1
|
Sbaraini N, Crombie A, Kalaitzis JA, Vuong D, Bracegirdle J, Windsor F, Lau A, Chen R, Tan YP, Lacey A, Lacey E, Piggott AM, Chooi YH. The aquastatin biosynthetic gene cluster encodes a versatile polyketide synthase capable of synthesising heteromeric depsides with diverse alkyl side chains. Chem Sci 2024:d4sc05557h. [PMID: 39479171 PMCID: PMC11514314 DOI: 10.1039/d4sc05557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Depsides have garnered substantial interest due to the diverse biological activities exhibited by members of this class. Among these are the antibacterial aquastatins, glycosylated heteromeric depsides formed through the condensation of orsellinic acid with corticiolic acid. In this work, we isolated aquastatins and the recently described geministatins, along with several novel aquastatin-related depsides with different alkyl side chains from the fungus Austroacremonium gemini MST-FP2131. The structures were determined through comprehensive spectroscopic analysis and chemical degradation. Genome mining and heterologous expression in Aspergillus nidulans and Saccharomyces cerevisiae revealed that aquastatin biosynthesis requires only two genes: a non-reducing polyketide synthase (SAT-KS-AT-PT-ACP-TE) and a glycosyltransferase. We demonstrated that the single polyketide synthase can synthesise an acetyl-primed orsellinic acid and alkylresorcylate with various chain lengths (C14, C16, or C18) by incorporating different long-chain acyl-CoAs as starter units, and then join these as heteromeric depsides. Using chemical degradation, we generated a series of analogues and showed that several aglycone depsides exhibit antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA), as well as antifungal and cytotoxic activities. Interestingly, heterologous expression of the aquastatin gene cluster in A. nidulans produced higher levels of geministatins with Δ15,16 and Δ18,19 double bonds, which have superior bioactivities compared to the aquastatins but are only present as minor compounds in the native fungus A. gemini.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - John A Kalaitzis
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Joe Bracegirdle
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Fraser Windsor
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Ashli Lau
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Rachel Chen
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Plant Pathology Herbarium Dutton Park QLD 4102 Australia
- Centre for Crop Health, University of Southern Queensland Toowoomba QLD 4350 Australia
| | - Alastair Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| |
Collapse
|
2
|
He Q, Zhang HR, Zou Y. A Cytochrome P450 Catalyzes Oxidative Coupling Formation of Insecticidal Dimeric Indole Piperazine Alkaloids. Angew Chem Int Ed Engl 2024; 63:e202404000. [PMID: 38527935 DOI: 10.1002/anie.202404000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Cytochrome P450 (CYP450)-catalyzed oxidative coupling is an efficient strategy for using simple building blocks to construct complex structural scaffolds of natural products. Among them, heterodimeric coupling between two different monomers is relatively scarce, and the corresponding CYP450s are largely undiscovered. In this study, we discovered a fungal CYP450 (CpsD) and its associated cps cluster from 37208 CYP450s of Pfam PF00067 family member database and subsequently identified a group of new skeleton indole piperazine alkaloids (campesines A-G) by combination of genome mining and heterologous synthesis. Importantly, CYP450 CpsD mainly catalyzes intermolecular oxidative heterocoupling of two different indole piperazine monomers to generate an unexpected 6/5/6/6/6/6/5/6 eight-ring scaffold through the formation of one C-C bond and two C-N bonds, illuminating its first dimerase role in this family of natural products. The proposed catalytic mechanism of CpsD was deeply investigated by diversified substrate derivatization. Moreover, dimeric campesine G shows good insecticidal activity against the global honeybee pest Galleria mellonella. Our study shows a representative example of discovering new skeleton monomeric and dimeric indole piperazine alkaloids from microbial resources, expands our knowledge of bond formation by CYP450s and supports further development of the newly discovered and engineered campesine family compounds as potential biopesticides.
Collapse
Affiliation(s)
- Qian He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hua-Ran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
3
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
4
|
Meng Y, Zare RN, Gnanamani E. Superfast Formation of C(sp 2 )-N, C(sp 2 )-P, and C(sp 2 )-S Vinylic Bonds in Water Microdroplets. Angew Chem Int Ed Engl 2024; 63:e202316131. [PMID: 38116872 DOI: 10.1002/anie.202316131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
We report examples of C(sp2 )-N, C(sp2 )-S, and C(sp2 )-P bond-forming transformations in water microdroplets at room temperature and atmospheric pressure using N2 as a nebulizing gas. When an aqueous solution of vinylic acid and amine is electrosprayed (+3 kV), the corresponding C(sp2 )-N product is formed in a single step, which was characterized using mass spectrometry (MS) and tandem mass spectrometry (MS2 ). The scope of this reaction was extended to other amines and other unsaturated acids, including acrylic (CH2 =CHCOOH) and crotonic (CH3 CH=CHCOOH) acids. We also found that thiols and phosphines are viable nucleophiles, and the corresponding C(sp2 )-S and C(sp2 )-P products are observed in positive ion mode using MS and MS2 .
Collapse
Affiliation(s)
- Yifan Meng
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Elumalai Gnanamani
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
5
|
Heinemann H, Zhang H, Cox RJ. Reductive Release from a Hybrid PKS-NRPS during the Biosynthesis of Pyrichalasin H. Chemistry 2024; 30:e202302590. [PMID: 37926691 DOI: 10.1002/chem.202302590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Three central steps during the biosynthesis of cytochalasan precursors, including reductive release, Knoevenagel cyclisation and Diels Alder cyclisation are not yet understood at a detailed molecular level. In this work we investigated the reductive release step catalysed by a hybrid polyketide synthase non-ribosomal peptide synthetase (PKS-NRPS) from the pyrichalasin H pathway. Synthetic thiolesters were used as substrate mimics for in vitro studies with the isolated reduction (R) and holo-thiolation (T) domains of the PKS-NRPS hybrid PyiS. These assays demonstrate that the PyiS R-domain mainly catalyses an NADPH-dependent reductive release of an aldehyde intermediate that quickly undergoes spontaneous Knoevenagel cyclisation. The R-domain can only process substrates that are covalently bound to the phosphopantetheine thiol of the upstream T-domain, but it shows little selectivity for the polyketide.
Collapse
Affiliation(s)
- Henrike Heinemann
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Haili Zhang
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
6
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
7
|
Liu X, Li RQ, Zeng QX, Li YQ, Chen XA. A Novel Zn 2Cys 6 Transcription Factor, TopC, Positively Regulates Trichodin A and Asperpyridone A Biosynthesis in Tolypocladium ophioglossoides. Microorganisms 2023; 11:2578. [PMID: 37894236 PMCID: PMC10609478 DOI: 10.3390/microorganisms11102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Asperpyridone A represents an unusual class of pyridone alkaloids with demonstrated potential for hypoglycemic activity, primarily by promoting glucose consumption in HepG2 cells. Trichodin A, initially isolated from the marine fungus Trichoderma sp. strain MF106, exhibits notable antibiotic activities against Staphylococcus epidermidis. Despite their pharmacological significance, the regulatory mechanisms governing their biosynthesis have remained elusive. In this investigation, we initiated the activation of a latent gene cluster, denoted as "top", through the overexpression of the Zn2Cys6 transcription factor TopC in Tolypocladium ophioglossoides. The activation of the top cluster led to the biosynthesis of asperpyridone A, pyridoxatin, and trichodin A. Our study also elucidated that the regulator TopC exerts precise control over the biosynthesis of asperpyridone A and trichodin A through the detection of protein-nucleic acid interactions. Moreover, by complementing these findings with gene deletions involving topA and topH, we proposed a comprehensive biosynthesis pathway for asperpyridone A and trichodin A in T. ophioglossoides.
Collapse
Affiliation(s)
- Xiang Liu
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Rui-Qi Li
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qing-Xin Zeng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xin-Ai Chen
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
8
|
Yuan GY, Zhang JM, Xu QD, Zhang HR, Hu C, Zou Y. Biosynthesis of Cosmosporasides Reveals the Assembly Line for Fungal Hybrid Terpenoid Saccharides. Angew Chem Int Ed Engl 2023; 62:e202308887. [PMID: 37647109 DOI: 10.1002/anie.202308887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Fungal hybrid terpenoid saccharides constitute a new and growing family of natural products with significant biomedical and agricultural activities. One representative family is the cosmosporasides, which feature oxidized terpenoid units and saccharide moieties; however, the assembly line of these building blocks has been elusive. Herein, a cos cluster from Fusarium orthoceras was discovered for the synthesis of cosmosporaside C (1) by genome mining. A UbiA family intramembrane prenyltransferase (UbiA-type PT), a multifunctional cytochrome P450, an α,β-hydrolase, an acetyltransferase, a dimethylallyl transferase (DMAT-type PT) and a glycosyltransferase function cooperatively in the assembly of the scaffold of 1 using primary central metabolites. The absolute configuration at C4, C6 and C7 of 1 was also established. Our work clarifies the unexpected functions of UbiA-type and DMAT-type PTs and provides an example for understanding the synthetic logic of hybrid terpenoid saccharides in fungi.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Qing-Dong Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hua-Ran Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Atanasoff‐Kardjalieff AK, Seidl B, Steinert K, Daniliuc CG, Schuhmacher R, Humpf H, Kalinina S, Studt‐Reinhold L. Biosynthesis of the Isocoumarin Derivatives Fusamarins is Mediated by the PKS8 Gene Cluster in Fusarium. Chembiochem 2023; 24:e202200342. [PMID: 36137261 PMCID: PMC10947347 DOI: 10.1002/cbic.202200342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Fusarium mangiferae causes the mango malformation disease (MMD) on young mango trees and seedlings resulting in economically significant crop losses. In addition, F. mangiferae produces a vast array of secondary metabolites (SMs), including mycotoxins that may contaminate the harvest. Their production is tightly regulated at the transcriptional level. Here, we show that lack of the H3 K9-specific histone methyltransferase, FmKmt1, influences the expression of the F. mangiferae polyketide synthase (PKS) 8 (FmPKS8), a so far cryptic PKS. By a combination of reverse genetics, untargeted metabolomics, bioinformatics and chemical analyses including structural elucidation, we determined the FmPKS8 biosynthetic gene cluster (BGC) and linked its activity to the production of fusamarins (FMN), which can be structurally classified as dihydroisocoumarins. Functional characterization of the four FMN cluster genes shed light on the biosynthetic pathway. Cytotoxicity assays revealed moderate toxicities with IC50 values between 1 and 50 μM depending on the compound.
Collapse
Affiliation(s)
- Anna K. Atanasoff‐Kardjalieff
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| | - Bernhard Seidl
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Katharina Steinert
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-MetabolomicsDepartment of Agrobiotechnology (IFA-Tulln)University of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 203430Tulln an der DonauAustria
| | - Hans‐Ulrich Humpf
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Svetlana Kalinina
- Institute of Food ChemistryWestfälische Wilhelms-Universität MünsterCorrensstraße 4548149MünsterGermany
| | - Lena Studt‐Reinhold
- Institute of Microbial GeneticsDepartment of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz Strasse 243430Tulln an der DonauAustria
| |
Collapse
|
11
|
Kirchgaessner L, Wurlitzer JM, Seibold PS, Rakhmanov M, Gressler M. A genetic tool to express long fungal biosynthetic genes. Fungal Biol Biotechnol 2023; 10:4. [PMID: 36726159 PMCID: PMC9893682 DOI: 10.1186/s40694-023-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts. RESULTS An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF. CONCLUSIONS The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.
Collapse
Affiliation(s)
- Leo Kirchgaessner
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.413047.50000 0001 0658 7859Faculty Medical Technology and Biotechnology, Ernst Abbe University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Jacob M. Wurlitzer
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Paula S. Seibold
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Malik Rakhmanov
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Gressler
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| |
Collapse
|
12
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
14
|
Cox RJ. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Nat Prod Rep 2023; 40:9-27. [PMID: 35543313 DOI: 10.1039/d2np00007e] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 1996-2022Investigations over the last 2 decades have begun to reveal how fungal iterative highly-reducing polyketide synthases are programmed. Both in vitro and in vivo experiments have revealed the interplay of intrinsic and extrinsic selectivity of the component catalytic domains of these systems. Structural biology has begun to provide high resolution structures of hr-PKS that can be used as the basis for their engineering and reprogramming, but progress to-date remains rudimentary. However, significant opportunities exist for translating the current level of understanding into the ability to rationally re-engineer these highly efficient systems for the production of important biologically active compounds through biotechnology.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Schneiderberg 38, 30167, Hannover, Germany.
| |
Collapse
|
15
|
Zhang T, Cai G, Rong X, Xu J, Jiang B, Wang H, Li X, Wang L, Zhang R, He W, Yu L. Mining and characterization of the PKS-NRPS hybrid for epicoccamide A: a mannosylated tetramate derivative from Epicoccum sp. CPCC 400996. Microb Cell Fact 2022; 21:249. [PMID: 36419162 PMCID: PMC9685919 DOI: 10.1186/s12934-022-01975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genomic analysis indicated that the genomes of ascomycetes might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained enigmatic. The ascomycete genus Epicoccum, belonging to the family Didymellaceae, is ubiquitous that colonizes different types of substrates and is associated with phyllosphere or decaying vegetation. Species of this genus are prolific producers of bioactive substances. The epicoccamides, as biosynthetically distinct mannosylated tetramate, were first isolated in 2003 from Epicoccum sp. In this study, using a combination of genome mining, chemical identification, genetic deletion, and bioinformatic analysis, we identified the required BGC epi responsible for epicoccamide A biosynthesis in Epicoccum sp. CPCC 400996. RESULTS The unconventional biosynthetic gene cluster epi was obtained from an endophyte Epicoccum sp. CPCC 400996 through AntiSMASH-based genome mining. The cluster epi includes six putative open reading frames (epiA-epiF) altogether, in which the epiA encodes a tetramate-forming polyketide synthase and nonribosomal peptide synthetases (PKS-NRPS hybrid). Sequence alignments and bioinformatic analysis to other metabolic pathways of fungal tetramates, we proposed that the gene cluster epi could be involved in generating epicoccamides. Genetic knockout of epiA completely abolished the biosynthesis of epicoccamide A (1), thereby establishing the correlation between the BGC epi and biosynthesis of epicoccamide A. Bioinformatic adenylation domain signature analysis of EpiA and other fungal PKS-NRPSs (NRPs) indicated that the EpiA is L-alanine incorporating tetramates megasynthase. Furthermore, based on the molecular structures of epicoccamide A and deduced gene functions of the cluster epi, a hypothetic metabolic pathway for biosynthesizing compound 1 was proposed. The corresponding tetramates releasing during epicoccamide A biosynthesis was catalyzed through Dieckmann-type cyclization, in which the reductive (R) domain residing in terminal module of EpiA accomplished the conversion. These results unveiled the underlying mechanism of epicoccamides biosynthesis and these findings might provide opportunities for derivatization of epicoccamides or generation of new chemical entities. CONCLUSION Genome mining and genetic inactivation experiments unveiled a previously uncharacterized PKS - NRPS hybrid-based BGC epi responsible for the generation of epicoccamide A (1) in endophyte Epicoccum sp. CPCC 400996. In addition, based on the gene cluster data, a hypothetical biosynthetic pathway of epicoccamide A was proposed.
Collapse
Affiliation(s)
- Tao Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Guowei Cai
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.452240.50000 0004 8342 6962Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Xiaoting Rong
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China ,grid.510447.30000 0000 9970 6820College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212003 Jiangsu China
| | - Jingwen Xu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Bingya Jiang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Hao Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Xinxin Li
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Lu Wang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Ran Zhang
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Wenni He
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| | - Liyan Yu
- grid.506261.60000 0001 0706 7839Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050 China
| |
Collapse
|
16
|
Nie Q, Guo S, Gao X. Unraveling the biosynthesis of penicillenols by genome mining PKS-NRPS gene clusters in Penicillium citrinum. AIChE J 2022; 68:e17885. [PMID: 36591370 PMCID: PMC9797205 DOI: 10.1002/aic.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023]
Abstract
Penicillenols belong to the family of tetramic acids with anticancer and antibacterial activities. Here, we report the discovery of the biosynthetic gene cluster (pnc) for penicillenol A1 and E in Penicillium citrinum ATCC9849 by genome mining. We discover the pnc cluster based on the results of gene deletions in P. citrinum and gene cluster heterologous expression in Aspergillus nidulans. We also propose the assembly line of the PKS module in PncA with the reduction by PncB provides a highly reduce polyketide chain to be further linked with an L-threonine molecule and released from PncA to produce penicillenol E. Further formation of penicillenol A1 requires the N-methylation of tetramic acid group by PncC. Our work deepens the understanding of the biosynthetic logic for N-methylated tetramic acids and contributes to the discovery of new penicillenols by genome mining.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shuqi Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
17
|
Jiang L, Yang H, Zhang X, Li X, Lv K, Zhang W, Zhu G, Liu C, Wang Y, Hsiang T, Zhang L, Liu X. Schultriene and nigtetraene: two sesterterpenes characterized from pathogenetic fungi via genome mining approach. Appl Microbiol Biotechnol 2022; 106:6047-6057. [PMID: 36040489 DOI: 10.1007/s00253-022-12125-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023]
Abstract
Fungal bifunctional terpene synthases (BFTSs) have been reported to contribute to the biosynthesis of a variety of di/sesterterpenes via different carbocation transportation pathways. Genome mining of new BFTSs from unique fungal resources will, theoretically, allow for the identification of new terpenes. In this study, we surveyed the distribution of BFTSs in our in-house collection of 430 pathogenetic fungi and preferred two BFTSs (CsSS and NnNS), long distance from previously characterized BFTSs and located in relatively independent branches, based on the established phylogenetic tree. The heterologous expression of the two BFTSs in Aspergillus oryzae and Saccharomyces cerevisiae led to the identification of two new sesterterpenes separately, 5/12/5 tricyclic type-A sesterterpene (schultriene, 1) for CsSS and 5/11 bicyclic type-B sesterterpene (nigtetraene, 2) for NnNS. In addition, to the best of our knowledge, 2 is the first 5/11 bicyclic type-B characterized sesterterpene to date. On the basis of this, the plausible cyclization mechanisms of 1 and 2 were proposed based on density functional theory calculations. These new enzymes and their corresponding terpenes suggest that the chemical spaces produced by BFTSs remain large and also provide important evidences for further protein engineering for new terpenes and for understanding of cyclization mechanism catalyzed by BFTSs. KEY POINTS: • Genome mining of two BFTSs yields two new sesterterpenoids correspondingly. • Identification of the first 5/11 ring system type-B product. • Parse out the rational cyclization mechanism of isolated sesterterpenoids.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Chengwei Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongheng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China.
| |
Collapse
|
18
|
Identification of PKS-NRPS Hybrid Metabolites in Marine-Derived Penicillium oxalicum. Mar Drugs 2022; 20:md20080523. [PMID: 36005526 PMCID: PMC9409647 DOI: 10.3390/md20080523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Filamentous fungi are abundant resources of bioactive natural products. Here, 151 marine-derived fungi were collected from the north Yellow Sea and identified by an internal transcribed spacer (ITS) sequence. The crude extracts of all strains were evaluated for their antimicrobial activities and analyzed by HPLC fingerprint. Based on these, strain Penicillium oxalicum MEFC104 was selected for further investigation. Two new polyketide–amino acid hybrid compounds with feature structures of tetramic acid, oxopyrrolidine A and B, were isolated. Their planner structures were assigned by HRESIMS and 1D/2D NMR experiments. The absolute configurations were determined by modified Mosher’s method, J-based configuration analysis, and ECD calculations. Furthermore, the biosynthetic pathway was identified by bioinformatic analysis and gene-deletion experiments. This study established a link between oxopyrrolidines and the corresponding biosynthesis genes in P. oxalicum.
Collapse
|
19
|
Wei Q, Wang ZP, Zhang X, Zou Y. Diaryl Ether Formation by a Versatile Thioesterase Domain. J Am Chem Soc 2022; 144:9554-9558. [PMID: 35639490 DOI: 10.1021/jacs.2c02813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative coupling and oxidative rearrangement are two of the most common biosynthetic strategies to form diaryl ethers. In contrast, enzymatic diaryl ether generation that proceeds in a nonoxidative manner has not been characterized thus far. Here, we discovered a versatile thioesterase (TE) domain from the nonreducing polyketide synthase (nrPKS) AN7909, which catalyzes diaryl ether formation through a series of successive steps involving esterification, a Smiles rearrangement, and hydrolysis. Further mutations and biochemical analyses with synthetic mimic substrates provide insight into the proposed catalytic process of the TE domain.
Collapse
Affiliation(s)
- Qian Wei
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Ze-Ping Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiao Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
20
|
Pham MT, Chen SR, Liang SY, Cheng YB, Lin HC. Biosynthesis of Piperazine-Derived Diazabicyclic Alkaloids Involves a Nonribosomal Peptide Synthetase and Subsequent Tailoring by a Multifunctional Cytochrome P450 Enzyme. Org Lett 2022; 24:4064-4069. [PMID: 35617650 DOI: 10.1021/acs.orglett.2c01516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Piperazine-derived diazabicycles are privileged structures found in natural products and synthetic chemical entities, including therapeutic agents. Herein, we deciphered the biosynthesis of two unique classes of diazabicyclic alkaloids, fischerazines A-C. Notably, we characterized a multifunctional P450 monooxygenase NfiC that installs ortho-dihydroxyl groups on the dibenzyl-piperazines, in turn triggering a range of NfiC-catalyzed and spontaneous cyclization events.
Collapse
Affiliation(s)
- Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan R.O.C
| | - Shu-Rong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan R.O.C
| | - Suh-Yuen Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan R.O.C
| |
Collapse
|
21
|
Cao F, Zhang MK, Yang X, Xu CX, Cheng JT, Zhao QW, Wu R, Sheng R, Mao XM. A target and efficient synthetic strategy for structural and bioactivity optimization of a fungal natural product. Eur J Med Chem 2022; 229:114067. [PMID: 34973507 DOI: 10.1016/j.ejmech.2021.114067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Min-Kui Zhang
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xi Yang
- Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chu-Xuan Xu
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Jin-Tao Cheng
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Qing-Wei Zhao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Rong Sheng
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
23
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
24
|
Sakai K, Unten Y, Kimishima A, Nonaka K, Chinen T, Sakai K, Usui T, Shiomi K, Iwatsuki M, Murai M, Miyoshi H, Asami Y, Ōmura S. Traminines A and B, produced by Fusarium concentricum, inhibit oxidative phosphorylation in Saccharomyces cerevisiae mitochondria. J Ind Microbiol Biotechnol 2021; 48:6338109. [PMID: 34343309 PMCID: PMC8788869 DOI: 10.1093/jimb/kuab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022]
Abstract
Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
25
|
Mo X, Gulder TAM. Biosynthetic strategies for tetramic acid formation. Nat Prod Rep 2021; 38:1555-1566. [PMID: 33710214 DOI: 10.1039/d0np00099j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2020Natural products bearing tetramic acid units as part of complex molecular architectures exhibit a broad range of potent biological activities. These compounds thus attract significant interest from both the biosynthetic and synthetic communities. Biosynthetically, most of the tetramic acids are derived from hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries. To date, over 30 biosynthetic gene clusters (BGCs) involved in tetramate formation have been identified, from which different biosynthetic strategies evolved in Nature to assemble this intriguing structural unit were characterized. In this Highlight we focus on the biosynthetic concepts of tetramic acid formation and discuss the molecular mechanism towards selected representatives in detail, providing a systematic overview for the development of strategies for targeted tetramate genome mining and future applications of tetramate-forming biocatalysts for chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, China. and Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
26
|
Cheng M, Zhao S, Lin C, Song J, Yang Q. Requirement of LaeA for sporulation, pigmentation and secondary metabolism in Chaetomium globosum. Fungal Biol 2020; 125:305-315. [PMID: 33766309 DOI: 10.1016/j.funbio.2020.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The global regulator LaeA has been confirmed to govern the production of secondary metabolites in fungi. Herein, we examined the role of LaeA in Chaetomium globosum. Similarly as observed in other filamentous, CgLaeA had a significant effect on the secondary metabolism. The ΔCglaeA mutant strain did not exhibit chaetoglobosin A, whereas its production was restored in the CglaeAC strain. In addition, CglaeA overexpression led to an increase in chaetoglobosin A production. Transcriptional examination of the mutants indicated that CgLaeA positively regulated the expression of pathway-specific transcription factor CgcheR, while another global regulator CgvelB was negatively regulated by CgLaeA. Furthermore, CgLaeA also affected the morphological phenotypes of fungi. The ΔCglaeA mutant strains exhibited decreased sporulation and pigmentation compared with the wild-type strain, whereas the phenotypes were restored in the CglaeAC strain. Moreover, OE::CglaeA exhibited increased levels of sporulation and pigmentation. Moreover, inhibition activity against phytopathogenic fungi affected by decreased mycotoxin production of the ΔCglaeA mutant strain.
Collapse
Affiliation(s)
- Ming Cheng
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Shanshan Zhao
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Congyu Lin
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Jinzhu Song
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Qian Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| |
Collapse
|
27
|
Zhao F, Liu Z, Yang S, Ding N, Gao X. Quinolactacin Biosynthesis Involves Non‐Ribosomal‐Peptide‐Synthetase‐Catalyzed Dieckmann Condensation to Form the Quinolone‐γ‐lactam Hybrid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Shuyuan Yang
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Ning Ding
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| |
Collapse
|
28
|
Zhao F, Liu Z, Yang S, Ding N, Gao X. Quinolactacin Biosynthesis Involves Non-Ribosomal-Peptide-Synthetase-Catalyzed Dieckmann Condensation to Form the Quinolone-γ-lactam Hybrid. Angew Chem Int Ed Engl 2020; 59:19108-19114. [PMID: 32663343 PMCID: PMC10165850 DOI: 10.1002/anie.202005770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Quinolactacins are novel fungal alkaloids that feature a quinolone-γ-lactam hybrid, which is a potential pharmacophore for the treatment of cancer and Alzheimer's disease. Herein, we report the identification of the quinolactacin A2 biosynthetic gene cluster and elucidate the enzymatic basis for the formation of the quinolone-γ-lactam structure. We reveal an unusual β-keto acid (N-methyl-2-aminobenzoylacetate) precursor that is derived from the primary metabolite l-kynurenine via methylation, oxidative decarboxylation, and amide hydrolysis reactions. In vitro assays reveal two single-module non-ribosomal peptide synthetases (NRPs) that incorporate the β-keto acid and l-isoleucine, followed by Dieckmann condensation, to form the quinolone-γ-lactam. Notably, the bioconversion from l-kynurenine to the β-keto acid is a unique strategy employed by nature to decouple R*-domain-containing NRPS from the polyketide synthase (PKS) machinery, expanding the paradigm for the biosynthesis of quinolone-γ-lactam natural products via Dieckmann condensation.
Collapse
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Shuyuan Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Ning Ding
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.,Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
29
|
Minami A, Ugai T, Ozaki T, Oikawa H. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci Rep 2020; 10:13556. [PMID: 32782278 PMCID: PMC7421883 DOI: 10.1038/s41598-020-70177-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/24/2020] [Indexed: 11/10/2022] Open
Abstract
Fungal polyketide synthase (PKS)–nonribosomal peptide synthetase (NRPS) hybrids are key enzymes for synthesizing structurally diverse hybrid natural products (NPs) with characteristic biological activities. Predicting their chemical space is of particular importance in the field of natural product chemistry. However, the unexplored programming rule of the PKS module has prevented prediction of its chemical structure based on amino acid sequences. Here, we conducted a phylogenetic analysis of 884 PKS–NRPS hybrids and a modification enzyme analysis of the corresponding biosynthetic gene cluster, revealing a hidden relationship between its genealogy and core structures. This unexpected result allowed us to predict 18 biosynthetic gene cluster (BGC) groups producing known carbon skeletons (number of BGCs; 489) and 11 uncharacterized BGC groups (171). The limited number of carbon skeletons suggests that fungi tend to select PK skeletons for survival during their evolution. The possible involvement of a horizontal gene transfer event leading to the diverse distribution of PKS–NRPS genes among fungal species is also proposed. This study provides insight into the chemical space of fungal PKs and the distribution of their biosynthetic gene clusters.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Takahiro Ugai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
30
|
Zhang JM, Wang HH, Liu X, Hu CH, Zou Y. Heterologous and Engineered Biosynthesis of Nematocidal Polyketide–Nonribosomal Peptide Hybrid Macrolactone from Extreme Thermophilic Fungi. J Am Chem Soc 2020; 142:1957-1965. [DOI: 10.1021/jacs.9b11410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Hang-Hang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Xuan Liu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
31
|
Fan J, Liao G, Ludwig-Radtke L, Yin WB, Li SM. Formation of Terrestric Acid in Penicillium crustosum Requires Redox-Assisted Decarboxylation and Stereoisomerization. Org Lett 2019; 22:88-92. [DOI: 10.1021/acs.orglett.9b04002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jie Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Ge Liao
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Lena Ludwig-Radtke
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| |
Collapse
|
32
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
33
|
Lin X, Yuan S, Chen S, Chen B, Xu H, Liu L, Li H, Gao Z. Heterologous Expression of Ilicicolin H Biosynthetic Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J. Molecules 2019; 24:molecules24122267. [PMID: 31216742 PMCID: PMC6631495 DOI: 10.3390/molecules24122267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA), and then offloaded with a tetramic acid moiety. Similar to tenellin biosynthesis, the tetramic acid is then converted to pyridone by a putative P450, IliC. The decalin portion is most possibly constructed by a S-adenosyl-l-methionine (SAM)-dependent Diels-Alderase (IliD).
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Bin Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Huixian Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
34
|
Sakai K, Unten Y, Iwatsuki M, Matsuo H, Fukasawa W, Hirose T, Chinen T, Nonaka K, Nakashima T, Sunazuka T, Usui T, Murai M, Miyoshi H, Asami Y, Ōmura S, Shiomi K. Fusaramin, an antimitochondrial compound produced by Fusarium sp., discovered using multidrug-sensitive Saccharomyces cerevisiae. J Antibiot (Tokyo) 2019; 72:645-652. [DOI: 10.1038/s41429-019-0197-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
|
35
|
Ding L, Ren L, Li S, Song J, Han Z, He S, Xu S. Production of New Antibacterial 4-Hydroxy- α-Pyrones by a Marine Fungus Aspergillus niger Cultivated in Solid Medium. Mar Drugs 2019; 17:E344. [PMID: 31185700 PMCID: PMC6627810 DOI: 10.3390/md17060344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
Four 4-hydroxy-α-pyrones including three new ones named nipyrones A-C (1-3) together with one known analogue germicidin C (4) were discovered from a marine sponge-derived fungus Aspergillus niger cultivated in a solid rice culture. Their structures and absolute configurations were elucidated through a combination of spectroscopic data and electronic circular dichroism (ECD) calculations as well as comparison with literature data. Compounds 1-4 were evaluated for their antibacterial activities against five pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis). Compound 3 showed promising activity against S. aureus and B. subtilis, with minimum inhibitory concentration (MIC) values of 8 μg/mL and 16 μg/mL, respectively, and displayed weak antitubercular activities against M. tuberculosis, with MIC value of 64 μg/mL, while compounds 1 and 2 exhibited moderate antibacterial efficacy against four pathogenic bacteria with MIC values of 32-64 μg/mL.
Collapse
Affiliation(s)
- Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Lu Ren
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Shuang Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Jingjing Song
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Zhiwen Han
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Wang C, Hantke V, Cox RJ, Skellam E. Targeted Gene Inactivations Expose Silent Cytochalasans in Magnaporthe grisea NI980. Org Lett 2019; 21:4163-4167. [PMID: 31099577 DOI: 10.1021/acs.orglett.9b01344] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthetic gene cluster encoding the phytotoxin pyrichalasin H 5 was discovered in Magnaporthe grisea NI980, and the late-stage biosynthetic pathway of 5 was fully elucidated using targeted gene inactivations resulting in the isolation of 13 novel cytochalasans. This study reveals that the nonproteinogenic amino acid O-methyltyrosine is the true precursor of 5, and other cryptic cytochalasans and mutasynthesis experiments produce novel halogenated pyrichalasin H analogues.
Collapse
Affiliation(s)
- Chongqing Wang
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Verena Hantke
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Russell J Cox
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| | - Elizabeth Skellam
- Institute for Organic Chemistry and Centre for Biomolecular Drug Research , Leibniz University Hannover , Schneiderberg 38 , Hannover 30167 , Germany
| |
Collapse
|
37
|
Bond CM, Tang Y. Engineering Saccharomyces cerevisiae for production of simvastatin. Metab Eng 2019; 51:1-8. [PMID: 30213650 PMCID: PMC6348118 DOI: 10.1016/j.ymben.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
Simvastatin is a semisynthetic cholesterol-lowering medication and one of the top-selling statins in the world. Currently, industrial production of simvastatin acid (SVA) is a multistep process starting from the natural product lovastatin. For this reason, there is significant interest in direct production of simvastatin from a microbial host. In this study, six heterologous biosynthetic genes were introduced into Saccharomyces cerevisiae and the acyl-donor dimethylbutyryl-S-methyl mercaptopropionate (DMB-SMMP) was added, resulting in initial production of 0.5 mg/L SVA. Switching the yeast strain from JHY686 to BJ5464-NpgA increased total polyketide production to over 60 mg/L and conversion from dihydromonacolin L acid to monacolin J acid (MJA) was increased from 60% to 90% by tuning the copy number of the P450 lovA. Increasing the media pH to 8.7 led to a further 10-fold increase in SVA production. Optimized chemical lysis of the cell walls in situ after maximum MJA production led to 55 mg/L SVA titer, representing nearly complete conversion from MJA and a 110-fold increase in titer from the initial SVA production strain. The yeast strains developed in this work can be used as an alternative production method for SVA, and the strategies employed can be broadly applied for heterologous production of other fungal polyketides and semisynthetic compounds in yeast.
Collapse
Affiliation(s)
- Carly M Bond
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
38
|
Bertrand RL, Abdel-Hameed M, Sorensen JL. Lichen Biosynthetic Gene Clusters Part II: Homology Mapping Suggests a Functional Diversity. JOURNAL OF NATURAL PRODUCTS 2018; 81:732-748. [PMID: 29485282 DOI: 10.1021/acs.jnatprod.7b00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lichens are renowned for their diverse natural products though little is known of the genetic programming dictating lichen natural product biosynthesis. We sequenced the genome of Cladonia uncialis and profiled its secondary metabolite biosynthetic gene clusters. Through a homology searching approach, we can now propose specific functions for gene products as well as the biosynthetic pathways that are encoded in several of these gene clusters. This analysis revealed that the lichen genome encodes the required enzymes for patulin and betaenones A-C biosynthesis, fungal toxins not known to be produced by lichens. Within several gene clusters, some (but not all) genes are genetically similar to genes devoted to secondary metabolite biosynthesis in Fungi. These lichen clusters also contain accessory tailoring genes without such genetic similarity, suggesting that the encoded tailoring enzymes perform distinct chemical transformations. We hypothesize that C. uncialis gene clusters have evolved by shuffling components of ancestral fungal clusters to create new series of chemical steps, leading to the production of hitherto undiscovered derivatives of fungal secondary metabolites.
Collapse
Affiliation(s)
- Robert L Bertrand
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| | - Mona Abdel-Hameed
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| | - John L Sorensen
- Department of Chemistry , University of Manitoba , Winnipeg , Manitoba Canada , R3T 2N2
| |
Collapse
|
39
|
Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 2018; 35:1185-1209. [DOI: 10.1039/c8np00022k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrids are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Tadashi Eguchi
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
40
|
The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat Commun 2017; 8:1514. [PMID: 29138399 PMCID: PMC5686105 DOI: 10.1038/s41467-017-01809-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications. Polyketides are secondary metabolites mainly found in aerobic organisms with wide applications in medicine and agriculture. Here, the authors uncover new polyketides native to the anaerobic bacterium Clostridium acetobutylicum and show their role in triggering sporulation and granulose accumulation.
Collapse
|
41
|
SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis. Nature 2017; 549:502-506. [PMID: 28902839 PMCID: PMC5679075 DOI: 10.1038/nature23882] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Abstract
Pericyclic reactions are among the most powerful synthetic transformations to make multiple regioselective and stereoselective carbon-carbon bonds1. These reactions have been widely applied for the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centers2–6. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples, intramolecular Diels-Alder (IMDA) reaction7, Cope8 and Claisen rearrangements9, have been characterized. Here, we report the discovery of a S-adenosyl-L-methionine (SAM) dependent enzyme LepI that can catalyse stereoselective dehydration, bifurcating IMDA/hetero-DA (HDA) reactions via an ambimodal transition state, and a [3,3]-sigmatropic retro-Claisen rearrangement leading to the formation of dihydopyran core in the fungal natural product leporin10. Combined in vitro enzymatic characterization and computational studies provide evidence and mechanistic insight about how the O-methyltransferase-like protein LepI regulates the bifurcating biosynthetic reaction pathways (“direct” HDA and “byproduct recycle” IMDA/retro-Claisen reaction pathways) by utilizing SAM as the cofactor in order to converge to the desired biosynthetic end product. This work highlights that LepI is the first example of an enzyme catalysing a (SAM-dependent) retro-Claisen rearrangement. We suggest that more pericyclic biosynthetic enzymatic transformations are yet to be discovered in the intriguing enzyme toolboxes in Nature11, and propose an ever expanding role of the versatile cofactor SAM in enzyme catalysis.
Collapse
|
42
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 563] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
44
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
45
|
Nielsen ML, Isbrandt T, Rasmussen KB, Thrane U, Hoof JB, Larsen TO, Mortensen UH. Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9. PLoS One 2017; 12:e0169712. [PMID: 28056079 PMCID: PMC5215926 DOI: 10.1371/journal.pone.0169712] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
The full potential of fungal secondary metabolism has until recently been impeded by the lack of universal genetic tools for most species. However, the emergence of several CRISPR-Cas9-based genome editing systems adapted for several genera of filamentous fungi have now opened the doors for future efforts in discovery of novel natural products and elucidation and engineering of their biosynthetic pathways in fungi where no genetic tools are in place. So far, most studies have focused on demonstrating the performance of CRISPR-Cas9 in various fungal model species, and recently we presented a versatile CRISPR-Cas9 system that can be successfully applied in several diverse Aspergillus species. Here we take it one step further and show that our system can be used also in a phylogenetically distinct and largely unexplored species from the genus of Talaromyces. Specifically, we exploit CRISPR-Cas9-based genome editing to identify a new gene in T. atroroseus responsible for production of polyketide-nonribosomal peptide hybrid products, hence, linking fungal secondary metabolites to their genetic origin in a species where no genetic engineering has previously been performed.
Collapse
Affiliation(s)
- Maria Lund Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Kasper Bøwig Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Ulf Thrane
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Jakob Blæsbjerg Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
| | - Uffe Hasbro Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
46
|
Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering. PLoS One 2016; 11:e0161199. [PMID: 27551732 PMCID: PMC4994942 DOI: 10.1371/journal.pone.0161199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022] Open
Abstract
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives is desirable for the purpose of incorporating new functionalities into pre-existing molecules, or for optimization of known bioactivities. We sought to expand the range of natural product diversity by combining modules of PKS-NRPS hybrids from different hosts, hereby producing novel synthetic natural products. We succeeded in the construction of a functional cross-species chimeric PKS-NRPS expressed in Aspergillus nidulans. Module swapping of the two PKS-NRPS natural hybrids CcsA from Aspergillus clavatus involved in the biosynthesis of cytochalasin E and related Syn2 from rice plant pathogen Magnaporthe oryzae lead to production of novel hybrid products, demonstrating that the rational re-design of these fungal natural product enzymes is feasible. We also report the structure of four novel pseudo pre-cytochalasin intermediates, niduclavin and niduporthin along with the chimeric compounds niduchimaeralin A and B, all indicating that PKS-NRPS activity alone is insufficient for proper assembly of the cytochalasin core structure. Future success in the field of biocombinatorial synthesis of hybrid polyketide-nonribosomal peptides relies on the understanding of the fundamental mechanisms of inter-modular polyketide chain transfer. Therefore, we expressed several PKS-NRPS linker-modified variants. Intriguingly, the linker anatomy is less complex than expected, as these variants displayed great tolerance with regards to content and length, showing a hitherto unreported flexibility in PKS-NRPS hybrids, with great potential for synthetic biology-driven biocombinatorial chemistry.
Collapse
|
47
|
Ugai T, Minami A, Gomi K, Oikawa H. Genome mining approach for harnessing the cryptic gene cluster in Alternaria solani: production of PKS–NRPS hybrid metabolite, didymellamide B. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Donzelli B, Krasnoff S. Molecular Genetics of Secondary Chemistry in Metarhizium Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:365-436. [DOI: 10.1016/bs.adgen.2016.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Abstract
The emergence of next-generation sequencing has provided new opportunities in the discovery of new nonribosomal peptides (NRPs) and NRP synthethases (NRPSs). However, there remain challenges for the characterization of these megasynthases. While genetic methods in native hosts are critical in elucidation of the function of fungal NRPS, in vitro assays of intact heterologously expressed proteins provide deeper mechanistic insights in NRPS enzymology. Our previous work in the study of NRPS takes advantage of Saccharomyces cerevisiae strain BJ5464-npgA as a robust and versatile platform for characterization of fungal NRPSs. Here we describe the use of yeast recombination strategies in S. cerevisiae for cloning of the NRPS coding sequence in 2μ-based expression vector; the use of affinity chromatography for purification of NRPS from the total S. cerevisiae soluble protein fraction; and strategies for reconstitution of NRPSs activities in vitro.
Collapse
Affiliation(s)
- Ralph A Cacho
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
50
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|