1
|
Alotaibi N, Babaahmadi R, Das S, Richards E, Wirth T, Pramanik M, Melen RL. B(C 6F 5) 3-Catalyzed Regiodivergent Thioetherifications of Alkenes via Thiiranium Intermediates: Experimental and Computational Insights. Chemistry 2024:e202404236. [PMID: 39652309 DOI: 10.1002/chem.202404236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Indexed: 12/25/2024]
Abstract
Precise control of selective alkene functionalization is a continuing challenge in the chemical community. In this study, we develop a substitution-controlled regiodivergent thioetherification of di- or trisubstituted alkenes using 10 mol % tris(pentafluorophenyl)borane [B(C6F5)3] as a catalyst and N-thiosuccinimide as a sulfenylating reagent. This metal-free borane catalyzed C-S bond forming method is utilized for a Csp2-H sulfenylation reaction to synthesize an array of diphenylvinylsulfide derivatives with good to excellent yields (25 examples, up to 91 % yield). Some of the products exhibit aggregation-induced emission luminogen properties used in organic light-emitting diodes (OLEDs), chemical sensors, and biological imaging units. Depending upon the starting alkene, Csp3-S sulfenylation products could also be generated regioselectively. A variety of allylic thioethers from α-alkyl substituted styrenes were isolable in good yields and selectivities (14 examples, up to 67 % yield). The DFT-supported mechanistic study confirms that the reaction proceeds via a thiiranium ion intermediate, where the regioselectivity and product formation is determined by the alkene substituents which influence the activation barriers and energy profiles. Diphenylvinylsulfide derivatives can also be efficiently transformed into a range of synthetically valuable compounds, including vinyl sulfoxides, vinyl sulfones, and vinyl sulfoximines.
Collapse
Affiliation(s)
- Nusaybah Alotaibi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
- Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia
| | - Rasool Babaahmadi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Sampurna Das
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Emma Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Cymru/Wales, CF10 3AT, UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Cymru/Wales, CF10 3AT, UK
| | - Milan Pramanik
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK
| |
Collapse
|
2
|
Tilden JAR, Doud EA, Montgomery HR, Maynard HD, Spokoyny AM. Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems. J Am Chem Soc 2024; 146:29989-30003. [PMID: 39468851 DOI: 10.1021/jacs.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The recent emergence of organometallic chemistry for modification of biomolecular nanostructures has begun to rewrite the long-standing assumption among practitioners that small-molecule organometallics are fundamentally incompatible with biological systems. This Perspective sets out to clarify some of the existing misconceptions by focusing on the growing organometallic toolbox for biomolecular modification. Specifically, we highlight key organometallic transformations in constructing complex biologically relevant systems on the nanomolecular scale, and the organometallic synthesis of hybrid nanomaterials composed of classical nanomaterial components combined with biologically relevant species. As research progresses, many of the challenges associated with applying organometallic chemistry in this context are rapidly being reassessed. Looking to the future, the growing utility of organometallic transformations will likely make them more ubiquitous in the construction and modification of biomolecular nanostructures.
Collapse
Affiliation(s)
- James A R Tilden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Zhang Q, Kuang G, Wang L, Duan P, Sun W, Ye F. Designing Bioorthogonal Reactions for Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0251. [PMID: 38107023 PMCID: PMC10723801 DOI: 10.34133/research.0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Bioorthogonal reactions are a class of chemical reactions that can be carried out in living organisms without interfering with other reactions, possessing high yield, high selectivity, and high efficiency. Since the first proposal of the conception by Professor Carolyn Bertozzi in 2003, bioorthogonal chemistry has attracted great attention and has been quickly developed. As an important chemical biology tool, bioorthogonal reactions have been applied broadly in biomedicine, including bio-labeling, nucleic acid functionalization, drug discovery, drug activation, synthesis of antibody-drug conjugates, and proteolysis-targeting chimeras. Given this, we summarized the basic knowledge, development history, research status, and prospects of bioorthogonal reactions and their biomedical applications. The main purpose of this paper is to furnish an overview of the intriguing bioorthogonal reactions in a variety of biomedical applications and to provide guidance for the design of novel reactions to enrich bioorthogonal chemistry toolkits.
Collapse
Affiliation(s)
- Qingfei Zhang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| | - Gaizhen Kuang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Li Wang
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weijian Sun
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangfu Ye
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Nasibullin I, Yoshioka H, Mukaimine A, Nakamura A, Kusakari Y, Chang TC, Tanaka K. Catalytic olefin metathesis in blood. Chem Sci 2023; 14:11033-11039. [PMID: 37860663 PMCID: PMC10583672 DOI: 10.1039/d3sc03785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
The direct synthesis of drugs in vivo enables drugs to treat diseases without causing side effects in healthy tissues. Transition-metal reactions have been widely explored for uncaging and synthesizing bioactive drugs in biological environments because of their remarkable reactivity. Nonetheless, it is difficult to develop a promising method to achieve in vivo drug synthesis because blood cells and metabolites deactivate transition-metal catalysts. We report that a robust albumin-based artificial metalloenzyme (ArM) with a low loading (1-5 mol%) can promote Ru-based olefin metathesis to synthesize molecular scaffolds and an antitumor drug in blood. The ArM retained its activity after soaking in blood for 24 h and provided the first example of catalytic olefin cross metathesis in blood. Furthermore, the cyclic-Arg-Gly-Asp (cRGD) peptide-functionalized ArM at lower dosages could still efficiently perform in vivo drug synthesis to inhibit the growth of implanted tumors in mice. Such a system can potentially construct therapeutic drugs in vivo for therapies without side effects.
Collapse
Affiliation(s)
- Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Hiromasa Yoshioka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research RIKEN Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
5
|
Zhao F, Li Y, Houk KN, Lu Q, Liu F. Computational Elucidation on the Conformational Control of Selectivity in Intramolecular Ring-Closing Metathesis vs Intermolecular Homometathesis. J Org Chem 2023. [PMID: 37364253 DOI: 10.1021/acs.joc.3c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The ring-closing metathesis reaction of diene plays an important role in the construction of cyclic compounds. In this research, density functional theory (DFT) calculations were conducted to elucidate the mechanisms and origins of the selectivity of ring-closing metathesis and homometathesis. The computational results suggest that the selectivity is determined by the substrate conformation. For the ester-tethered substrate, the homometathesis is more favorable, due to the planar structure of ester facilitating the conjugative effect of the formed E-homometathesis product. For the amide-tethered substrate, the ring-closing metathesis product is the only observed product because the steric hindrance of N-substituents disfavors homometathesis.
Collapse
Affiliation(s)
- Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yixuan Li
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Qianqian Lu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Patrzałek M, Zieliński A, Pasparakis G, Vamvakaki M, Ruszczyńska A, Bulska E, Kajetanowicz A, Grela K. Testing Diverse Strategies for Ruthenium Catalyst Removal After Aqueous Homogeneous Olefin Metathesis. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Peregrina JM, Oroz P, Avenoza A, Busto JH, Corzana F, Zurbano MM. Strategies for the Synthesis of Selenocysteine Derivatives. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1588-9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstractβ-Seleno-α-amino acids, known as selenocysteine (Sec) derivatives, have emerged as important targets because of their role in chemical biology, not only as part of selenoproteins with important redox properties, but also because of their activity as antivirals or metabolites effective in inhibiting carcinogenesis. In addition, there is demand for this type of compounds due to their use in native chemical ligation to construct large peptides. Therefore, this review summarizes the various synthetic methods that have been published to construct Sec derivatives. Most of them involve the generation of the C–Se bond by nucleophilic substitution reactions, but other reactions such as radical or multicomponent strategies are also reported. Of particular importance is the Se-Michael addition of Se-nucleophiles to chiral bicyclic dehydroalanines, in which the stereogenic center is generated under complete stereocontrol.1 Introduction2 Previously Reviewed Synthesis of Sec3 Retrosynthesis of Sec Derivatives4 Sec Derivatives by Nucleophilic Substitutions5 Sec Derivatives by Radical Processes6 Sec Derivatives by 1,4-Conjugate Additions7 Conclusion
Collapse
|
9
|
1H NMR Analysis of the Metathesis Reaction between 1-Hexene and (E)-Anethole Using Grubbs 2nd Generation Catalyst: Effect of Reaction Conditions on (E)-1-(4-Methoxyphenyl)-1-hexene Formation and Decomposition. Catalysts 2021. [DOI: 10.3390/catal11121483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The metathesis of 1-hexene and (E)-anethole in the presence of Grubbs 2nd generation catalyst was monitored by in situ 1H NMR spectroscopy at different temperatures (15 °C, 25 °C, and 45 °C) and anethole mol fractions (XAnethole ≈ 0.17, 0.29, 0.5, 0.71, 0.83). Time traces confirmed the instantaneous formation of (E)-1-(4-methoxyphenyl)-1-hexene, the cross-metathesis product. A maximum concentration of (E)-1-(4-methoxyphenyl)-1-hexene is reached fairly fast (the time depending on the reaction conditions), and this is followed by a decrease in the concentration of (E)-1-(4-methoxyphenyl)-1-hexene due to secondary metathesis. The maximum concentration of (E)-1-(4-methoxyphenyl)-1-hexene was more dependent on the XAnethole than the temperature. The highest TOF (3.46 min−1) was obtained for the reaction where XAnethole was 0.16 at 45 °C. The highest concentration of the cross-metathesis product was however achieved after 6 min with an anethole mol fraction of 0.84 at 25 °C. A preliminary kinetic study indicated that the secondary metathesis reaction followed first order kinetics.
Collapse
|
10
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
11
|
Matsuo T. Functionalization of Hoveyda-Grubbs-type Complexes for Application to Biomolecules. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
12
|
Groenevelt JM, Corey DJ, Fehl C. Chemical Synthesis and Biological Applications of O-GlcNAcylated Peptides and Proteins. Chembiochem 2021; 22:1854-1870. [PMID: 33450137 DOI: 10.1002/cbic.202000843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Abstract
All human cells use O-GlcNAc protein modifications (O-linked N-acetylglucosamine) to rapidly adapt to changing nutrient and stress conditions through signaling, epigenetic, and proteostasis mechanisms. A key challenge for biologists in defining precise roles for specific O-GlcNAc sites is synthetic access to homogenous isoforms of O-GlcNAc proteins, a result of the non-genetically templated, transient, and heterogeneous nature of O-GlcNAc modifications. Toward a solution, this review details the state of the art of two strategies for O-GlcNAc protein modification: advances in "bottom-up" O-GlcNAc peptide synthesis and direct "top-down" installation of O-GlcNAc on full proteins. We also describe key applications of synthetic O-GlcNAc peptide and protein tools as therapeutics, biophysical structure-function studies, biomarkers, and as disease mechanistic probes to advance translational O-GlcNAc biology.
Collapse
Affiliation(s)
- Jessica M Groenevelt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Daniel J Corey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
13
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
14
|
Schipp CJ, Ma Y, Al‐Shameri A, D'Alessio F, Neubauer P, Contestabile R, Budisa N, di Salvo ML. An Engineered Escherichia coli Strain with Synthetic Metabolism for in-Cell Production of Translationally Active Methionine Derivatives. Chembiochem 2020; 21:3525-3538. [PMID: 32734669 PMCID: PMC7756864 DOI: 10.1002/cbic.202000257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 01/26/2023]
Abstract
In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re-engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans-sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio-orthogonal compounds. Our reprogrammed E. coli strain is capable of the in-cell production of l-azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology-based production.
Collapse
Affiliation(s)
- Christian Johannes Schipp
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Ying Ma
- Paraxel International GmbH, Berlin, Campus DRK Kliniken Berlin Westend Haus 18Spandauer Damm 13014050BerlinGermany
| | - Ammar Al‐Shameri
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
| | - Federico D'Alessio
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of BiotechnologyTechnische Universität Berlin ACK 24Ackerstraße 7613355BerlinGermany
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität BerlinMüller-Breslau-Straße. 1010623BerlinGermany
- Department of ChemistryUniversity of ManitobaWinnipegMB, R3T 2N2Canada
| | - Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”Sapienza Università di RomaPiazzale Aldo Moro, 5 – Edificio CU2000185RomaItaly
| |
Collapse
|
15
|
Rodríguez J, Martínez-Calvo M. Transition-Metal-Mediated Modification of Biomolecules. Chemistry 2020; 26:9792-9813. [PMID: 32602145 DOI: 10.1002/chem.202001287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The site-selective modification of biomolecules has grown spectacularly in recent years. The presence of a large number of functional groups in a biomolecule makes its chemo- and regioselective modification a challenging goal. In this context, transition-metal-mediated reactions are emerging as a powerful tool owing to their unique reactivity and good functional group compatibility, allowing highly efficient and selective bioconjugation reactions that operate under mild conditions. This Minireview focuses on the current state of organometallic chemistry for bioconjugation, highlighting the potential of transition metals for the development of chemoselective and site-specific methods for functionalization of peptides, proteins and nucleic acids. The importance of the selection of ligands attached to the transition metal for conferring the desired chemoselectivity will be highlighted.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Miguel Martínez-Calvo
- Centro de Investigaciones Científicas Avanzadas (CICA), AE CICA-INIBIC, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus de Elviña, 15071 A, Coruña, Galicia, Spain
| |
Collapse
|
16
|
Li Y, Fu H. Bioorthogonal Ligations and Cleavages in Chemical Biology. ChemistryOpen 2020; 9:835-853. [PMID: 32817809 PMCID: PMC7426781 DOI: 10.1002/open.202000128] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Bioorthogonal reactions including the bioorthogonal ligations and cleavages have become an active field of research in chemical biology, and they play important roles in chemical modification and functional regulation of biomolecules. This review summarizes the developments and applications of the representative bioorthogonal reactions including the Staudinger reactions, the metal-mediated bioorthogonal reactions, the strain-promoted cycloadditions, the inverse electron demand Diels-Alder reactions, the light-triggered bioorthogonal reactions, and the reactions of chloroquinoxalines and ortho-dithiophenols.
Collapse
Affiliation(s)
- Youshan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
17
|
Church DC, Takiguchi L, Pokorski JK. Optimization of Ring-Opening Metathesis Polymerization (ROMP) under Physiologically Relevant Conditions. Polym Chem 2020; 11:4492-4499. [PMID: 33796158 PMCID: PMC8009303 DOI: 10.1039/d0py00716a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Timmer BJJ, Kravchenko O, Ramström O. Selective Cross‐Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202002220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University SE 39182 Kalmar Sweden
| |
Collapse
|
19
|
Jia R, Zuo Z, Li X, Liu L, Dong J. New strategy for production of primary alcohols from aliphatic olefins by tandem cross-metathesis/hydrogenation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Sršan L, Ziegler T. Synthesis of new asparagine-based glycopeptides for future scanning tunneling microscopy investigations. Beilstein J Org Chem 2020; 16:888-894. [PMID: 32461770 PMCID: PMC7214877 DOI: 10.3762/bjoc.16.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
For investigations on the biological functions of oligosaccharides and peptidomimetics, new asparagine-based mono- and disaccharides containing glycopeptides were prepared in solution. The applicability of two common peptide coupling reagents, using an orthogonal Fmoc/t-Bu strategy along with acetyl protecting groups for the carbohydrate moiety, was studied. Thus, the prepared libraries of glycopeptides were designed as model systems of cell surfaces for future investigations by combined preparative mass spectroscopy and scanning tunneling microscopy (STM) using soft-landing electrospray beam deposition (ES-IBD), on metal surfaces.
Collapse
Affiliation(s)
- Laura Sršan
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
22
|
Pye SJ, Chalker JM, Raston CL. Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Aust J Chem 2020. [DOI: 10.1071/ch20005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ruthenium-catalysed ethenolysis occurs in a vortex fluidic device (VFD) – a scalable, thin-film microfluidic continuous flow process. This process takes advantage of the efficient mass transfer of gaseous reagents into the dynamic thin film of liquid. Also reported is the rapid quenching of the ruthenium-based olefin metathesis catalyst by the addition of a saturated solution of N-acetyl-l-cysteine in MeCN, as a convenient alternative to previously reported quenching methods.
Collapse
|
23
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phase-Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019; 58:17805-17813. [PMID: 31529754 PMCID: PMC6899692 DOI: 10.1002/anie.201910148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Indexed: 11/22/2022]
Abstract
The receptor lipid Gb3 is responsible for the specific internalization of Shiga toxin (STx) into cells. The head group of Gb3 defines the specificity of STx binding, and the backbone with different fatty acids is expected to influence its localization within membranes impacting membrane organization and protein internalization. To investigate this influence, a set of Gb3 glycosphingolipids labeled with a BODIPY fluorophore attached to the head group was synthesized. C24 fatty acids, saturated, unsaturated, α-hydroxylated derivatives, and a combination thereof, were attached to the sphingosine backbone. The synthetic Gb3 glycosphingolipids were reconstituted into coexisting liquid-ordered (lo )/liquid-disordered (ld ) giant unilamellar vesicles (GUVs), and STx binding was verified by fluorescence microscopy. Gb3 with the C24:0 fatty acid partitioned mostly in the lo phase, while the unsaturated C24:1 fatty acid distributes more into the ld phase. The α-hydroxylation does not influence its partitioning.
Collapse
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular ChemistryTammannstr. 237077GöttingenGermany
- Max Planck Institute for Dynamics and Self OrganizationAm Faßberg 1737077GöttingenGermany
| |
Collapse
|
24
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb
3
Glycosphingolipids with Labeled Head Groups: Distribution in Phase‐Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
- Max Planck Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| |
Collapse
|
25
|
Timmer BJJ, Ramström O. Acid‐Assisted Direct Olefin Metathesis of Unprotected Carbohydrates in Water. Chemistry 2019; 25:14408-14413. [PMID: 31390489 DOI: 10.1002/chem.201903155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
26
|
Sabatino V, Rebelein JG, Ward TR. "Close-to-Release": Spontaneous Bioorthogonal Uncaging Resulting from Ring-Closing Metathesis. J Am Chem Soc 2019; 141:17048-17052. [PMID: 31503474 PMCID: PMC6823642 DOI: 10.1021/jacs.9b07193] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Bioorthogonal uncaging reactions
offer versatile tools in chemical
biology. In recent years, reactions have been developed to proceed
efficiently under physiological conditions. We present herein an uncaging
reaction that results from ring-closing metathesis (RCM). A caged
molecule, tethered to a diolefinic substrate, is released via spontaneous
1,4-elimination following RCM. Using this strategy, which we term
“close-to-release”, we show that drugs and fluorescent
probes are uncaged with fast rates, including in the presence of mammalian
cells or in the periplasm of Escherichia coli. We envision that this tool may find applications in chemical biology,
bioengineering and medicine.
Collapse
Affiliation(s)
- Valerio Sabatino
- Department of Chemistry , University of Basel , Building 1096, Mattenstrasse 24a, Biopark Rosental , 4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , Building 1096, Mattenstrasse 24a, Biopark Rosental , 4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , Building 1096, Mattenstrasse 24a, Biopark Rosental , 4058 Basel , Switzerland
| |
Collapse
|
27
|
Schlatzer T, Kriegesmann J, Schröder H, Trobe M, Lembacher-Fadum C, Santner S, Kravchuk AV, Becker CFW, Breinbauer R. Labeling and Natural Post-Translational Modification of Peptides and Proteins via Chemoselective Pd-Catalyzed Prenylation of Cysteine. J Am Chem Soc 2019; 141:14931-14937. [PMID: 31469558 PMCID: PMC6776382 DOI: 10.1021/jacs.9b08279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 02/06/2023]
Abstract
The prenylation of peptides and proteins is an important post-translational modification observed in vivo. We report that the Pd-catalyzed Tsuji-Trost allylation with a Pd/BIPHEPHOS catalyst system allows the allylation of Cys-containing peptides and proteins with complete chemoselectivity and high n/i regioselectivity. In contrast to recently established methods, which use non-native connections, the Pd-catalyzed prenylation produces the natural n-prenylthioether bond. In addition, a variety of biophysical probes such as affinity handles and fluorescent tags can be introduced into Cys-containing peptides and proteins. Furthermore, peptides containing two cysteine residues can be stapled or cyclized using homobifunctional allylic carbonate reagents.
Collapse
Affiliation(s)
- Thomas Schlatzer
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Julia Kriegesmann
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Hilmar Schröder
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Melanie Trobe
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Christian Lembacher-Fadum
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Simone Santner
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Alexander V. Kravchuk
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Rolf Breinbauer
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
28
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
29
|
Abstract
![]()
The manipulation
and modulation of biomolecules has the potential
to herald new modes of Biology and Medicine through chemical “editing”.
Key to the success of such processes will be the selectivities, reactivities
and efficiencies that may be brought to bear in bond-formation and
bond-cleavage in a benign manner. In this Perspective, we use select
examples, primarily from our own research, to examine the current
opportunities, limitations and the particular potential of metal-mediated
processes as exemplars of possible alternative catalytic modes and
manifolds to those already found in nature.
Collapse
Affiliation(s)
- Patrick G Isenegger
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry , University of Oxford , Mansfield Road , Oxford OX1 3TA , United Kingdom
| |
Collapse
|
30
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
31
|
Masuda S, Tsuda S, Yoshiya T. Ring-closing metathesis of unprotected peptides in water. Org Biomol Chem 2019; 16:9364-9367. [PMID: 30516782 DOI: 10.1039/c8ob02778a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ring-closing metathesis (RCM) is an attractive reaction for the preparation of artificially designed peptides. Until now, RCM has been used for fully or partially protected peptides. Herein, the first RCM of unprotected peptides in water was achieved using a water-soluble Ru catalyst.
Collapse
Affiliation(s)
- Shun Masuda
- Peptide Institute, Inc., Ibaraki, Osaka 567-0085, Japan.
| | | | | |
Collapse
|
32
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
33
|
Sapkota RR, Jarvis JM, Schaub TM, Talipov MR, Arterburn JB. Bimolecular Cross-Metathesis of a Tetrasubstituted Alkene with Allylic Sulfones. ChemistryOpen 2019; 8:201-205. [PMID: 30815328 PMCID: PMC6376213 DOI: 10.1002/open.201800296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Indexed: 12/03/2022] Open
Abstract
Exquisite control of catalytic metathesis reactivity is possible through ligand‐based variation of ruthenium carbene complexes. Sterically hindered alkenes, however, remain a generally recalcitrant class of substrates for intermolecular cross‐metathesis. Allylic chalcogenides (sulfides and selenides) have emerged as “privileged” substrates that exhibit enhanced turnover rates with the commercially available second‐generation ruthenium catalyst. Increased turnover rates are advantageous when competing catalyst degradation is limiting, although specific mechanisms have not been defined. Herein, we describe facile cross‐metathesis of allylic sulfone reagents with sterically hindered isoprenoid alkene substrates. Furthermore, we demonstrate the first example of intermolecular cross‐metathesis of ruthenium carbenes with a tetrasubstituted alkene. Computational analysis by combined coupled cluster/DFT calculations exposes a favorable energetic profile for metallacyclobutane formation from chelating ruthenium β‐chalcogenide carbene intermediates. These results establish allylic sulfones as privileged reagents for a substrate‐based strategy of cross‐metathesis derivatization.
Collapse
Affiliation(s)
- Rishi R Sapkota
- Department of Chemistry and Biochemistry New Mexico State University Las Cruces NM, 88003
| | - Jacqueline M Jarvis
- Chemical Analysis and Instrumentation Laboratory, College of Agricultural, Consumer and Environmental Sciences New Mexico State University Las Cruces NM, 88003
| | - Tanner M Schaub
- Chemical Analysis and Instrumentation Laboratory, College of Agricultural, Consumer and Environmental Sciences New Mexico State University Las Cruces NM, 88003
| | - Marat R Talipov
- Department of Chemistry and Biochemistry New Mexico State University Las Cruces NM, 88003
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry New Mexico State University Las Cruces NM, 88003
| |
Collapse
|
34
|
Gułajski Ł, Tracz A, Urbaniak K, Czarnocki SJ, Bieniek M, Olszewski TK. Ammonium-tagged ruthenium-based catalysts for olefin metathesis in aqueous media under ultrasound and microwave irradiation. Beilstein J Org Chem 2019; 15:160-166. [PMID: 30745991 PMCID: PMC6350890 DOI: 10.3762/bjoc.15.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/22/2018] [Indexed: 12/28/2022] Open
Abstract
The influence of microwave and ultrasonic irradiation on the performance of ammonium-tagged Ru-based catalysts in olefin metathesis transformations in aqueous media was studied. Differences in the catalytic activity in correlation with the nature of the present counter ion and the size of the N-heterocyclic carbene (NHC) ligand were revealed. The presented methodology allows for preparation of a variety of polar and non-polar metathesis products under environmentally friendly conditions.
Collapse
Affiliation(s)
| | - Andrzej Tracz
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | | | | | | | - Tomasz K Olszewski
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| |
Collapse
|
35
|
Soldevila-Barreda JJ, Metzler-Nolte N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem Rev 2019; 119:829-869. [PMID: 30618246 DOI: 10.1021/acs.chemrev.8b00493] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platinum-containing drugs (e.g., cisplatin) are among the most frequently used chemotherapeutic agents. Their tremendous success has spurred research and development of other metal-based drugs, with notable achievements. Generally, the vast majority of metal-based drug candidates in clinical and developmental stages are stoichiometric agents, i.e., each metal complex reacts only once with their biological target. Additionally, many of these metal complexes are involved in side reactions, which not only reduce the effective amount of the drug but may also cause toxicity. On a separate note, transition metal complexes and nanoparticles have a well-established history of being potent catalysts for selective molecular transformations, with examples such as the Mo- and Ru-based catalysts for metathesis reactions (Nobel Prize in 2005) or palladium catalysts for C-C bond forming reactions such as Heck, Negishi, or Suzuki reactions (Nobel Prize in 2010). Also, notably, no direct biological equivalent of these transformations exists in a biological environment such as bacteria or mammalian cells. It is, therefore, only logical that recent interest has focused on developing transition-metal based catalytic systems that are capable of performing transformations inside cells, with the aim of inducing medicinally relevant cellular changes. Because unlike in stoichiometric reactions, a catalytically active compound may turn over many substrate molecules, only very small amounts of such a catalytic metallodrug are required to achieve a desired pharmacologic effect, and therefore, toxicity and side reactions are reduced. Furthermore, performing catalytic reactions in biological systems also opens the door for new methodologies to study the behavior of biomolecules in their natural state, e.g., via in situ labeling or by increasing/depleting their concentration at will. There is, of course, an art to the choice of catalysts and reactions which have to be compatible with biological conditions, namely an aqueous, oxygen-containing environment. In this review, we aim to describe new developments that bring together the far-distant worlds of transition-metal based catalysis and metal-based drugs, in what is termed "catalytic metallodrugs". Here we will focus on transformations that have been performed on small biomolecules (such as shifting equilibria like in the NAD+/NADH or GSH/GSSG couples), on non-natural molecules such as dyes for imaging purposes, or on biomacromolecules such as proteins. Neither reactions involving release (e.g., CO) or transformation of small molecules (e.g., 1O2 production), degradation of biomolecules such as proteins, RNA or DNA nor light-induced medicinal chemistry (e.g., photodynamic therapy) are covered, even if metal complexes are centrally involved in those. In each section, we describe the (inorganic) chemistry involved, as well as selected examples of biological applications in the hope that this snapshot of a new but quickly developing field will indeed inspire novel research and unprecedented interactions across disciplinary boundaries.
Collapse
Affiliation(s)
- Joan Josep Soldevila-Barreda
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr University Bochum , Universitätsstrasse 150 , 44780-D Bochum , Germany
| |
Collapse
|
36
|
Zhang SL, Dong JJ. Mechanism and chemoselectivity origins of bioconjugation of cysteine with Au(iii)-aryl reagents. Org Biomol Chem 2019; 17:1245-1253. [DOI: 10.1039/c8ob03143f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A detailed computational study is presented on the reaction mechanism of selective cysteine S-arylation by cationic Au(iii)-aryl reagents. The chemoselectivity origins have been elucidated through comparison with potential N- and O-arylation, showing that the acidity and nucleophilicity of the residue are two inherent controlling factors.
Collapse
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Jia-Jia Dong
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
37
|
Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, Wieshofer C, Koegl M, Riching KM, Daniels DL, Spallarossa A, Ciulli A. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel-Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. J Med Chem 2018; 62:699-726. [PMID: 30540463 PMCID: PMC6348446 DOI: 10.1021/acs.jmedchem.8b01413] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Developing
PROTACs to redirect the ubiquitination activity of E3
ligases and potently degrade a target protein within cells can be
a lengthy and unpredictable process, and it remains unclear whether
any combination of E3 and target might be productive for degradation.
We describe a probe-quality degrader for a ligase–target pair
deemed unsuitable: the von Hippel–Lindau (VHL) and BRD9, a
bromodomain-containing subunit of the SWI/SNF chromatin remodeling
complex BAF. VHL-based degraders could be optimized from suboptimal
compounds in two rounds by systematically varying conjugation patterns
and linkers and monitoring cellular degradation activities, kinetic
profiles, and ubiquitination, as well as ternary complex formation
thermodynamics. The emerged structure–activity relationships
guided the discovery of VZ185, a potent, fast, and selective degrader
of BRD9 and of its close homolog BRD7. Our findings qualify a new
chemical tool for BRD7/9 knockdown and provide a roadmap for PROTAC
development against seemingly incompatible target–ligase combinations.
Collapse
Affiliation(s)
- Vittoria Zoppi
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom.,Dipartimento di Farmacia, Sezione di Chimica del Farmaco e del Prodotto Cosmetico , Università degli Studi di Genova , Viale Benedetto XV 3 , 16132 Genova , Italy
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom.,Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| | | | | | - Manfred Koegl
- Boehringer Ingelheim RCV GmbH & Co. KG , 1221 Vienna , Austria
| | - Kristin M Riching
- Promega Corporation , 2800 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Danette L Daniels
- Promega Corporation , 2800 Woods Hollow Road , Madison , Wisconsin 53711 , United States
| | - Andrea Spallarossa
- Dipartimento di Farmacia, Sezione di Chimica del Farmaco e del Prodotto Cosmetico , Università degli Studi di Genova , Viale Benedetto XV 3 , 16132 Genova , Italy
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, James Black Centre , University of Dundee , Dow Street , DD1 5EH , Dundee , Scotland , United Kingdom
| |
Collapse
|
38
|
Sauer DF, Schiffels J, Hayashi T, Schwaneberg U, Okuda J. Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein J Org Chem 2018; 14:2861-2871. [PMID: 30546470 PMCID: PMC6278764 DOI: 10.3762/bjoc.14.265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
This review summarizes the recent progress of Grubbs-Hoveyda (GH) type olefin metathesis catalysts incorporated into the robust fold of β-barrel proteins. Anchoring strategies are discussed and challenges and opportunities in this emerging field are shown from simple small-molecule transformations over ring-opening metathesis polymerizations to in vivo olefin metathesis.
Collapse
Affiliation(s)
- Daniel F Sauer
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
39
|
Bhushan B, Lin YA, Bak M, Phanumartwiwath A, Yang N, Bilyard MK, Tanaka T, Hudson KL, Lercher L, Stegmann M, Mohammed S, Davis BG. Genetic Incorporation of Olefin Cross-Metathesis Reaction Tags for Protein Modification. J Am Chem Soc 2018; 140:14599-14603. [DOI: 10.1021/jacs.8b09433] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bhaskar Bhushan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuya A. Lin
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Martin Bak
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Anuchit Phanumartwiwath
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nan Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthew K. Bilyard
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Tomonari Tanaka
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kieran L. Hudson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Lukas Lercher
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Monika Stegmann
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Benjamin G. Davis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
40
|
Aycock RA, Pratt CJ, Jui NT. Aminoalkyl Radicals as Powerful Intermediates for the Synthesis of Unnatural Amino Acids and Peptides. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03031] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R. Adam Aycock
- Department of Chemistry and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Cameron J. Pratt
- Department of Chemistry and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Nathan T. Jui
- Department of Chemistry and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
41
|
Gleeson EC, Jackson WR, Robinson AJ. Ring closing metathesis of unprotected peptides. Chem Commun (Camb) 2018; 53:9769-9772. [PMID: 28815236 DOI: 10.1039/c7cc04100d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and expedient route to the synthesis of dicarba peptides from protecting group-free sequences is reported using Ru-alkylidene catalysed olefin metathesis. A range of cyclic peptides was prepared from linear peptides containing two Z-crotyl glycine residues. Free amine groups were masked as salts with Brønsted acids preventing in situ catalyst decomposition. Excellent RCM conversion was obtained in both DMF and methanol.
Collapse
Affiliation(s)
- Ellen C Gleeson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | | | | |
Collapse
|
42
|
Duan W, Ji W, Wei Y, Zhao R, Chen Z, Geng Y, Jing F, Wang X. Separation and Purification of Fructo-Oligosaccharide by High-Speed Counter-Current Chromatography Coupled with Precolumn Derivatization. Molecules 2018; 23:molecules23020381. [PMID: 29439422 PMCID: PMC6017542 DOI: 10.3390/molecules23020381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
High-speed counter-current chromatography (HSCCC) coupled with precolumn derivatization was developed for isolating and purifying fructo-oligosaccharides (FOSs). Firstly, the total FOSs were precolumn derivatized and then separated by high-speed counter-current chromatography (HSCCC) with two-phase solvent system petroleum ether–n-butanol–methanol–water (3:2:1:4, v/v). Secondly, the obtained compounds were deacetylated and the fructo-oligosaccharides (FOSs) with high purity were obtained. Their structures were identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). This research successfully established a novel strategy for separation and purification of FOS. There is no doubt that the application of the research will be beneficial for the quantitative and qualitative analysis of products containing FOSs.
Collapse
Affiliation(s)
- Wenjuan Duan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Wenhua Ji
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Yuanan Wei
- Quantum Hi-Tech (China) Biological Co., Ltd., 133 Gaoxin Road West, Hi-tech Zone, Jiangmen 529081, Guangdong, China.
| | - Ruixuan Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Zijian Chen
- Quantum Hi-Tech (China) Biological Co., Ltd., 133 Gaoxin Road West, Hi-tech Zone, Jiangmen 529081, Guangdong, China.
| | - Yanling Geng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Feng Jing
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Xiao Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Shandong Key Laboratory of TCM Quality Control Technology, 19 Keyuan Street, Jinan 250014, Shandong, China.
| |
Collapse
|
43
|
Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThis review summarizes the history and recent developments of the field of organometallic chemical biology with a particular emphasis on the development of novel bioconjugation approaches. Over the years, numerous transformations have emerged for biomolecule modification with the use of organometallic reagents; these include [3+2] cycloadditions, C–C, C–S, C–N, and C–O bond forming processes, as well as metal-mediated deprotection (“decaging”) reactions. These conceptually new additions to the chemical biology toolkit highlight the potential of organometallic chemistry to make a significant impact in the field of chemical biology by providing further opportunities for the development of chemoselective, site-specific and spatially resolved methods for biomolecule structure and function manipulation. Examples of these transformations, as well as existing challenges and future prospects of this rapidly developing field are highlighted in this review.
Collapse
|
44
|
DiMaio JTM, Doran TM, Ryan DM, Raymond DM, Nilsson BL. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules 2017; 18:3591-3599. [PMID: 28872306 DOI: 10.1021/acs.biomac.7b00925] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-assembled peptide-based hydrogels are emerging materials that have been exploited for wound healing, drug delivery, tissue engineering, and other applications. In comparison to synthetic polymer hydrogels, supramolecular peptide-based gels have advantages in biocompatibility, biodegradability, and ease of synthesis and modification. Modification of the emergent viscoelasticity of peptide hydrogels in a stimulus responsive fashion is a longstanding goal in the development of next-generation materials. In an effort to selectively modulate hydrogel viscoelasticity, we report herein a method to enhance the elasticity of β-sheet peptide hydrogels using specific molecular recognition events between functionalized hydrogel fibrils and biomolecules. Two distinct biomolecular recognition strategies are demonstrated: oligonucleotide Watson-Crick duplex formation between peptide nucleic acid (PNA) modified fibrils with a bridging oligonucleotide and protein-ligand recognition between mannose modified fibrils with concanavalin A. These methods to modulate hydrogel elasticity should be broadly adaptable in the context of these materials to a wide variety of molecular recognition partners.
Collapse
Affiliation(s)
- John T M DiMaio
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Todd M Doran
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Derek M Ryan
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Danielle M Raymond
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Bradley L Nilsson
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| |
Collapse
|
45
|
Silvestri AP, Cistrone PA, Dawson PE. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angew Chem Int Ed Engl 2017; 56:10438-10442. [PMID: 28685936 PMCID: PMC5708120 DOI: 10.1002/anie.201705065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 12/26/2022]
Abstract
Copper-mediated coupling between alkynes to generate a structurally rigid, linear 1,3-diyne linkage has been known for over a century. However, the mechanistic requirement to simultaneously maintain CuI and an oxidant has limited its practical utility, especially for complex functional molecules in aqueous solution. We find that addition of a specific bpy-diol ligand protects unprotected peptides from CuII -mediated oxidative damage through the formation of an insoluble CuII gel which solves the critical challenge of applying Glaser coupling to substrates that are degraded by CuII . The generality of this method is illustrated through the conjugation of a series of polar and nonpolar labels onto a fully unprotected GLP-1R agonist through a linear 7 Å diynyl linker.
Collapse
Affiliation(s)
- Anthony P Silvestri
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip A Cistrone
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
46
|
Silvestri AP, Cistrone PA, Dawson PE. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anthony P. Silvestri
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Philip A. Cistrone
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Philip E. Dawson
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
47
|
Lu X, Fan L, Phelps CB, Davie CP, Donahue CP. Ruthenium Promoted On-DNA Ring-Closing Metathesis and Cross-Metathesis. Bioconjug Chem 2017; 28:1625-1629. [DOI: 10.1021/acs.bioconjchem.7b00292] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojie Lu
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Lijun Fan
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christopher B. Phelps
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christopher P. Davie
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| | - Christine P. Donahue
- GlaxoSmithKline, Platform Technology & Science, Drug Discovery and Selection, New Chemical Entity Molecular Discovery, Encoded Library Technologies, 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
48
|
Dong Y, Matson JB, Edgar KJ. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review. Biomacromolecules 2017; 18:1661-1676. [PMID: 28467697 DOI: 10.1021/acs.biomac.7b00364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.
Collapse
Affiliation(s)
- Yifan Dong
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, ‡Department of Chemistry, and §Macromolecules Innovation Institute, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
49
|
Kwan TTL, Boutureira O, Frye EC, Walsh SJ, Gupta MK, Wallace S, Wu Y, Zhang F, Sore HF, Galloway WRJD, Chin JW, Welch M, Bernardes GJL, Spring DR. Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(ii) catalyst. Chem Sci 2017; 8:3871-3878. [PMID: 28966779 PMCID: PMC5578368 DOI: 10.1039/c6sc05313k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/04/2017] [Indexed: 01/20/2023] Open
Abstract
Transition metal catalysis has emerged as a powerful strategy to expand synthetic flexibility of protein modification. Herein, we report a cationic Ru(ii) system that enables the first example of alkyne hydrosilylation between dimethylarylsilanes and O-propargyl-functionalized proteins using a substoichiometric amount or low-loading of Ru(ii) catalyst to achieve the first C-Si bond formation on full-length substrates. The reaction proceeds under physiological conditions at a rate comparable to other widely used bioorthogonal reactions. Moreover, the resultant gem-disubstituted vinylsilane linkage can be further elaborated through thiol-ene coupling or fluoride-induced protodesilylation, demonstrating its utility in further rounds of targeted modifications.
Collapse
Affiliation(s)
- Terence T-L Kwan
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Omar Boutureira
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Elizabeth C Frye
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Stephen J Walsh
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Moni K Gupta
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Stephen Wallace
- Medical Research Council , Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , UK
- School of Biological Sciences , University of Edinburgh , The King's Buildings , Edinburgh , EH9 3FF , UK
| | - Yuteng Wu
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Fengzhi Zhang
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Warren R J D Galloway
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| | - Jason W Chin
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
- Medical Research Council , Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , Cambridge CB2 0QH , UK
| | - Martin Welch
- Department of Biochemistry , University of Cambridge , Tennis Court Road , Cambridge CB2 1QW , UK
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 , Lisboa , Portugal
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Rd , Cambridge CB2 1EW , UK .
| |
Collapse
|
50
|
Karthikeyan M, Govindarajan R, Duraisamy E, Veena V, Sakthivel N, Manimaran B. Self-Assembly of Chalcogenolato-Bridged Ester and Amide Functionalized Dinuclear Re(I) Metallacycles: Synthesis, Structural Characterization and Preliminary Cytotoxicity Studies. ChemistrySelect 2017. [DOI: 10.1002/slct.201700646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vijayakumar Veena
- Department of Biotechnology; Pondicherry University; Puducherry 605014 India
| | - Natarajan Sakthivel
- Department of Biotechnology; Pondicherry University; Puducherry 605014 India
| | - Bala. Manimaran
- Department of Chemistry; Pondicherry University; Puducherry 605014 India
| |
Collapse
|