1
|
Madheswaran M, Ventserova N, D’Abrosca G, Salzano G, Celauro L, Cazzaniga FA, Isernia C, Malgieri G, Moda F, Russo L, Legname G, Fattorusso R. Unfolding Mechanism and Fibril Formation Propensity of Human Prion Protein in the Presence of Molecular Crowding Agents. Int J Mol Sci 2024; 25:9916. [PMID: 39337404 PMCID: PMC11432716 DOI: 10.3390/ijms25189916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The pathological process of prion diseases implicates that the normal physiological cellular prion protein (PrPC) converts into misfolded abnormal scrapie prion (PrPSc) through post-translational modifications that increase β-sheet conformation. We recently demonstrated that HuPrP(90-231) thermal unfolding is partially irreversible and characterized by an intermediate state (β-PrPI), which has been revealed to be involved in the initial stages of PrPC fibrillation, with a seeding activity comparable to that of human infectious prions. In this study, we report the thermal unfolding characterization, in cell-mimicking conditions, of the truncated (HuPrP(90-231)) and full-length (HuPrP(23-231)) human prion protein by means of CD and NMR spectroscopy, revealing that HuPrP(90-231) thermal unfolding is characterized by two successive transitions, as in buffer solution. The amyloidogenic propensity of HuPrP(90-231) under crowded conditions has also been investigated. Our findings show that although the prion intermediate, structurally very similar to β-PrPI, forms at a lower temperature compared to when it is dissolved in buffer solution, in cell-mimicking conditions, the formation of prion fibrils requires a longer incubation time, outlining how molecular crowding influences both the equilibrium states of PrP and its kinetic pathways of folding and aggregation.
Collapse
Affiliation(s)
- Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Nataliia Ventserova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5–Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fabio Moda
- SSD Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABiF), Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| |
Collapse
|
2
|
López-Molina J, Groh S, Dzubiella J, Moncho-Jordá A. Nonequilibrium relaxation of soft responsive colloids. J Chem Phys 2024; 161:094902. [PMID: 39225526 DOI: 10.1063/5.0221903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Stimuli-responsive macromolecules display large conformational changes during their dynamics, sometimes switching between states. Such a multi-stability is useful for the development of soft functional materials. Here, we introduce a mean-field dynamical density functional theory for a model of responsive colloids to study the nonequilibrium dynamics of a colloidal dispersion in time-dependent external fields, with a focus on the coupling of translational and conformational dynamics during their relaxation. Specifically, we consider soft Gaussian particles with a bimodal size distribution between two confining walls with time-dependent (switching-on and off) external gravitational and osmotic fields. We find a rich relaxation behavior of the systems in excellent agreement with particle-based Brownian dynamics computer simulations. In particular, we find time-asymmetric relaxations of integrated observables (wall pressures, mean size, and liquid center-of-mass) for activation/deactivation of external potentials, respectively, which are tunable by the ratio of translational and conformational diffusion time scales. Our work thus paves the way for studying the nonequilibrium relaxation dynamics of complex soft matter with multiple degrees of freedom and hierarchical relaxations.
Collapse
Affiliation(s)
- José López-Molina
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
| | - Arturo Moncho-Jordá
- Department of Applied Physics, University of Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
3
|
Ghosh S, Prabhu NP. Heterogeneous Macromolecular crowding effect on nucleation-independent fibril formation of Lysozyme: Spectroscopic analysis of Structure, Stability, and fibrillation rate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124276. [PMID: 38626673 DOI: 10.1016/j.saa.2024.124276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Affiliation(s)
- Subhasree Ghosh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
4
|
Torricella F, Tugarinov V, Clore GM. Effects of Macromolecular Cosolutes on the Kinetics of Huntingtin Aggregation Monitored by NMR Spectroscopy. J Phys Chem Lett 2024; 15:6375-6382. [PMID: 38857530 PMCID: PMC11345868 DOI: 10.1021/acs.jpclett.4c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The effects of two macromolecular cosolutes, specifically the polysaccharide dextran-20 and the protein lysozyme, on the aggregation kinetics of a pathogenic huntingtin exon-1 protein (hhtex1) with a 35 polyglutamine repeat, httex1Q35, are described. A unified kinetic model that establishes a direct connection between reversible tetramerization occurring on the microsecond time scale and irreversible fibril formation on a time scale of hours/days forms the basis for quantitative analysis of httex1Q35 aggregation, monitored by measuring cross-peak intensities in a series of 2D 1H-15N NMR correlation spectra acquired during the course of aggregation. The primary effects of the two cosolutes are associated with shifts in the prenucleation tetramerization equilibrium resulting in substantial changes in concentration of "preformed" httex1Q35 tetramers. Similar effects of the two cosolutes on the tetramerization equilibrium observed for a shorter, nonaggregating huntingtin variant with a 7-glutamine repeat, httex1Q7, lend confidence to the conclusions drawn from the fits to the httex1Q35 aggregation kinetics.
Collapse
Affiliation(s)
- Francesco Torricella
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
5
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
6
|
Xu G, Cheng K, Liu M, Li C. Studying protein stability in crowded environments by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 140-141:42-48. [PMID: 38705635 DOI: 10.1016/j.pnmrs.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 05/07/2024]
Abstract
Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
7
|
Ng YK, Konermann L. Mechanism of Protein Aggregation Inhibition by Arginine: Blockage of Anionic Side Chains Favors Unproductive Encounter Complexes. J Am Chem Soc 2024; 146:8394-8406. [PMID: 38477601 DOI: 10.1021/jacs.3c14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Thirumalai D, Kumar A, Chakraborty D, Straub JE, Mugnai ML. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain. Biopolymers 2024; 115:e23558. [PMID: 37399327 PMCID: PMC10831756 DOI: 10.1002/bip.23558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
The well-known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA-binding protein, Fused in Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low-complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid-state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril structure (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C-terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site-specific. Simulations show that phosphorylation of residues within the fibril has a greater destabilization effect than residues that are outside the fibril region, which accords well with experiments. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular explanation.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Mauro L Mugnai
- Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| |
Collapse
|
9
|
Moncho-Jordá A, Groh S, Dzubiella J. External field-driven property localization in liquids of responsive macromolecules. J Chem Phys 2024; 160:024904. [PMID: 38189617 DOI: 10.1063/5.0177933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
We explore theoretically the effects of external potentials on the spatial distribution of particle properties in a liquid of explicitly responsive macromolecules. In particular, we focus on the bistable particle size as a coarse-grained internal degree of freedom (DoF, or "property"), σ, that moves in a bimodal energy landscape, in order to model the response of a state-switching (big-to-small) macromolecular liquid to external stimuli. We employ a mean-field density functional theory (DFT) that provides the full inhomogeneous equilibrium distributions of a one-component model system of responsive colloids (RCs) interacting with a Gaussian pair potential. For systems confined between two parallel hard walls, we observe and rationalize a significant localization of the big particle state close to the walls, with pressures described by an exact RC wall theorem. Application of more complex external potentials, such as linear (gravitational), osmotic, and Hamaker potentials, promotes even stronger particle size segregation, in which macromolecules of different size are localized in different spatial regions. Importantly, we demonstrate how the degree of responsiveness of the particle size and its coupling to the external potential tune the position-dependent size distribution. The DFT predictions are corroborated by Brownian dynamics simulations. Our study highlights the fact that particle responsiveness can be used to localize liquid properties and therefore helps to control the property- and position-dependent function of macromolecules, e.g., in biomedical applications.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Department of Applied Physics, University de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Sebastien Groh
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität 6 Freiburg, D-79110 Freiburg, Germany
| |
Collapse
|
10
|
Singh BP, Cheppali SK, Saha I, Swamy MJ. Contrasting effects of molecular crowding on the membrane-perturbing and chaperone-like activities of major bovine seminal plasma protein, PDC-109. Int J Biol Macromol 2024; 254:127573. [PMID: 37923045 DOI: 10.1016/j.ijbiomac.2023.127573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Crowded environments inside cells and biological fluids greatly affect protein stability and activity. PDC-109, a polydisperse oligomeric protein of the bovine seminal plasma selectively binds choline phospholipids on the sperm cell surface and causes membrane destabilization and lipid efflux, leading to acrosome reaction. PDC-109 also exhibits chaperone-like activity (CLA) and protects client proteins against various kinds of stress, such as high temperature and low pH. In the present work, we have investigated the effect of molecular crowding on these two different activities of PDC-109 employing Dextran 70 (D70) - a widely used polymeric dextran - as the crowding agent. The results obtained show that presence of D70 markedly increases membrane destabilization by PDC-109. Isothermal titration calorimetric studies revealed that under crowded condition the binding affinity of PDC-109 for choline phospholipids increases approximately 3-fold, which could in turn facilitate membrane destabilization. In contrast, under identical conditions, its CLA was reduced significantly. The decreased CLA could be correlated to reduced surface hydrophobicity, which was due to stabilization of the protein oligomers. These results establish that molecular crowding exhibits contrasting effects on two different functional activities of PDC-109 and highlight the importance of microenvironment of proteins in modulating their functional activities.
Collapse
Affiliation(s)
| | | | - Ishita Saha
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
11
|
Russell PPS, Rickard MM, Boob M, Gruebele M, Pogorelov TV. In silico protein dynamics in the human cytoplasm: Partial folding, misfolding, fold switching, and non-native interactions. Protein Sci 2023; 32:e4790. [PMID: 37774143 PMCID: PMC10578126 DOI: 10.1002/pro.4790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
We examine the influence of cellular interactions in all-atom models of a section of the Homo sapiens cytoplasm on the early folding events of the three-helix bundle protein B (PB). While genetically engineered PB is known to fold in dilute water box simulations in three microseconds, the three initially unfolded PB copies in our two cytoplasm models using a similar force field did not reach the native state during 30-microsecond simulations. We did however capture the formation of all three helices in a compact native-like topology. Folding in vivo is delayed because intramolecular contact formation within PB is in direct competition with intermolecular contacts between PB and surrounding macromolecules. In extreme cases, intermolecular beta-sheets are formed. Interactions with other macromolecules are also observed to promote structure formation, for example when a PB helix in our simulations is shielded from solvent by macromolecular crowding. Sticking and crowding in our models initiate sampling of helix/sheet structural plasticity of PB. Relatedly, in past in vitro experiments, similar GA domains were shown to switch between two different folds. Finally, we also observed that stickiness between PB and the cellular environment can be modulated in our simulations through the reduction in protein hydrophobicity when we reversed PB back to the wild-type sequence. This study demonstrates that even fast-folding proteins can get stuck in non-native states in the cell, making them useful models for protein-chaperone interactions and early stages of aggregate formation relevant to cellular disease.
Collapse
Affiliation(s)
| | - Meredith M. Rickard
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Mayank Boob
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Martin Gruebele
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of PhysicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Taras V. Pogorelov
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- School of Chemical SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
12
|
Bazmi S, Seifi B, Wallin S. Simulations of a protein fold switch reveal crowding-induced population shifts driven by disordered regions. Commun Chem 2023; 6:191. [PMID: 37689829 PMCID: PMC10492864 DOI: 10.1038/s42004-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023] Open
Abstract
Macromolecular crowding effects on globular proteins, which usually adopt a single stable fold, have been widely studied. However, little is known about crowding effects on fold-switching proteins, which reversibly switch between distinct folds. Here we study the mutationally driven switch between the folds of GA and GB, the two 56-amino acid binding domains of protein G, using a structure-based dual-basin model. We show that, in the absence of crowders, the fold populations PA and PB can be controlled by the strengths of contacts in the two folds, κA and κB. A population balance, PA ≈ PB, is obtained for κB/κA = 0.92. The resulting model protein is subject to crowding at different packing fractions, ϕc. We find that crowding increases the GB population and reduces the GA population, reaching PB/PA ≈ 4 at ϕc = 0.44. We analyze the ϕc-dependence of the crowding-induced GA-to-GB switch using scaled particle theory, which provides a qualitative, but not quantitative, fit of our data, suggesting effects beyond a spherical description of the folds. We show that the terminal regions of the protein chain, which are intrinsically disordered only in GA, play a dominant role in the response of the fold switch to crowding effects.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
13
|
Zhang N, Guan W, Cui S, Ai N. Crowded environments tune the fold-switching in metamorphic proteins. Commun Chem 2023; 6:117. [PMID: 37291449 PMCID: PMC10250422 DOI: 10.1038/s42004-023-00909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Metamorphic proteins such as circadian clock protein KaiB and human chemokine XCL1 play vital roles in regulating biological processes, including gene expression, circadian clock and innate immune responses, and perform distinct functions in living cell by switching different structures in response to cellular environment stimuli. However, it is unclear how complex and crowded intracellular environments affect conformational rearrangement of metamorphic proteins. Here, the kinetics and thermodynamics of two well-characterized metamorphic proteins, circadian clock protein KaiB and human chemokine XCL1, were quantified in physiologically relevant environments by using NMR spectroscopy, indicating that crowded agents shift equilibrium towards the inactive form (ground-state KaiB and Ltn10-like state XCL1) without disturbing the corresponding structures, and crowded agents have predominantly impact on the exchange rate of XCL1 that switches folds on timescales of seconds, but have slightly impact on the exchange rate of KaiB that switches folds on timescales of hours. Our data shed light on how metamorphic proteins can respond immediately to the changed crowded intracellular conditions that induced by environmental cues and then execute different functions in living cell, and it also enhances our understanding of how environments enrich the sequence-structure-function paradigm.
Collapse
Affiliation(s)
- Ning Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, Merced, CA, 95343, USA
| | - Shouqi Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nana Ai
- Materials and Biomaterials Science and Engineering, University of California, Merced, CA, 95343, USA
| |
Collapse
|
14
|
Thirumalai D, Kumar A, Chakraborty D, Straub JE, Mugnai ML. Conformational Fluctuations and Phases in Fused in Sarcoma (FUS) Low-Complexity Domain. ARXIV 2023:arXiv:2303.04215v2. [PMID: 36945688 PMCID: PMC10029050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The well known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA binding protein, Fused In Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C- terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like behavior) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site specific and affects the stability of the fibril depending on the sites that are phosphorylated. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular understanding.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- Department of Physics, The University of Texas at Austin, Austin, TX 78712
| | - Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - John E Straub
- Department of Chemistry, Boston University, Boston, MA 78712
| | - Mauro L Mugnai
- Institute of Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057
| |
Collapse
|
15
|
Mondal S, Das S, Swamy MJ. Macromolecular Crowding Significantly Affects the Conformational Features and Carbohydrate Binding Properties of CIA17, a PP2-Type Lectin from Coccinia indica. Biochemistry 2022; 61:2344-2357. [PMID: 36200563 DOI: 10.1021/acs.biochem.2c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of macromolecular crowding on the conformational features and carbohydrate binding properties of CIA17, a PP2-type lectin, was investigated employing polymeric dextrans D6, D40, and D70 (Mr ∼ 6, 40, and 70 kDa, respectively) as crowders. While the secondary structure of CIA17 was significantly affected by D6, with a considerable decrease in the number of β-sheets and β-turns with a corresponding increase in the number of unordered structures, relatively smaller changes were induced by D40 and D70. However, differential scanning calorimetry (DSC) studies revealed that the thermal stability of the protein remains unchanged in the presence of crowders. While the larger dextrans, D70 and D40, induced modest quenching (∼10%) of the protein fluorescence by a static pathway, the smaller D6 induced a higher degree of quenching (37%), which involved both static and collisional quenching processes. The results of fluorescence correlation spectroscopy measurements together with DSC studies suggested that CIA17 forms larger oligomers in the presence of D40 and D70 but D6 prevents the formation of higher-order oligomers. The association constant for the CIA17-chitooligosaccharide interaction increased by ∼30% and 160% in the presence of D40 and D70, respectively, but decreased by ∼30% in the presence of D6. The higher binding affinity can be attributed to the excluded volume effect, i.e., an increased effective concentration of the protein in the presence of D40 and D70, whereas D6, being smaller, possibly penetrates into the protein interior, disrupting the water structure around the protein and also inducing conformational changes, resulting in weaker binding. These observations demonstrate that molecular crowding significantly affects the carbohydrate binding characteristics of lectins, which can modulate their physiological function.
Collapse
Affiliation(s)
- Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | - Somnath Das
- School of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad500 046, India
| |
Collapse
|
16
|
Houser JR, Cho HW, Hayden CC, Yang NX, Wang L, Lafer EM, Thirumalai D, Stachowiak JC. Molecular mechanisms of steric pressure generation and membrane remodeling by disordered proteins. Biophys J 2022; 121:3320-3333. [PMID: 36016498 PMCID: PMC9515369 DOI: 10.1016/j.bpj.2022.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cellular membranes, which are densely crowded by proteins, take on an elaborate array of highly curved shapes. Steric pressure generated by protein crowding plays a significant role in shaping membrane surfaces. It is increasingly clear that many proteins involved in membrane remodeling contain substantial regions of intrinsic disorder. These domains have large hydrodynamic radii, suggesting that they may contribute significantly to steric congestion on membrane surfaces. However, it has been unclear to what extent they are capable of generating steric pressure, owing to their conformational flexibility. To address this gap, we use a recently developed sensor based on Förster resonance energy transfer to measure steric pressure generated at membrane surfaces by the intrinsically disordered domain of the endocytic protein, AP180. We find that disordered domains generate substantial steric pressure that arises from both entropic and electrostatic components. Interestingly, this steric pressure is largely invariant with the molecular weight of the disordered domain, provided that coverage of the membrane surface is held constant. Moreover, equivalent levels of steric pressure result in equivalent degrees of membrane remodeling, regardless of protein molecular weight. This result, which is consistent with classical polymer scaling relationships for semi-dilute solutions, helps to explain the molecular and physical origins of steric pressure generation by intrinsically disordered domains. From a physiological perspective, these findings suggest that a broad range of membrane-associated disordered domains are likely to play a significant and previously unknown role in controlling membrane shape.
Collapse
Affiliation(s)
- Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Hyun Woo Cho
- Department of Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Noel X Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dave Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
17
|
You X, Baiz CR. Importance of Hydrogen Bonding in Crowded Environments: A Physical Chemistry Perspective. J Phys Chem A 2022; 126:5881-5889. [PMID: 35968816 DOI: 10.1021/acs.jpca.2c03803] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells are heterogeneous on every length and time scale; cytosol contains thousands of proteins, lipids, nucleic acids, and small molecules, and molecular interactions within this crowded environment determine the structure, dynamics, and stability of biomolecules. For decades, the effects of crowding at the atomistic scale have been overlooked in favor of more tractable models largely based on thermodynamics. Crowding can affect the conformations and stability of biomolecules by modulating water structure and dynamics within the cell, and these effects are nonlocal and environment dependent. Thus, characterizing water's hydrogen-bond (H-bond) networks is a critical step toward a complete microscopic crowding model. This perspective provides an overview of molecular crowding and describes recent time-resolved spectroscopy approaches investigating H-bond networks and dynamics in crowded or otherwise complex aqueous environments. Ultrafast spectroscopy combined with atomistic simulations has emerged as a powerful combination for studying H-bond structure and dynamics in heterogeneous multicomponent systems. We discuss the ongoing challenges toward developing a complete atomistic description of macromolecular crowding from an experimental as well as a theoretical perspective.
Collapse
Affiliation(s)
- Xiao You
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 19104, United States
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 19104, United States
| |
Collapse
|
18
|
Bazmi S, Wallin S. Crowding-induced protein destabilization in the absence of soft attractions. Biophys J 2022; 121:2503-2513. [PMID: 35672949 DOI: 10.1016/j.bpj.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022] Open
Abstract
It is generally assumed that volume exclusion by macromolecular crowders universally stabilizes the native states of proteins and destabilization suggests soft attractions between crowders and protein. Here we show that proteins can be destabilized even by crowders that are purely repulsive. With a coarse-grained sequence-based model, we study the folding thermodynamics of two sequences with different native folds, a helical hairpin and a β-barrel, in a range of crowder volume fractions, φc. We find that the native state, N, remains structurally unchanged under crowded conditions, while the size of the unfolded state, U, decreases monotonically with φc. Hence, for all φc>0, U is entropically disfavored relative to N. This entropy-centric view holds for the helical hairpin protein, which is stabilized under all crowded conditions as quantified by changes in either the folding midpoint temperature, Tm, or the free energy of folding. We find, however, that the β-barrel protein is destabilized under low-T, low-φc conditions. This destabilization can be understood from two characteristics of its folding: 1) a relatively compact U at T<Tm, such that U is only weakly disfavored entropically by the crowders; and 2) a transient, compact, and relatively low-energy nonnative state that has a maximum population of only a few percent at φc=0, but increasing monotonically with φc. Overall, protein destabilization driven by hard-core effects appears possible when a compaction of U leads to even a modest population of compact nonnative states that are energetically competitive with N.
Collapse
Affiliation(s)
- Saman Bazmi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland and Labrador, Canada.
| |
Collapse
|
19
|
Cubuk J, Soranno A. Macromolecular crowding and intrinsically disordered proteins: a polymer physics perspective. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jasmine Cubuk
- Washington University in St Louis Biochemistry and Molecular Biophysics UNITED STATES
| | - Andrea Soranno
- Washington University in St Louis Biochemistry and Molecular Biophysics 660 St Euclid Ave 63110 St Louis UNITED STATES
| |
Collapse
|
20
|
Baul U, Göth N, Bley M, Dzubiella J. Modulating internal transition kinetics of responsive macromolecules by collective crowding. J Chem Phys 2021; 155:244902. [PMID: 34972378 DOI: 10.1063/5.0076139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Packing and crowding are used in biology as mechanisms to (self-)regulate internal molecular or cellular processes based on collective signaling. Here, we study how the transition kinetics of an internal "switch" of responsive macromolecules is modified collectively by their spatial packing. We employ Brownian dynamics simulations of a model of Responsive Colloids, in which an explicit internal degree of freedom-here, the particle size-moving in a bimodal energy landscape self-consistently responds to the density fluctuations of the crowded environment. We demonstrate that populations and transition times for the two-state switching kinetics can be tuned over one order of magnitude by "self-crowding." An exponential scaling law derived from a combination of Kramers' and liquid state perturbation theory is in very good agreement with the simulations.
Collapse
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Nils Göth
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
22
|
Welte H, Sinn P, Kovermann M. Fluorine NMR Spectroscopy Enables to Quantify the Affinity Between DNA and Proteins in Cell Lysate. Chembiochem 2021; 22:2973-2980. [PMID: 34390111 PMCID: PMC8596521 DOI: 10.1002/cbic.202100304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Indexed: 11/12/2022]
Abstract
The determination of the binding affinity quantifying the interaction between proteins and nucleic acids is of crucial interest in biological and chemical research. Here, we have made use of site-specific fluorine labeling of the cold shock protein from Bacillus subtilis, BsCspB, enabling to directly monitor the interaction with single stranded DNA molecules in cell lysate. High-resolution 19 F NMR spectroscopy has been applied to exclusively report on resonance signals arising from the protein under study. We have found that this experimental approach advances the reliable determination of the binding affinity between single stranded DNA molecules and its target protein in this complex biological environment by intertwining analyses based on NMR chemical shifts, signal heights, line shapes and simulations. We propose that the developed experimental platform offers a potent approach for the identification of binding affinities characterizing intermolecular interactions in native surroundings covering the nano-to-micromolar range that can be even expanded to in cell applications in future studies.
Collapse
Affiliation(s)
- Hannah Welte
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| | - Pia Sinn
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| | - Michael Kovermann
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078467KonstanzGermany
| |
Collapse
|
23
|
Rastogi H, Chowdhury PK. Understanding enzyme behavior in a crowded scenario through modulation in activity, conformation and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140699. [PMID: 34298166 DOI: 10.1016/j.bbapap.2021.140699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023]
Abstract
Macromolecular crowding, inside the physiological interior, modulates the energy landscape of biological macromolecules in multiple ways. Amongst these, enzymes occupy a special place and hence understanding the function of the same in the crowded interior is of utmost importance. In this study, we have investigated the manner in which the multidomain enzyme, AK3L1 (PDB ID: 1ZD8), an isoform of adenylate kinase, has its features affected in presence of commonly used crowders (PEG 8, Dextran 40, Dextran 70, and Ficoll 70). Michaelis Menten plots reveal that the crowders in general enhance the activity of the enzyme, with the Km and Vmax values showing significant variations. Ficoll 70, induced the maximum activity for AK3L1 at 100 g/L, beyond which the activity reduced. Ensemble FRET studies were performed to provide insights into the relative domain (LID and CORE) displacements in presence of the crowders. Solvation studies reveal that the protein matrix surrounding the probe CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin) gets restricted in presence of the crowders, with Ficoll 70 providing the maximum rigidity, the same being linked to the decrease in the activity of the enzyme. Through our multipronged approach, we have observed a distinct correlation between domain displacement, enzyme activity and associated dynamics. Thus, keeping in mind the complex nature of enzyme activity and the surrounding bath of dense soup that the biological entity remains immersed in, indeed more such approaches need to be undertaken to have a better grasp of the "enzymes in the crowd".
Collapse
Affiliation(s)
- Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
24
|
Wang X, Bowman J, Tu S, Nykypanchuk D, Kuksenok O, Minko S. Polyethylene Glycol Crowder's Effect on Enzyme Aggregation, Thermal Stability, and Residual Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8474-8485. [PMID: 34236863 DOI: 10.1021/acs.langmuir.1c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein stability and performance in various natural and artificial systems incorporating many other macromolecules for therapeutic, diagnostic, sensor, and biotechnological applications attract increasing interest with the expansion of these technologies. Here we address the catalytic activity of lysozyme protein (LYZ) in the presence of a polyethylene glycol (PEG) crowder in a broad range of concentrations and temperatures in aqueous solutions of two different molecular mass PEG samples (Mw = 3350 and 10000 g/mol). The phase behavior of PEG-protein solutions is examined by using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), while the enzyme denaturing is monitored by using an activity assay (AS) and circular dichroism (CD) spectroscopy. Molecular dynamic (MD) simulations are used to illustrate the effect of PEG concentration on protein stability at high temperatures. The results demonstrate that LYZ residual activity after 1 h incubation at 80 °C is improved from 15% up to 55% with the addition of PEG. The improvement is attributed to two underlying mechanisms. (i) Primarily, the stabilizing effect is due to the suppression of the enzyme aggregation because of the stronger PEG-protein interactions caused by the increased hydrophobicity of PEG and lysozyme at elevated temperatures. (ii) The MD simulations showed that the addition of PEG to some degree stabilizes the secondary structures of the enzyme by delaying unfolding at elevated temperatures. The more pronounced effect is observed with an increase in PEG concentration. This trend is consistent with CD and AS experimental results, where the thermal stability is strengthened with increasing of PEG concentration and molecular mass. The results show that the highest stabilizing effect is approached at the critical overlap concentration of PEG.
Collapse
Affiliation(s)
- Xue Wang
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Jeremy Bowman
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
26
|
Abstract
The thermal motion of charged proteins causes randomly fluctuating electric fields inside cells. According to the fluctuation-dissipation theorem, there is an additional friction force associated with such fluctuations. However, the impact of these fluctuations on the diffusion and dynamics of proteins in the cytoplasm is unclear. Here, we provide an order-of-magnitude estimate of this effect by treating electric field fluctuations within a generalized Langevin equation model with a time-dependent friction memory kernel. We find that electric friction is generally negligible compared to solvent friction. However, a significant slowdown of protein diffusion and dynamics is expected for biomolecules with high net charges such as intrinsically disordered proteins and RNA. The results show that direct contacts between biomolecules in a cell are not necessarily required to alter their dynamics.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hagen Hofmann
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
27
|
Structural Refolding and Thermal Stability of Myoglobin in the Presence of Mixture of Crowders: Importance of Various Interactions for Protein Stabilization in Crowded Conditions. Molecules 2021; 26:molecules26092807. [PMID: 34068693 PMCID: PMC8126177 DOI: 10.3390/molecules26092807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The intracellular environment is overcrowded with a range of molecules (small and large), all of which influence protein conformation. As a result, understanding how proteins fold and stay functional in such crowded conditions is essential. Several in vitro experiments have looked into the effects of macromolecular crowding on different proteins. However, there are hardly any reports regarding small molecular crowders used alone and in mixtures to observe their effects on the structure and stability of the proteins, which mimics of the cellular conditions. Here we investigate the effect of different mixtures of crowders, ethylene glycol (EG) and its polymer polyethylene glycol (PEG 400 Da) on the structural and thermal stability of myoglobin (Mb). Our results show that monomer (EG) has no significant effect on the structure of Mb, while the polymer disrupts its structure and decreases its stability. Conversely, the additive effect of crowders showed structural refolding of the protein to some extent. Moreover, the calorimetric binding studies of the protein showed very weak interactions with the mixture of crowders. Usually, we can assume that soft interactions induce structural perturbations while exclusion volume effects stabilize the protein structure; therefore, we hypothesize that under in vivo crowded conditions, both phenomena occur and maintain the stability and function of proteins.
Collapse
|
28
|
Subadini S, Bera K, Hritz J, Sahoo H. Polyethylene glycol perturbs the unfolding of CRABP I: A correlation between experimental and theoretical approach. Colloids Surf B Biointerfaces 2021; 202:111696. [PMID: 33770701 DOI: 10.1016/j.colsurfb.2021.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
The importance of macromolecules paves the way towards a detailed molecular level investigation as all most all cellular processes occurring at the interior of cells in the form of proteins, enzymes, and other biological molecules are significantly affected because of their crowding. Thus, exploring the role of crowding environment on the denaturation and renaturation kinetics of protein molecules is of great importance. Here, CRABP I (cellular retinoic acid binding protein I) is employed as a model protein along with different molecular weights of Polyethylene glycol (PEG) as molecular crowders. The experimental evaluations are done by accessing the protein secondary structure analysis using circular dichroism (CD) spectroscopy and unfolding kinetics using intrinsic fluorescence of CRABP I at 37 °C to mimic the in vivo crowding environment. The unfolding kinetics results indicated that both PEG 2000 and PEG 4000 act as stabilizers by retarding the unfolding kinetic rates. Both kinetic and stability outcomes presented the importance of crowding environment on stability and kinetics of CRABP I. The molecular dynamics (MD) studies revealed that thirteen PEG 2000 molecules assembled during the 500 ns simulation, which increases the stability and percentage of β-sheet. The experimental findings are well supported by the molecular dynamics simulation results.
Collapse
Affiliation(s)
- Suchismita Subadini
- Biophysical and Protein Chemistry Lab, Department of Chemistry, NIT Rourkela, Rourkela, 769008, India
| | - Krishnendu Bera
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jozef Hritz
- CEITEC MU, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, NIT Rourkela, Rourkela, 769008, India; Center of Nanomaterials, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
29
|
Sun J, Prabhu N, Tang J, Yang F, Jia L, Guo J, Xiao K, Tam WL, Nordlund P, Dai L. Recent advances in proteome-wide label-free target deconvolution for bioactive small molecules. Med Res Rev 2021; 41:2893-2926. [PMID: 33533067 DOI: 10.1002/med.21788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Small-molecule drugs modulate biological processes and disease states through engagement of target proteins in cells. Assessing drug-target engagement on a proteome-wide scale is of utmost importance in better understanding the molecular mechanisms of action of observed beneficial and adverse effects, as well as in developing next generation tool compounds and drugs with better efficacies and specificities. However, systematic assessment of drug-target engagement has been an arduous task. With the continuous development of mass spectrometry-based proteomics instruments and techniques, various chemical proteomics approaches for drug target deconvolution (i.e., the identification of molecular target for drugs) have emerged. Among these, the label-free target deconvolution approaches that do not involve the chemical modification of compounds of interest, have gained increased attention in the community. Here we provide an overview of the basic principles and recent biological applications of the most important label-free methods including the cellular thermal shift assay, pulse proteolysis, chemical denaturant and protein precipitation, stability of proteins from rates of oxidation, drug affinity responsive target stability, limited proteolysis, and solvent-induced protein precipitation. The state-of-the-art technical implications and future outlook for the label-free approaches are also discussed.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Tang
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Kefeng Xiao
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, China.,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
30
|
In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy. Proc Natl Acad Sci U S A 2020; 117:20566-20575. [PMID: 32788347 DOI: 10.1073/pnas.2005779117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The complexity of the cellular medium can affect proteins' properties, and, therefore, in-cell characterization of proteins is essential. We explored the stability and conformation of the first baculoviral IAP repeat (BIR) domain of X chromosome-linked inhibitor of apoptosis (XIAP), BIR1, as a model for a homodimer protein in human HeLa cells. We employed double electron-electron resonance (DEER) spectroscopy and labeling with redox stable and rigid Gd3+ spin labels at three representative protein residues, C12 (flexible region), E22C, and N28C (part of helical residues 26 to 31) in the N-terminal region. In contrast to predictions by excluded-volume crowding theory, the dimer-monomer dissociation constant K D was markedly higher in cells than in solution and dilute cell lysate. As expected, this increase was partially recapitulated under conditions of high salt concentrations, given that conserved salt bridges at the dimer interface are critically required for association. Unexpectedly, however, also the addition of the crowding agent Ficoll destabilized the dimer while the addition of bovine serum albumin (BSA) and lysozyme, often used to represent interaction with charged macromolecules, had no effect. Our results highlight the potential of DEER for in-cell study of proteins as well as the complexities of the effects of the cellular milieu on protein structures and stability.
Collapse
|
31
|
Parray Z, Ahmad F, Hassan MI, Hasan I, Islam A. Effects of Ethylene Glycol on the Structure and Stability of Myoglobin Using Spectroscopic, Interaction, and In Silico Approaches: Monomer Is Different from Those of Its Polymers. ACS OMEGA 2020; 5:13840-13850. [PMID: 32566850 PMCID: PMC7301589 DOI: 10.1021/acsomega.0c01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Investigation of changes in thermal stabilities and structures of proteins in the presence of different co-solutes (ligands) is an integral part in the basic research, discovery, and development of drugs. Ethylene glycol (EG) is known to be toxic and causes teratogenic, inducing primarily skeletal and external malformations and other diseases. The effect of EG on the structure and thermal stability of myoglobin (Mb) was studied using various spectroscopic techniques at pH 7.0 and two different temperatures. As revealed by circular dichroism, Trp fluorescence, nano-DSF, and absorption (UV and visible) measurements, EG (i) has no significant effect on secondary and tertiary structures of Mb at 25 °C, and (ii) it decreases the thermal stability of the protein, which increases with increasing concentration of EG. As revealed by ANS (8-anilino-1-naphthalene sulfonic acid) fluorescence measurements, heat-induced denatured protein has newly exposed hydrophobic patches that bind to ANS. Isothermal titration calorimetry revealed that the interaction between EG and Mb is temperature dependent; the preferential interaction of EG is entropy driven at low temperature, 298 K (25 °C), and it is enthalpy driven at higher temperature, 343 K (70 °C). Molecular docking study showed that EG interacts with side chains of amino acid residues of Mb through van der Waals interactions and hydrogen bonding.
Collapse
Affiliation(s)
- Zahoor
Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ikramul Hasan
- Department
of Basic Medical Science, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 110025, KSA
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
32
|
Influence of crowding agents on the dynamics of a multidomain protein in its denatured state: a solvation approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:289-305. [PMID: 32399581 DOI: 10.1007/s00249-020-01435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
It is now well appreciated that the crowded intracellular environment significantly modulates an array of physiological processes including protein folding-unfolding, aggregation, and dynamics to name a few. In this work we have studied the dynamics of domain I of the protein human serum albumin (HSA) in its urea-induced denatured states, in the presence of a series of commonly used macromolecular crowding agents. HSA was labeled at Cys-34 (a free cysteine) in domain I with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) to act as a solvation probe. In partially denatured states (2-6 M urea), lower crowder concentrations (~ < 125 g/L) induced faster dynamics, while the dynamics became slower beyond 150 g/L of crowders. We propose that this apparent switch in dynamics is an evidence of a crossover from soft (enthalpic) to hard-core (entropic) interactions between the protein and crowder molecules. That soft interactions are also important for the crowders used here was further confirmed by the appreciable shift in the wavelength of the emission maximum of BADAN, in particular for PEG8000 and Ficoll 70 at concentrations where the excluded volume effect is not dominant.
Collapse
|
33
|
Perez CP, Elmore DE, Radhakrishnan ML. Computationally Modeling Electrostatic Binding Energetics in a Crowded, Dynamic Environment: Physical Insights from a Peptide–DNA System. J Phys Chem B 2019; 123:10718-10734. [DOI: 10.1021/acs.jpcb.9b09478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Black DJ, Tran QK, Keightley A, Chinawalkar A, McMullin C, Persechini A. Evaluating Calmodulin-Protein Interactions by Rapid Photoactivated Cross-Linking in Live Cells Metabolically Labeled with Photo-Methionine. J Proteome Res 2019; 18:3780-3791. [PMID: 31483676 DOI: 10.1021/acs.jproteome.9b00510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work addresses the question of how the Ca2+ sensor protein calmodulin shapes cellular responses to Ca2+ signals. Proteins interacting with affinity tagged calmodulin were captured by rapid (t1/2 ≈ 7 s) photoactivated cross-linking under basal conditions, after brief removal of extracellular Ca2+ and during a cytosolic [Ca2+] transient in cells metabolically labeled with a photoreactive methionine analog. Tagged adducts were stringently enriched, and captured proteins were identified and quantified by LC-MS/MS. A set of 489 proteins including 27 known calmodulin interactors was derived. A threshold for fractional capture was applied to define a high specificity group of 170 proteins, including 22 known interactors, and a low specificity group of 319 proteins. Capture of ∼60% of the high specificity group was affected by manipulations of Ca2+, compared with ∼20% of the low specificity group. This suggests that the former is likely to contain novel interactors of physiological significance. The capture of 29 proteins, nearly all high specificity, was decreased by the removal of extracellular Ca2+, although this does not affect cytosolic [Ca2+]. Capture of half of these was unaffected by the cytosolic [Ca2+] transient, consistent with high local [Ca2+]. These proteins are hypothesized to reside in or near microdomains of high [Ca2+] supported by the Ca2+ influx.
Collapse
Affiliation(s)
- D J Black
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | | | - Andrew Keightley
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Ameya Chinawalkar
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Cole McMullin
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , Kansas City , Missouri 64110-2499 , United States
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry , University of Missouri-Kansas City , 5007 Rockhill Road , Kansas City , Missouri 64110-2499 , United States
| |
Collapse
|
35
|
Carbohydrate-Based Macromolecular Crowding-Induced Stabilization of Proteins: Towards Understanding the Significance of the Size of the Crowder. Biomolecules 2019; 9:biom9090477. [PMID: 31547256 PMCID: PMC6769620 DOI: 10.3390/biom9090477] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022] Open
Abstract
There are a large number of biomolecules that are accountable for the extremely crowded intracellular environment, which is totally different from the dilute solutions, i.e., the idealized conditions. Such crowded environment due to the presence of macromolecules of different sizes, shapes, and composition governs the level of crowding inside a cell. Thus, we investigated the effect of different sizes and shapes of crowders (ficoll 70, dextran 70, and dextran 40), which are polysaccharide in nature, on the thermodynamic stability, structure, and functional activity of two model proteins using UV-Vis spectroscopy and circular dichroism techniques. We observed that (a) the extent of stabilization of α-lactalbumin and lysozyme increases with the increasing concentration of the crowding agents due to the excluded volume effect and the small-sized and rod-shaped crowder, i.e., dextran 40 resulted in greater stabilization of both proteins than dextran 70 and ficoll 70; (b) structure of both the proteins remains unperturbed; and (c) enzymatic activity of lysozyme decreases with the increasing concentration of the crowder.
Collapse
|
36
|
Kim DM, Yao X, Vanam RP, Marlow MS. Measuring the effects of macromolecular crowding on antibody function with biolayer interferometry. MAbs 2019; 11:1319-1330. [PMID: 31401928 PMCID: PMC6748605 DOI: 10.1080/19420862.2019.1647744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biotherapeutic proteins are commonly dosed at high concentrations into the blood, which is an inherently complex, crowded solution with substantial protein content. The effects of macromolecular crowding may lead to an appreciable level of non-specific hetero-association in this physiological environment. Therefore, developing a method to characterize the diverse consequences of non-specific interactions between proteins under such non-ideal, crowded conditions, which deviate substantially from those commonly employed for in vitro characterization, is vital to achieving a more complete picture of antibody function in a biological context. In this study, we investigated non-specific interactions between human serum albumin (HSA) and two monoclonal antibodies (mAbs) by static light scattering and determined these interactions are both ionic strength-dependent and mAb-dependent. Using biolayer interferometry (BLI), we assessed the effect of HSA on antigen binding by mAbs, demonstrating that these non-specific interactions have a functional impact on mAb:antigen interactions, particularly at low ionic strength. While this effect is mitigated at physiological ionic strength, our in vitro data support the notion that HSA in the blood may lead to non-specific interactions with mAbs in vivo, with a potential impact on their interactions with antigen. Furthermore, the BLI method offers a high-throughput advantage compared to orthogonal techniques such as analytical ultracentrifugation and is amenable to a greater variety of solution conditions compared to nuclear magnetic resonance spectroscopy. Our study demonstrates that BLI is a viable technology for examining the impact of non-specific interactions on specific biologically relevant interactions, providing a direct method to assess binding events in crowded conditions.
Collapse
Affiliation(s)
- Dorothy M Kim
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Xiao Yao
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Ram P Vanam
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Michael S Marlow
- Pre-Clinical Development and Protein Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA.,Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc ., Ridgefield , CT , USA
| |
Collapse
|
37
|
Nandy A, Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Structure, Activity, and Dynamics of Human Serum Albumin in a Crowded Pluronic F127 Hydrogel. J Phys Chem B 2019; 123:3397-3408. [DOI: 10.1021/acs.jpcb.9b00219] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Somen Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
38
|
Folding of poly-amino acids and intrinsically disordered proteins in overcrowded milieu induced by pH change. Int J Biol Macromol 2018; 125:244-255. [PMID: 30529354 DOI: 10.1016/j.ijbiomac.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
pH-induced structural changes of the synthetic homopolypeptides poly-E, poly-K, poly-R, and intrinsically disordered proteins (IDPs) prothymosin α (ProTα) and linker histone H1, in concentrated PEG solutions simulating macromolecular crowding conditions within the membrane-less organelles, were characterized. The conformational transitions of the studied poly-amino acids in the concentrated PEG solutions depend on the polymerization degree of these homopolypeptides, the size of their side chains, the charge distribution of the side chains, and the crowding agent concentration. The results obtained for poly-amino acids are valid for IDPs having a significant total charge. The overcrowded conditions promote a significant increase in the cooperativity of the pH-induced coil-α-helix transition of ProTα and provoke histone H1 aggregation. The most favorable conditions for the pH-induced structural transitions in concentrated PEG solutions are realized when the charged residues are grouped in blocks, and when the distance between the end of the side group carrying charge and the backbone is small. Therefore, the block-wise distribution of charged residues within the IDPs not only plays an important role in the liquid-liquid phase transitions, but may also define the expressivity of structural transitions of these proteins in the overcrowded conditions of the membrane-less organelles.
Collapse
|
39
|
Cheng K, Wu Q, Zhang Z, Pielak GJ, Liu M, Li C. Crowding and Confinement Can Oppositely Affect Protein Stability. Chemphyschem 2018; 19:3350-3355. [DOI: 10.1002/cphc.201800857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Gary J. Pielak
- Department of Chemistry Department of Biochemistry and Biophysics University of North Carolina, Chapel Hill Chapel Hill, NC 27599-3290 USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 P. R. China
| |
Collapse
|
40
|
Wang Y, Sukenik S, Davis CM, Gruebele M. Cell Volume Controls Protein Stability and Compactness of the Unfolded State. J Phys Chem B 2018; 122:11762-11770. [PMID: 30289261 DOI: 10.1021/acs.jpcb.8b08216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Macromolecular crowding is widely accepted as one of the factors that can alter protein stability, structure, and function inside cells. Less often considered is that crowding can be dynamic: as cell volume changes, either as a result of external duress or in the course of the cell cycle, water moves in or out through membrane channels, and crowding changes in tune. Both theory and in vitro experiments predict that protein stability will be altered as a result of crowding changes. However, it is unclear how much the structural ensemble is altered as crowding changes in the cell. To test this, we look at the response of a FRET-labeled kinase to osmotically induced volume changes in live cells. We examine both the folded and unfolded states of the kinase by changing the temperature of the media surrounding the cell. Our data reveals that crowding compacts the structure of its unfolded ensemble but stabilizes the folded protein. We propose that the structure of proteins lacking a rigid, well-defined tertiary structure could be highly sensitive to both increases and decreases in cell volume. Our findings present a possible mechanism for disordered proteins to act as sensors and actuators of cell cycle or external stress events that coincide with a change in macromolecular crowding.
Collapse
Affiliation(s)
- Yuhan Wang
- Center for Biophysics and Computational Biology , University of Illinois , Urbana , Illinois 61801 , United States
| | - Shahar Sukenik
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Caitlin M Davis
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Center for Biophysics and Computational Biology , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
41
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
42
|
Kumar R, Sharma D, Kumar V, Kumar R. Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Arch Biochem Biophys 2018; 654:146-162. [DOI: 10.1016/j.abb.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
|
43
|
Ribeiro S, Ebbinghaus S, Marcos JC. Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Lett 2018; 592:3040-3053. [DOI: 10.1002/1873-3468.13211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Sara Ribeiro
- Centre of Chemistry University of Minho Braga Portugal
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry Technical University Braunschweig Germany
| | | |
Collapse
|
44
|
Wang X, Yadavalli NS, Laradji AM, Minko S. Grafting through Method for Implanting of Lysozyme Enzyme in Molecular Brush for Improved Biocatalytic Activity and Thermal Stability. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xue Wang
- Nanostructured Materials Lab, The University of Georgia, Athens, Georgia 30602, United States
| | - Nataraja S. Yadavalli
- Nanostructured Materials Lab, The University of Georgia, Athens, Georgia 30602, United States
| | - Amine M. Laradji
- Nanostructured Materials Lab, The University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
45
|
Snead WT, Stachowiak JC. Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. J Mol Biol 2018; 430:2293-2308. [PMID: 29627460 DOI: 10.1016/j.jmb.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023]
Abstract
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Yadavalli NS, Borodinov N, Choudhury CK, Quiñones-Ruiz T, Laradji AM, Tu S, Lednev IK, Kuksenok O, Luzinov I, Minko S. Thermal Stabilization of Enzymes with Molecular Brushes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nataraja S. Yadavalli
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Nikolay Borodinov
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Chandan K. Choudhury
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Tatiana Quiñones-Ruiz
- Department
of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Amine M. Laradji
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| | - Sidong Tu
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor K. Lednev
- Department
of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Olga Kuksenok
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Igor Luzinov
- Department
of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sergiy Minko
- Nanostructured
Materials Laboratory, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
47
|
Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R. Crowders and Cosolvents-Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. Chemphyschem 2017; 18:2951-2972. [DOI: 10.1002/cphc.201700762] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mimi Gao
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Christoph Held
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Satyajit Patra
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Loana Arns
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund University; Department of Biochemical and Chemical Engineering; Emil-Figge-Str. 70 44227 Dortmund Germany
| | - Roland Winter
- TU Dortmund University; Faculty of Chemistry and Chemical Biology; Physical Chemistry I-Biophysical Chemistry; Otto Hahn Str. 4a 44227 Dortmund Germany
| |
Collapse
|
48
|
Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, von Mering C, Claassen M, Picotti P. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 2017; 355:355/6327/eaai7825. [PMID: 28232526 DOI: 10.1126/science.aai7825] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
Temperature-induced cell death is thought to be due to protein denaturation, but the determinants of thermal sensitivity of proteomes remain largely uncharacterized. We developed a structural proteomic strategy to measure protein thermostability on a proteome-wide scale and with domain-level resolution. We applied it to Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus, and human cells, yielding thermostability data for more than 8000 proteins. Our results (i) indicate that temperature-induced cellular collapse is due to the loss of a subset of proteins with key functions, (ii) shed light on the evolutionary conservation of protein and domain stability, and (iii) suggest that natively disordered proteins in a cell are less prevalent than predicted and (iv) that highly expressed proteins are stable because they are designed to tolerate translational errors that would lead to the accumulation of toxic misfolded species.
Collapse
Affiliation(s)
- Pascal Leuenberger
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.,Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland
| | - Stefan Ganscha
- Systems Biology Graduate School PhD Program, ETHZ and University of Zurich, CH-8093 Zurich, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Abdullah Kahraman
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Manfred Claassen
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, CH-8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich (ETHZ), CH-8093 Zurich, Switzerland.
| |
Collapse
|
49
|
Rodriguez G, Esadze A, Weiser BP, Schonhoft JD, Cole PA, Stivers JT. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation. ACS Chem Biol 2017; 12:2260-2263. [PMID: 28787572 DOI: 10.1021/acschembio.7b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear human uracil-DNA glycosylase (hUNG2) initiates base excision repair (BER) of genomic uracils generated through misincorporation of dUMP or through deamination of cytosines. Like many human DNA glycosylases, hUNG2 contains an unstructured N-terminal domain that encodes a nuclear localization signal, protein binding motifs, and sites for post-translational modifications. Although the N-terminal domain has minimal effects on DNA binding and uracil excision kinetics, we report that this domain enhances the ability of hUNG2 to translocate on DNA chains as compared to the catalytic domain alone. The enhancement is most pronounced when physiological ion concentrations and macromolecular crowding agents are used. These data suggest that crowded conditions in the human cell nucleus promote the interaction of the N-terminus with duplex DNA during translocation. The increased contact time with the DNA chain likely contributes to the ability of hUNG2 to locate densely spaced uracils that arise during somatic hypermutation and during fluoropyrimidine chemotherapy.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Alexandre Esadze
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Brian P. Weiser
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Joseph D. Schonhoft
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Philip A. Cole
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - James T. Stivers
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| |
Collapse
|
50
|
Kumar S, Sharma D, Kumar R. Role of Macromolecular Crowding on Stability and Iron Release Kinetics of Serum Transferrin. J Phys Chem B 2017; 121:8669-8683. [PMID: 28837344 DOI: 10.1021/acs.jpcb.7b05702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The macromolecular crowding influences the structural stability and functional properties of transferrin (Tf). The equilibrium as well as kinetic studies of Tf at different concentrations of crowding agents (dextran 40, dextran 70, and ficoll 70) and at a fixed concentration of dextran 40 under different concentrations of NaCl at pH 7.4 and 5.6 (±1) revealed that (i) the crowder environment increases the diferric-Tf (Fe2Tf) stability against iron loss and overall denaturation of the protein, (ii) both in the absence and presence of crowder, the presence of salt promotes the loss of iron and overall denaturation of Fe2Tf which is due to ionic screening of electrostatic interactions, (iii) the crowder environment retards iron release from monoferric N-lobe of Tf (FeNTf) by increasing enthalpic barrier, (iv) the retardation of iron release by crowding is enthalpically dominated than the entropic one, (v) both in the absence and presence of crowder, the presence of salt accelerates the iron release from FeNTf due to ionic screening of electrostatic interactions and anion binding to KISAB sites, and (vi) the crowders environment is unable to diminish (a) the salt-induced destabilization of Fe2Tf against the loss of iron and overall denaturation and (b) the anion effect and ionic screening of diffusive counterions responsible to promote iron release from FeNTf.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Chemistry and Biochemistry, Thapar University , Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research, Institute of Microbial Technology , Sector 39A, Chandigarh, India
| | - Rajesh Kumar
- Centre for Chemical Sciences, School of Bassic and Applied Sciences, Central University of Punjab , Bathinda 151001, India
| |
Collapse
|