulations that integrate quantum-mechanical description of electronic excitation and billion-atom machine learning molecular dynamics to describe ultrafast polarization control in an archetypal ferroelectric oxide, lead titanate. Far-from-equilibrium quantum simulations reveal a marked photo-induced change in the electronic energy landscape and resulting cross-over from ferroelectric to octahedral tilting topological dynamics within picoseconds. The coupling and frustration of these dynamics, in turn, create topological defects in the form of polar strings. The demonstrated nexus of multiscale quantum simulation and machine learning will boost not only the emerging field of ferroelectric topotronics but also broader optoelectronic applications.
Collapse
Affiliation(s)
- Thomas Linker
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Ken-ichi Nomura
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Anikeya Aditya
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Shogo Fukshima
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Rajiv K. Kalia
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aravind Krishnamoorthy
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Aiichiro Nakano
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| | - Pankaj Rajak
- Amazon, 410 Terry Ave. North, Seattle, WA 98109-5210 USA
| | - Kohei Shimmura
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Fuyuki Shimojo
- Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Priya Vashishta
- Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
| |
Collapse
|
31
|
Song D, Jeong M, Kim J, Kim B, Kim JH, Kim JH, Lee K, Kim Y, Char K. High- k perovskite gate oxide for modulation beyond 10 14 cm -2. SCIENCE ADVANCES 2022; 8:eabm3962. [PMID: 35302844 PMCID: PMC8932668 DOI: 10.1126/sciadv.abm3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Scaling down of semiconductor devices requires high-k dielectric materials to continue lowering the operating voltage of field-effect transistors (FETs) and storing sufficient charge on a smaller area. Here, we investigate the dielectric properties of epitaxial BaHf0.6Ti0.4O3 (BHTO), an alloy of perovskite oxide barium hafnate (BaHfO3) and barium titanate (BaTiO3). We found the dielectric constant, the breakdown field, and the leakage current to be 150, 5.0 megavolts per centimeter (MV cm-1), and 10-4 amperes per square centimeter at 2 MV cm-1, respectively. The results suggest that two-dimensional (2D) carrier density of more than n2D = 1014 per square centimeter (cm-2) could be modulated by the BHTO gate oxide. We demonstrate an n-type accumulation mode FET and direct suppression of more than n2D = 1014 cm-2 via an n-type depletion-mode FET. We attribute the large dielectric constant, high breakdown field, and low leakage current of BHTO to the nanometer scale stoichiometric modulation of hafnium and titanium.
Collapse
Affiliation(s)
- Dowon Song
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoungho Jeong
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
| | - Juhan Kim
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongju Kim
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Ha Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Hoon Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Kiyoung Lee
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
| | - Yongsung Kim
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea
| | - Kookrin Char
- Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Horchidan N, Ciomaga CE, Curecheriu LP, Stoian G, Botea M, Florea M, Maraloiu VA, Pintilie L, Tufescu FM, Tiron V, Rotaru A, Mitoseriu L. Increasing Permittivity and Mechanical Harvesting Response of PVDF-Based Flexible Composites by Using Ag Nanoparticles onto BaTiO 3 Nanofillers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:934. [PMID: 35335747 PMCID: PMC8949362 DOI: 10.3390/nano12060934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
The role of Ag addition on the structural, dielectric, and mechanical harvesting response of 20%(xAg - (1 - x)BaTiO3) - 80%PVDF (x = 0, 2, 5, 7 and 27 vol.%) flexible composites is investigated. The inorganic fillers were realized by precipitating fine (~3 nm) silver nanoparticles onto BaTiO3 nanoparticles (~60 nm average size). The hybrid admixtures with a total filling factor of 20 vol.% were embedded into the PVDF matrix. The presence of filler enhances the amount of β-PVDF polar phase and the BaTiO3 filler induces an increase of the permittivity from 11 to 18 (1 kHz) in the flexible composites. The addition of increasing amounts of Ag is further beneficial for permittivity increase; with the maximum amount (x = 27 vol.%), permittivity is three times larger than in pure PVDF (εr ~ 33 at 1 kHz) with a similar level of tangent losses. This result is due to the local field enhancement in the regions close to the filler-PVDF interfaces which are additionally intensified by the presence of silver nanoparticles. The metallic addition is also beneficial for the mechanical harvesting ability of such composites: the amplitude of the maximum piezoelectric-triboelectric combined output collected in open circuit conditions increases from 0.2 V/cm2 (PVDF) to 30 V/cm2 for x = 27 vol.% Ag in a capacitive configuration. The role of ferroelectric and metallic nanoparticles on the increasing mechanical-electric conversion response is also been explained.
Collapse
Affiliation(s)
- Nadejda Horchidan
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, no. 11, 700506 Iasi, Romania; (N.H.); (L.P.C.)
| | - Cristina Elena Ciomaga
- Department of Exact & Natural Sciences, Institute of Interdisciplinary Research, Al. I. Cuza University of Iasi, Bv. Carol I, no. 11, 700506 Iasi, Romania
| | - Lavinia Petronela Curecheriu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, no. 11, 700506 Iasi, Romania; (N.H.); (L.P.C.)
| | - George Stoian
- National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania;
| | - Mihaela Botea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.F.); (V.A.M.); (L.P.)
| | - Mihaela Florea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.F.); (V.A.M.); (L.P.)
| | - Valentin Adrian Maraloiu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.F.); (V.A.M.); (L.P.)
| | - Lucian Pintilie
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.F.); (V.A.M.); (L.P.)
| | | | - Vasile Tiron
- Research Center on Advanced Materials and Technologies, Department of Exact & Natural Sciences, Institute of Interdisciplinary Research, Al. I. Cuza University of Iasi, Bv. Carol I, no.11, 700506 Iasi, Romania;
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan Cel Mare University, 720229 Suceava, Romania;
| | - Liliana Mitoseriu
- Dielectrics, Ferroelectrics & Multiferroics Group, Faculty of Physics, Al. I. Cuza University of Iasi, Bv. Carol I, no. 11, 700506 Iasi, Romania; (N.H.); (L.P.C.)
| |
Collapse
|
33
|
Sherlin Vinita V, Gowri Shankar Rao R, Samuel J, Shabna S, Joslin Ananth N, Shajin Shinu PM, Suresh S, Samson Y, Biju CS. Structural, Raman and optical investigations of barium titanate nanoparticles. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1993850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- V. Sherlin Vinita
- Department of Physics and Research Centre, Malankara Catholic College, Kanyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - R. Gowri Shankar Rao
- Department of Physics, Veltech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamilnadu, India
| | - J. Samuel
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - S. Shabna
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - N. Joslin Ananth
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - P. M. Shajin Shinu
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - S. Suresh
- Department of Physics, Saveetha Engineering College (Autonomous), Chennai, Tamilnadu, India
| | - Y. Samson
- Department of Physics, Annai Velankanni College, Kanniyakumari, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - C. S. Biju
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri, Tamilnadu, India
- Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| |
Collapse
|
34
|
Multitasking Performance of Fe3O4/BaTiO3/Epoxy Resin Hybrid Nanocomposites. MATERIALS 2022; 15:ma15051784. [PMID: 35269016 PMCID: PMC8911469 DOI: 10.3390/ma15051784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
In this study, hybrid nanocomposites consisting of Fe3O4/BaTiO3/epoxy resin were prepared with varying amounts of filer content. Structural and morphological characterization, conducted via X-Ray Diffraction patterns and Scanning Electron Microscopy images, revealed the successful fabrication of composites and fine dispersion of inclusions. Thermomechanical properties are studied via Differential Scanning Calorimetry, Thermogravimetric Analysis, Dynamic Mechanical Analysis and static mechanical tests. Hybrid composites exhibit enhanced thermal stability and improved mechanical response. Indicatively, Young’s modulus, tensile strength and fracture toughness increase from 1.26 GPa, 22.25 MPa, and 3.03 kJ/m3 for the neat epoxy to 1.39 GPa, 45.73 MPa, and 41.08 kJ/m3 for the composites with 20 or 15 parts per hundred resin per mass (phr) of Fe3O4, respectively. Electrical behavior is investigated via Broadband Dielectric Spectroscopy and ac conductivity measurements. The real part of dielectric permittivity reaches the value of 11.11 at 30 °C for the composite with 40 phr of Fe3O4. The ability to store and retrieve electric energy on the nanocomposites is examined with the following parameters: the filler content and the applied voltage under dc conditions. Retrieved energy reaches 79.23% of the stored one, for the system with 15 phr of Fe3O4. Magnetic response is studied via a Vibrating Sample Magnetometer. Magnetic saturation, for the system with the highest magnetic filler content, obtains the value of 25.38 Am2/kg, while pure magnetic powder attains the value of 86.75 Am2/kg. Finally, the multifunctional performance of the nanocomposites is assessed regarding all the exerted stimuli and the optimum behavior is discussed.
Collapse
|
35
|
Cottingham P, Brutchey RL. Temperature-dependent behavior in the local structure of BaTiO 3 nanocrystals. CrystEngComm 2022. [DOI: 10.1039/d2ce00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use pair distribution function analysis of synchrotron X-ray total scattering data to inspect the local structure of BaTiO3 nanocrystals from 253 K < T < 413 K.
Collapse
Affiliation(s)
- Patrick Cottingham
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard L. Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
36
|
Zhang M, Falvey J, Hector AL, Garcia-Araez N. Effects of the reaction temperature and Ba/Ti precursor ratio on the crystallite size of BaTiO 3 in hydrothermal synthesis. RSC Adv 2022; 12:27809-27819. [DOI: 10.1039/d2ra03707f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Nanocrystalline BaTiO3 has been prepared via a hydrothermal synthesis. Reaction conditions including synthesis temperature and Ba/Ti precursor ratio/concentration have been systematically explored to produce small crystallites of phase-pure BaTiO3.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Joseph Falvey
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Andrew L. Hector
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Nuria Garcia-Araez
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
- The Faraday Institution, Quad One, Harwell Campus, Didcot OX11 0RA, UK
| |
Collapse
|
37
|
Kaur A, Singh D, Das A, Kandasami A, Chen CL, Mishra IB, Ahuja R. Spin and valence variation in Cobalt doped Barium Strontium Titanate Ceramics. Phys Chem Chem Phys 2022; 24:19865-19881. [DOI: 10.1039/d2cp01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present decade, owing to half-metallic ferromagnetism, controlled 3d transition metal-doping based defect engineering in oxide perovskites brings considerable attention to the the pursuit of spintronics. We aim to...
Collapse
|
38
|
Nakashima K, Hironaka K, Oouchi K, Ajioka M, Kobayashi Y, Yoneda Y, Yin S, Kakihana M, Sekino T. Optimizing TiO 2 through Water-Soluble Ti Complexes as Raw Material for Controlling Particle Size and Distribution of Synthesized BaTiO 3 Nanocubes. ACS OMEGA 2021; 6:32517-32527. [PMID: 34901601 PMCID: PMC8655777 DOI: 10.1021/acsomega.1c04013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Barium titanate (BaTiO3) nanocubes with a narrow particle size distribution were synthesized using a three-step approach. First, a water-soluble Ti complex was synthesized using a hydrolysis method. Next, the titanium dioxide (TiO2) raw material was synthesized via a hydrothermal method using various water-soluble titanium (Ti) complexes. The TiO2 exhibited various particle sizes and crystal structures (anatase, rutile, or brookite) depending on the water-soluble Ti complex and the hydrothermal conditions used in its synthesis. Finally, BaTiO3 nanocubes were subsequently created through a hydrothermal method using the synthesized TiO2 particles and barium hydroxide octahydrate [Ba(OH)2·8H2O] as raw materials. The present study clarifies that the particle size of the BaTiO3 nanocubes depends on the particle size of the TiO2 raw material. BaTiO3 particles with a narrow size distribution were obtained when the TiO2 particles exhibited a narrow size distribution. We found that the best conditions for the creation of BaTiO3 nanocubes using TiO2 involved using lactic acid as a complexing agent, which resulted in a particle size of 166 nm on average. This particle size is consistent with an average of the width of the cubes measured from corner to corner diagonally, which corresponds to a side length of 117 nm. In addition, surface reconstruction of the BaTiO3 was clarified via electron microscopy observations, identifying the outermost surface as a Ti layer. Electron tomography using high-angle annular dark-field (HAADF)-scanning transmission electron microscopy (STEM) confirmed the three-dimensional (3D) structure of the obtained BaTiO3 nanocubes.
Collapse
Affiliation(s)
- Kouichi Nakashima
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Kouta Hironaka
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Kazuma Oouchi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Mao Ajioka
- Department
of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Yoshio Kobayashi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Yasuhiro Yoneda
- Reaction
Dynamics Research Division, Japan Atomic
Energy Agency, 1-1-1,
Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shu Yin
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masato Kakihana
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tohru Sekino
- SANKEN
(The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
39
|
Huang S, Zhang T, Li H, Zhang M, Liu X, Xu D, Wang H, Shen Z, Wu Q, Tao J, Xia W, Xie X, Liu F. Flexible Tongue Electrode Array System for In Vivo Mapping of Electrical Signals of Taste Sensation. ACS Sens 2021; 6:4108-4117. [PMID: 34757732 DOI: 10.1021/acssensors.1c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tongue is a unique organ that senses tastes, and the scientific puzzle about whether electricity can evoke taste sensations and how the sensations have been distributed on the tongue has not been solved. Investigations on tongue stimulation by electricity might benefit the developments of techniques for clinical neuromodulation, tissue activation, and a brain-tongue-machine interface. To solve the scientific puzzle of whether electrical stimulation induces taste-related sensations, a portable flexible tongue electrode array system (FTEAS) was developed, which can synchronously provide electrical stimulation and signal mapping at each zone of the tongue. Utilizing the FTEAS to perform tests on the rat tongue in vivo, specific electrical signals were observed to be evoked by chemical and electrical stimulations. The features and distributions of the electric signals evoked during the rat tongue tests were systematically studied and comprehensively analyzed. The results show that an appropriate electrical stimulation can induce multiple sensations simultaneously, while the distribution of each sensation was not significantly distinguished among different zones of the tongue, and at the same time, this taste-related electrical signal can be recorded by the FTEAS. This work establishes a promising platform to solve the scientific puzzle of how sensations are activated chemically and electrically on the tongue and may provide advanced noninvasive oral-electrotherapy and a brain-tongue-machine interface.
Collapse
Affiliation(s)
- Shuang Huang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyue Zhang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiran Shen
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianni Wu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Tao
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Xia
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fanmao Liu
- The First Affiliated Hospital of Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
40
|
Song E, Kim DH, Jeong EJ, Choi M, Kim Y, Jung HJ, Choi MY. Effects of particle size and polymorph type of TiO 2 on the properties of BaTiO 3 nanopowder prepared by solid-state reaction. ENVIRONMENTAL RESEARCH 2021; 202:111668. [PMID: 34246639 DOI: 10.1016/j.envres.2021.111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Barium titanate (BaTiO3) has attracted considerable attention as a perovskite ferroelectric ceramic material for electronic multilayer ceramic capacitors (MLCCs). Fine BaTiO3 nanopowders with a considerably high tetragonality directly influence the typical properties of nanopowders; however, their synthesis has remained challenging. In this study, we analyzed the effect of two different TiO2 powders with anatase and rutile phases in a solid-state reaction with barium carbonate (BaCO3). The effect of the particle size ratio (TiO2/BaCO3) of the raw materials on the tetragonality and particle size of the as-synthesized BaTiO3 powders was also determined through extensive characterization of the powders by X-ray diffraction, field-emission scanning electron microscopy, and Raman spectroscopy. The present investigation reveals that the design BaTiO3 structure is expected to advance the development of efficient catalytic and sensor materials for sustainable environmental applications.
Collapse
Affiliation(s)
- Eunji Song
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, South Korea; School of Materials Science and Engineering, Pusan National University, Busan, 46241, South Korea
| | - Dong Hyun Kim
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, South Korea
| | - Eun Jin Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Moonhee Choi
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, South Korea
| | - Yangdo Kim
- School of Materials Science and Engineering, Pusan National University, Busan, 46241, South Korea.
| | - Hyeon Jin Jung
- Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju, 52851, South Korea.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
41
|
Xia C, Chen Y, Chen H. Pressure-induced metal-insulator transition in oxygen-deficient LiNbO 3-type ferroelectrics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:025501. [PMID: 34624871 DOI: 10.1088/1361-648x/ac2e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Hydrostatic pressure and oxygen vacancies usually have deleterious effects on ferroelectric materials because both tend to reduce their polarization. In this work we use first-principles calculations to study an important class of ferroelectric materials-LiNbO3-type ferroelectrics (LiNbO3as the prototype), and find that in oxygen-deficient LiNbO3-δ, hydrostatic pressure induces an unexpected metal-insulator transition between 8 and 9 GPa. Our calculations also find that strong polar displacements persist in both metallic and insulating oxygen-deficient LiNbO3-δand the size of polar displacements is comparable to pristine LiNbO3under the same pressure. These properties are distinct from widely used perovskite ferroelectric oxide BaTiO3, whose polarization is quickly suppressed by hydrostatic pressure and/or oxygen vacancies. The anomalous pressure-driven metal-insulator transition in oxygen-deficient LiNbO3-δarises from the change of an oxygen vacancy defect state. Hydrostatic pressure increases the polar displacements of oxygen-deficient LiNbO3-δ, which reduces the band width of the defect state and eventually turns it into an in-gap state. In the insulating phase, the in-gap state is further pushed away from the conduction band edge under hydrostatic pressure, which increases the fundamental gap. Our work shows that for LiNbO3-type strong ferroelectrics, oxygen vacancies and hydrostatic pressure combined can lead to new phenomena and potential functions, in contrast to the harmful effects occurring to perovskite ferroelectric oxides such as BaTiO3.
Collapse
Affiliation(s)
- Chengliang Xia
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200062, People's Republic of China
| | - Yue Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Hanghui Chen
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200062, People's Republic of China
- Department of Physics, New York University, New York 10003, United States of America
| |
Collapse
|
42
|
Ramana EV, Ferreira N, Mahajan A, Tobaldi D, Bdikin I, Rožič B, Kutnjak Z, Valente M. Processing mediated enhancement of ferroelectric and electrocaloric properties in Ba(Ti0.8Zr0.2)O3–(Ba0.7Ca0.3)TiO3 lead-free piezoelectrics. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Walk D, Agrawal P, Zeinar L, Salg P, Arzumanov A, Komissinskiy P, Alff L, Jakoby R, Rupitsch SJ, Maune H. All-Oxide Varactor Electromechanical Properties Extracted by Highly Accurate Modeling Over a Broad Frequency and Electric Bias Range. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2804-2814. [PMID: 33798080 DOI: 10.1109/tuffc.2021.3070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Since the dielectric permittivity of ferroelectric materials depends on the electric field, they allow designing switchable and continuously tunable devices for adaptive microwave front ends. Part of the ongoing research is the field of all-oxide devices, where epitaxial oxide conductors are used instead of polycrystalline metal electrodes, leading to epitaxial ferroelectric layers and resulting in high device performance. In particular, they allow engineering the acoustic properties separated from the electric ones due to the structural similarity between the dielectric and conducting oxide films. Two major results are reported in this work. First, a highly accurate model for the microwave impedance of ferroelectric varactors is derived that tracks the superposition of induced piezoelectricity and field extrusion into the substrate caused by thin electrodes. In difference to previous works, this model covers both a wide frequency and biasing range up to 12 GHz and 100 V/ [Formula: see text]. Second, the high model accuracy enables the determination of all relevant electric and mechanic properties based on a mere microwave characterization. This approach will be especially valuable when independent measurements of mechanical properties of the thin-film materials are impeded by a high integration of the devices. Though derived for all-oxide varactors, the presented model can as well be adapted for thin-film bulk acoustic wave resonators (FBARs) and varactors with conventional metal electrodes when eventual dead layers at the interface are modeled correctly.
Collapse
|
44
|
Neige E, Diwald O. Paramagnetic electron centers in BaTiO 3 nanoparticle powders. Phys Chem Chem Phys 2021; 23:12881-12888. [PMID: 34075975 DOI: 10.1039/d1cp01128f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge about the emergence and depletion of point defects in BaTiO3 (BTO) nano-structures during materials processing is key to our understanding of their later activity as components in functional dielectric devices or as photocatalysts. In this electron paramagnetic resonance (EPR) study we investigated BaTiO3 nanoparticle powders produced by flame spray pyrolysis (FSP) with powders of TiO2 anatase nanocrystals of comparable size as reference system. Paramagnetic Ti3+ ions located at regular lattice sites and with well-defined EPR signatures were measured in vacuum annealed BaTiO3 nanoparticles, which convert upon further annealing in the temperature range between 873 K and 1173 K from monocrystalline grains with an average size of d = 12 nm, BTO (873 K), to polycrystalline particles with d = 70 nm, BTO (1173 K). Whereas the starting material hosts predominantly polaron-type Ti3+ ions being surrounded by compressed O2- ion octahedra, barium-oxygen divacancy complexes, , become susceptible to electron trapping in polycrystalline and tetragonal BTO (1173 K) particles after pre-annealing at temperatures T > 873 K. The insights obtained provide a base for the detection of local distortion effects, for the identification of charge trapping sites and for the elucidation of their impact on spontaneous polarization in BaTiO3 nanoparticles as photocatalysts or dielectric components.
Collapse
Affiliation(s)
- Ellie Neige
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Strasse 2a, A-5020 Salzburg, Austria.
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, Paris Lodron Universität Salzburg, Jakob-Haringer Strasse 2a, A-5020 Salzburg, Austria.
| |
Collapse
|
45
|
Jiang B, Usher TM, Jothi PR, Kavey B, Caruntu G, Page K. Effect of Ligand Polarity on the Internal Dipoles and Ferroelectric Distortion in BaTiO 3 Nanocubes. Chemistry 2021; 27:8365-8371. [PMID: 33818851 DOI: 10.1002/chem.202100692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 11/08/2022]
Abstract
Surface adsorbates and surrounding matrix species have been demonstrated to affect the properties of nanoscale ferroelectrics and nanoscale ferroelectric composites; potentially counteracting performance losses that can occur in small particle sizes. In this work, the effects of nonpolar oleic acid (OA) and polar tetrafluoroborate (BF4 - ) ligand capping on the surface of various sizes of BaTiO3 nanocubes have been investigated with combined neutron diffraction and neutron pair distribution function (PDF), density functional theory (DFT), and ab initio molecular dynamics (AIMD) methods. The low real space PDF region provides an unobstructed view of rhombohedral (split short and long) Ti-O distances in BaTiO3 nanocubes, mimicking the well-established order-disorder local structure found in bulk BaTiO3 . Interestingly, the intermediate-range order in nanocubes is found to be orthorhombic, rather than tetragonal. It is concluded that polar ligands adsorbed at BaTiO3 surfaces stabilize the correlation length scale of local rhombohedral distortions in ferroelectric nanoparticles relative to nonpolar ligands.
Collapse
Affiliation(s)
- Bo Jiang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tedi-Marie Usher
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Palani Raja Jothi
- Materials Science and Engineering Department and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996, USA
| | - Benard Kavey
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA.,Science of Advanced Materials Program, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA
| | - Gabriel Caruntu
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA.,Science of Advanced Materials Program, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA
| | - Katharine Page
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Materials Science and Engineering Department and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
46
|
Zhou X, Shen B, Zhai J, Conesa JC. High Performance Generation of H 2 O 2 under Piezophototronic Effect with Multi-Layer In 2 S 3 Nanosheets Modified by Spherical ZnS and BaTiO 3 Nanopiezoelectrics. SMALL METHODS 2021; 5:e2100269. [PMID: 34927907 DOI: 10.1002/smtd.202100269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 06/14/2023]
Abstract
Manipulating the separation and transportation of photoexcited charge carriers in photoresponsive semiconductors via the piezoelectric polarization effect is an emerging strategy in the field of artificial photosynthesis. However, existing semiconductor photocatalysts, both with a wide range absorption for visible light and superior piezoelectricity are very scarce, leading to a low reactivity of photocatalysis. Here, a multi-layer In2 S3 nanosheet modified with spherical ZnS and BaTiO3 nanopiezoelectrics (ZnS/In2 S3 /BTO) is reported, generating approximately 378 µm of H2 O2 in 100 min (and the concentration is still increasing) under co-irradiation of visible light and ultrasound (piezophotocatalysis) in ethanol-water solution; this concentration is higher compared with two phases piezoelectric heterostructures (i.e., ZnS/BTO, In2 S3 /BTO, and ZnS/In2 S3 ) and pure compounds (i.e., ZnS, In2 S3 , and BTO), and also higher than that of independent piezo- (≈254 µm) and photocatalysis (≈120 µm). Moreover, the concentration of H2 O2 generated on ZnS/In2 S3 /BTO can be as high as approximately 1160 µm in 5 h of piezophotoreaction after experiencing six cycles of visible light concurrent with ultrasound irradiation. The enhancement of H2 O2 yield on ZnS/In2 S3 /BTO in piezophotocatalysis can be attributed to the piezopotential-induced internal electric polarization field promoting the separation of photoexcited charge carriers, thus boosting the rate of surface photoreaction.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Bo Shen
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiwei Zhai
- Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - José C Conesa
- Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
47
|
Pasuk I, Neațu F, Neațu Ș, Florea M, Istrate CM, Pintilie I, Pintilie L. Structural Details of BaTiO 3 Nano-Powders Deduced from the Anisotropic XRD Peak Broadening. NANOMATERIALS 2021; 11:nano11051121. [PMID: 33925991 PMCID: PMC8147028 DOI: 10.3390/nano11051121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
In this study, nano-BaTiO3 (BTO) powders were obtained via the solvothermal method at different reaction times and were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results were compared with those obtained for a larger crystallite size BTO powder (BTO-m). The sizes of the cuboid crystallites (as determined by XRD and TEM) ranged from about 18 to 24 nm, depending on the reaction time. The evolution with temperature of the structure parameters of nano-BTO was monitored by means of X-ray diffraction and Raman spectroscopy and no signs of phase transition were found up to 170 °C. Careful monitoring of the dependence of the XRD peak widths on the hkl indices showed that the effect of the cubic crystallite shape upon the XRD peak widths was buried by the effect of hidden tetragonal line splits and by anisotropic microstrain. The good correlation of the line widths with the tetragonal split amplitudes, observed especially for BTO-m above the transition temperature, indicates tetragonal deformations, as also revealed by Raman spectroscopy. The large anisotropic microstrain shown by the nano-powders, which had a maximum value in the <100> directions, was considered evidence of the phenomenon of surface relaxation of cubic crystallites edged by {100} faces. The observed behavior of the nano-BTO structures with increasing temperature may suggest a correlation between the surface relaxation and tetragonal deformation in the nano-cubes. The experimental results for both nano-BTO and mezoscale-BTO are in agreement with the core-shell model.
Collapse
|
48
|
Sati A, Pokhriyal P, Kumar A, Anwar S, Sagdeo A, Lalla NP, Sagdeo PR. Origin of ferroelectricity in cubic phase of Hf substituted BaTiO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:165403. [PMID: 33752190 DOI: 10.1088/1361-648x/abf0bf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The origin of ferroelectricity in the cubic phase of BaTi1-xHfxO3has been investigated. The presence of well-defined ferroelectric polarization versus electric field (PE) hysteresis loop in the samples with global cubic symmetry suggests the presence of 'local polar regions', induced possibly due to the huge difference in the electronegativity and also difference in the ionic radii of Hf+4and Ti+4ions, which may lead to local structural disorder. The presence of polar regions is also supported through the appearance of A1(TO) polar mode in Raman spectra which in principle should be absent in the samples with cubic symmetry. The results are discussed in terms of disorder-induced local dipoles due to the electronegativity difference between Hf and Ti ions.
Collapse
Affiliation(s)
- Aanchal Sati
- Material Research Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Indore-453552, India
| | - Preeti Pokhriyal
- Synchrotron Utilization Section, Raja Ramanna Center for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Anil Kumar
- Material Research Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Indore-453552, India
| | - Shahid Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751-013, India
| | - Archna Sagdeo
- Synchrotron Utilization Section, Raja Ramanna Center for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - N P Lalla
- UGC-DAE Consortium for scientific research, University campus, Khandwa road, Indore-452001, India
| | - P R Sagdeo
- Material Research Laboratory, Discipline of Physics, Indian Institute of Technology Indore, Indore-453552, India
| |
Collapse
|
49
|
Nakashima K, Onagi K, Kobayashi Y, Ishigaki T, Ishikawa Y, Yoneda Y, Yin S, Kakihana M, Sekino T. Stabilization of Size-Controlled BaTiO 3 Nanocubes via Precise Solvothermal Crystal Growth and Their Anomalous Surface Compositional Reconstruction. ACS OMEGA 2021; 6:9410-9425. [PMID: 33869921 PMCID: PMC8047730 DOI: 10.1021/acsomega.0c05878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Crystal growth of barium titanate (BaTiO3) using a wet chemical reaction was investigated at various temperatures. BaTiO3 nanoparticles were obtained at an energy-efficient temperature of 80 °C. However, BaTiO3 nanocubes with a preferred size and shape could be synthesized using a solvothermal method at 200 °C via a reaction involving titanium tetraisopropoxide [(CH3)2CHO]4Ti for nucleation and fine titanium oxide (TiO2) nanoparticles for crystal growth. The BaTiO3 nanocubes showed a high degree of dispersion without the use of dispersants or surfactants. The morphology of BaTiO3 was found to depend on the reaction medium. The size of the BaTiO3 particles obtained using water as the reaction medium was the largest among the particles synthesized using various reaction media. In the case of alcohol reaction media, the BaTiO3 particle size increased in the order methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol. Furthermore, BaTiO3 powder obtained using alcohol reaction media resulted in cubic shapes as opposed to the round shapes obtained when water was used as the medium. We found that the optimal condition for the synthesis of BaTiO3 nanocubes involved the use of 1-butanol as the reaction medium, resulting in an average particle size of 52 nm, which is the average distance of the cubes measured diagonally from corner to corner, and gives an average side length of 37 nm, and a tetragonal crystal system as evidenced by the powder X-ray diffraction pattern obtained using high-energy synchrotron X-rays. The origin of the spontaneous polarization of the BaTiO3 tetragonal crystal structure was clarified by a pair distribution function analysis. In addition, surface reconstruction of BaTiO3 nanocubes led to an outermost surface comprising two layers of Ti columns.
Collapse
Affiliation(s)
- Kouichi Nakashima
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan
| | - Kaito Onagi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan
| | - Yoshio Kobayashi
- Department
of Materials Science and Engineering, Graduate School of Science and
Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan
| | - Toru Ishigaki
- Frontier
Research Center for Applied Atomic Sciences, Ibaraki University, 162-1, Shirakata, Tokai, Naka 319-1106, Ibaraki, Japan
| | - Yoshihisa Ishikawa
- Neutron
Science and Technology Center, Comprehensive
Research Organization for Science and Society, 162-1, Shirakata, Tokai, Naka 319-1106, Ibaraki, Japan
| | - Yasuhiro Yoneda
- Reaction
Dynamics Research Division, Japan Atomic
Energy Agency, 1-1-1,
Kouto, Sayo-cho, Sayo-gun 679-5148, Hyogo, Japan
| | - Shu Yin
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masato Kakihana
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba-ku, Sendai 980-8577, Japan
- The Institute
of Scientific and Industrial Research, Osaka
University, 8-1, Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| | - Tohru Sekino
- The Institute
of Scientific and Industrial Research, Osaka
University, 8-1, Mihogaoka, Ibaraki 567-0047, Osaka, Japan
| |
Collapse
|
50
|
Zhu H, Huang Y, Ren J, Zhang B, Ke Y, Jen AK, Zhang Q, Wang X, Liu Q. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003534. [PMID: 33747741 PMCID: PMC7967088 DOI: 10.1002/advs.202003534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/19/2023]
Abstract
The correlation between structure and function lies at the heart of materials science and engineering. Especially, modern functional materials usually contain inhomogeneities at an atomic level, endowing them with interesting properties regarding electrons, phonons, and magnetic moments. Over the past few decades, many of the key developments in functional materials have been driven by the rapid advances in short-range crystallographic techniques. Among them, pair distribution function (PDF) technique, capable of utilizing the entire Bragg and diffuse scattering signals, stands out as a powerful tool for detecting local structure away from average. With the advent of synchrotron X-rays, spallation neutrons, and advanced computing power, the PDF can quantitatively encode a local structure and in turn guide atomic-scale engineering in the functional materials. Here, the PDF investigations in a range of functional materials are reviewed, including ferroelectrics/thermoelectrics, colossal magnetoresistance (CMR) magnets, high-temperature superconductors (HTSC), quantum dots (QDs), nano-catalysts, and energy storage materials, where the links between functions and structural inhomogeneities are prominent. For each application, a brief description of the structure-function coupling will be given, followed by selected cases of PDF investigations. Before that, an overview of the theory, methodology, and unique power of the PDF method will be also presented.
Collapse
Affiliation(s)
- He Zhu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yalan Huang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Jincan Ren
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Binghao Zhang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of ScienceDongguan523000P. R. China
| | - Alex K.‐Y. Jen
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xun‐Li Wang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Qi Liu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| |
Collapse
|