1
|
Badillo-Gómez JI, Suarez-Antuña I, Mazurenko I, Biaso F, Pécaut J, Lojou E, Delangle P, Hostachy S. Biomimetic Pseudopeptides to Decipher the Interplay between Cu and Methionine-Rich Domains in Proteins. Chemistry 2024:e202403896. [PMID: 39715023 DOI: 10.1002/chem.202403896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive. In this work, we designed biomimetic compounds recapitulating the possible Cu(I) binding sites in these domains, in order to examine the parameters important for Cu(I) binding. Five different biomimetic pseudopeptides were synthesized, exhibiting either three methionines or two methionines and a third amino acid likely to be present in the Met-rich domain. The affinities for Cu(I) of these model binding sites were determined, as well as their redox properties and behavior in the presence of Cu(II). Our results highlight the importance of Met residues, and their abundance in Met-rich domains, to efficiently bind Cu(I) in the periplasmic space.
Collapse
Affiliation(s)
- Joel I Badillo-Gómez
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Irene Suarez-Antuña
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 31 Chemin Aiguier, 13402, Marseille, France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 31 Chemin Aiguier, 13402, Marseille, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 31 Chemin Aiguier, 13402, Marseille, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| | - Sarah Hostachy
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000, Grenoble, France
| |
Collapse
|
2
|
Heinrich J, Siddiqui E, Eckstein H, Naumann M, Kulak N. Ascorbate: a forgotten component in the cytotoxicity of Cu(II) ATCUN peptide complexes. J Biol Inorg Chem 2024; 29:801-809. [PMID: 39527272 PMCID: PMC11638278 DOI: 10.1007/s00775-024-02083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In 1983, Linus Pauling and colleagues reported about enhanced antitumor activity of the Cu(II) complex of the simplest ATCUN (amino terminal Cu(II) and Ni(II)-binding motif) peptide (NH2-Gly-Gly-His-COOH, GGH) in the presence of ascorbate as an additive. In the following 4 decades, structural modifications of this complex were implemented, however, anticancer activity could not be significantly increased. This has led to neglecting the ATCUN motif and its Cu(II) complexes as potential chemotherapeutic agents. Furthermore, the addition of ascorbate with its positive effect on the anticancer activity has fallen into oblivion. In this work, we compared Cu(II) GGH with Cu(II) ATCUN peptides bearing β-Ala instead of Gly at the 2nd position of the peptide sequence regarding their in vitro complex stability and cytotoxicity (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and annexin V-FITC (fluorescein isothiocyanate) apoptosis assay) towards three cancer cell lines (AGS, HeLa and NCI-N87). Such an exchange of amino acids led to an up to three-fold higher cytotoxic effect in the presence of ascorbate. We thus achieved a significant increase in the otherwise moderate cytotoxicity of Cu(II) ATCUN-like complexes. Lipophilicity assays (n-octanol/water coefficient, log P values) of the studied complexes were used to evaluate differences in the antiproliferative activity.
Collapse
Affiliation(s)
- Julian Heinrich
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
- Institute of Chemistry, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Elisa Siddiqui
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henrike Eckstein
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Straße 44, 39120, Magdeburg, Germany.
| | - Nora Kulak
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.
- Institute of Chemistry, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
3
|
Wu Z, Song X, Wang G, Wang B. U-shaped nonlinear relationship between dietary copper intake and peripheral neuropathy. Sci Rep 2024; 14:25263. [PMID: 39448725 PMCID: PMC11502861 DOI: 10.1038/s41598-024-76159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Dietary copper intake is a promising predictor of peripheral neuropathy. There is no research exploring the potential link between dietary copper intake and peripheral neuropathy. METHODS The information utilized in our research was collected from the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2004. The relationship between dietary copper intake and peripheral neuropathy was analyzed using a multivariate logistic regression model and restricted cubic spline (RCS). RESULTS The RCS analysis results showed a U-shaped nonlinear relationship between dietary copper intake and peripheral neuropathy (P for nonlinearity < 0.001). The threshold effect analysis results indicated that when dietary copper intake was less than 0.889 mg/d, the risk of peripheral neuropathy decreased with increasing copper intake (OR: 0.388, 95% CI: 0.200-0.753). When dietary copper intake was ≥ 0.889 mg/d, the risk of peripheral neuropathy increased with increasing copper intake (OR: 1.129, 95% CI: 1.006-1.266). And the incidence rate of peripheral neuropathy in the first quantile (OR: 1.421, 95% CI: 1.143-1.766), the third quantile (OR: 1.358, 95% CI: 1.057-1.744), and the fourth quantile (OR: 1.676, 95% CI: 1.250-2.248) of dietary copper intake were significantly higher than that in the second quantile (where the inflection point was located). CONCLUSION Our study suggests that both insufficient and excessive dietary copper intake may be associated with an increased incidence of peripheral neuropathy. However, further research is needed to provide definitive evidence and confirm these findings.
Collapse
Affiliation(s)
- Zhe Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyue Song
- The Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guan Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Department of Vascular Surgery, The First Affiliated Hospital of Shandong University of Traditional Chinese Medical, Jinan, China.
| | - Bin Wang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Fortino M, Arnesano F, Pietropaolo A. Unraveling Copper Exchange in the Atox1-Cu(I)-Mnk1 Heterodimer: A Simulation Approach. J Phys Chem B 2024; 128:5336-5343. [PMID: 38780400 DOI: 10.1021/acs.jpcb.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Copper, an essential metal for various cellular processes, requires tight regulation to prevent cytotoxicity. Intracellular pathways crucial for maintaining optimal copper levels involve soluble and membrane transporters, namely, metallochaperones and P-type ATPases, respectively. In this study, we used a simulation workflow based on free-energy perturbation (FEP) theory and parallel bias metadynamics (PBMetaD) to predict the Cu(I) exchange mechanism between the human Cu(I) chaperone, Atox1, and one of its two physiological partners, ATP7A. ATP7A, also known as the Menkes disease protein, is a transmembrane protein and one of the main copper-transporting ATPases. It pumps copper into the trans-Golgi network for the maturation of cuproenzymes and is also essential for the efflux of excess copper across the plasma membrane. In this analysis, we utilized the nuclear magnetic resonance (NMR) structure of the Cu(I)-mediated complex between Atox1 and the first soluble domain of the Menkes protein (Mnk1) as a starting point. Independent free-energy simulations were conducted to investigate the dissociation of both Atox1 and Mnk1. The calculations revealed that the two dissociations require free energy values of 6.3 and 6.2 kcal/mol, respectively, following a stepwise dissociation mechanism.
Collapse
Affiliation(s)
- Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Fabio Arnesano
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Strausbaugh Hjelmstad A, Pushie MJ, Ruth K, Escobedo M, Kuter K, Haas KL. Investigating Cu(I) binding to model peptides of N-terminal Aβ isoforms. J Inorg Biochem 2024; 253:112480. [PMID: 38309203 DOI: 10.1016/j.jinorgbio.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Amyloid beta (Aβ) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aβ binds to Cu and may play a role in Cu trafficking. Aβ peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aβ1-40/42, Aβ3-42, pEAβ3-42, Aβ4-42, Aβ11-40 and pEAβ11-40 (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aβ isoforms determined in parallel using model peptides of the Aβ metal binding domains (Aβ1-16, Aβ3-16, pEAβ3-16, Aβ4-16, Aβ11-16 and pEAβ11-16). The binding affinities of Cu(I)-Aβ complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aβ peptides as copper chelators in healthy and diseased brains.
Collapse
Affiliation(s)
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kaylee Ruth
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
7
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
8
|
Orlov IA, Sankova TP, Skvortsov AN, Klotchenko SA, Sakhenberg EI, Mekhova AA, Kiseleva IV, Ilyechova EY, Puchkova LV. Properties of recombinant extracellular N-terminal domain of human high-affinity copper transporter 1 (hNdCTR1) and its interactions with Cu(II) and Ag(I) ions. Dalton Trans 2023; 52:3403-3419. [PMID: 36815348 DOI: 10.1039/d2dt04060c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
High-affinity copper transporter 1 (CTR1) is a key link in the transfer of copper (Cu) from the extracellular environment to the cell. Violation in the control system of its expression, or mutations in this gene, cause a global copper imbalance. However, the mechanism of copper transfer via CTR1 remains unclear. It has been shown that transformed bacteria synthesizing the fused GB1-NdCTR become resistant to toxic silver ions. According to UV-Vis spectrophotometry and isothermal titration calorimetry, electrophoretically pure GB1-NdCTR specifically and reversibly binds copper and silver ions, and binding is associated with aggregation. Purified NdCTR1 forms SDS-resistant oligomers. The link between nontrivial properties of NdCTR1 and copper import mechanism from extracellular space, as well as potential chelating properties of NdCTR1, are discussed.
Collapse
Affiliation(s)
- Iurii A Orlov
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia.
| | - Tatiana P Sankova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexey N Skvortsov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Laboratory of The Molecular Biology of Stem Cells, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Sergey A Klotchenko
- Laboratory for the Development of Molecular Diagnostic Systems, Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | - Elena I Sakhenberg
- Laboratory of cell protection mechanisms, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Aleksandra A Mekhova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Irina V Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Yu Ilyechova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V Puchkova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
9
|
Schulte NB, Pushie MJ, Martinez A, Sendzik M, Escobedo M, Kuter K, Haas KL. Exploration of the Potential Role of Serum Albumin in the Delivery of Cu(I) to Ctr1. Inorg Chem 2023; 62:4021-4034. [PMID: 36826341 DOI: 10.1021/acs.inorgchem.2c03753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ana Martinez
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Aupič J, Lapenta F, Janoš P, Magistrato A. Intrinsically disordered ectodomain modulates ion permeation through a metal transporter. Proc Natl Acad Sci U S A 2022; 119:e2214602119. [PMID: 36409899 PMCID: PMC9889885 DOI: 10.1073/pnas.2214602119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
The function of many channels and transporters is enriched by the conformational plasticity of intrinsically disordered regions (IDRs). Copper transporter 1 (Ctr1) is the main entry point for Cu(I) ions in eukaryotes and contains IDRs both at its N-terminal (Nterm) and C-terminal ends. The former delivers copper ions from the extracellular matrix to the selectivity filter in the Ctr1 lumen. However, the molecular mechanism of this process remains elusive due to Nterm's disordered nature. Here, we combine advanced molecular dynamics simulations and circular dichroism experiments to show that Cu(I) ions and a lipidic environment drive the insertion of the Nterm into the Ctr1 selectivity filter, causing its opening. Through a lipid-aided conformational switch of one of the transmembrane helices, the conformational change of the selectivity filter propagates down to the cytosolic gate of Ctr1. Taken together, our results elucidate how conformational variability of IDRs modulates ion transport.
Collapse
Affiliation(s)
- Jana Aupič
- National Research Council of Italy - Materials Foundry Istituto Officina dei Materiali c/o International School for Advanced Studies,34136Trieste, Italy
| | - Fabio Lapenta
- Laboratory for Environmental and Life Sciences, University of Nova Gorica,5000Nova Gorica, Slovenia
| | - Pavel Janoš
- National Research Council of Italy - Materials Foundry Istituto Officina dei Materiali c/o International School for Advanced Studies,34136Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy - Materials Foundry Istituto Officina dei Materiali c/o International School for Advanced Studies,34136Trieste, Italy
| |
Collapse
|
11
|
Walencik PK. The redox-active Cu-FomA complex: the mode that provides coordination of Cu II/Cu I ions during the reduction/oxidation cycle. Dalton Trans 2022; 51:15515-15529. [PMID: 36165635 DOI: 10.1039/d2dt02398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed form of cancer worldwide. Recent studies have indicated a strong correlation between microbial imbalance and the development of CRC. An abundance of Fusobacterium nucleatum, an anaerobic Gram-negative bacterium, has been considered a biomarker of CRC progression. Several investigations have also proposed that binding copper ions to various bacterial proteins enhances the CuII + e- ⇄ CuI redox cycle, which consequently promotes uncontrolled production of reactive oxygen species (ROS) and propels colorectal carcinogenesis. In this work, a multidisciplinary approach was applied to study the molecular relation of copper with the peptide models of FomA, a protein expressed by Fusobacterium nucleatum. The main goal was to investigate all the factors that tune the CuII + e- ⇄ CuI equilibrium. A linear peptide Fom1 (Ac-KGHGNGEEGTPTVHNE-NH2) and cyclic peptide Fom2 (cyclo-(KGHGNGEEGTPTVHNE)) were used as ligands. The coordination of CuI was deduced from the NMR data. The conditional dissociation constants KcondD defined the stability of CuI complexes. The electrochemical activity of CuII and CuI compounds was analysed using cyclic voltammetry. A quasi-reversible redox conversion CuII-peptide + e- ⇄ CuI-peptide was revealed for all studied systems. In the presence of ascorbic acid (HAsc), CuII complexes were immediately reduced to CuI species; however, their re-oxidation was kinetically sluggish. The HAsc-induced redox cycle provoked the metal-catalyzed oxidation (MCO) effect. That in the end prevented coordination of the re-appearing CuII ion to its initial binding site. The toxicity of the FomA-CuII/CuI complexes and their role in CRC progression were briefly discussed.
Collapse
Affiliation(s)
- Paulina K Walencik
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
12
|
Nardella MI, Fortino M, Barbanente A, Natile G, Pietropaolo A, Arnesano F. Multinuclear Metal-Binding Ability of the N-Terminal Region of Human Copper Transporter Ctr1: Dependence Upon pH and Metal Oxidation State. Front Mol Biosci 2022; 9:897621. [PMID: 35601835 PMCID: PMC9117721 DOI: 10.3389/fmolb.2022.897621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The 14mer peptide corresponding to the N-terminal region of human copper transporter Ctr1 was used to investigate the intricate mechanism of metal binding to this plasma membrane permease responsible for copper import in eukaryotic cells. The peptide contains a high-affinity ATCUN Cu(II)/Ni(II)-selective motif, a methionine-only MxMxxM Cu(I)/Ag(I)-selective motif and a double histidine HH(M) motif, which can bind both Cu(II) and Cu(I)/Ag(I) ions. Using a combination of NMR spectroscopy and electrospray mass spectrometry, clear evidence was gained that the Ctr1 peptide, at neutral pH, can bind one or two metal ions in the same or different oxidation states. Addition of ascorbate to a neutral solution containing Ctr11-14 and Cu(II) in 1:1 ratio does not cause an appreciable reduction of Cu(II) to Cu(I), which is indicative of a tight binding of Cu(II) to the ATCUN motif. However, by lowering the pH to 3.5, the Cu(II) ion detaches from the peptide and becomes susceptible to reduction to Cu(I) by ascorbate. It is noteworthy that at low pH, unlike Cu(II), Cu(I) stably binds to methionines of the peptide. This redox reaction could take place in the lumen of acidic organelles after Ctr1 internalization. Unlike Ctr11-14-Cu(II), bimetallic Ctr11-14-2Cu(II) is susceptible to partial reduction by ascorbate at neutral pH, which is indicative of a lower binding affinity of the second Cu(II) ion. The reduced copper remains bound to the peptide, most likely to the HH(M) motif. By lowering the pH to 3.5, Cu(I) shifts from HH(M) to methionine-only coordination, an indication that only the pH-insensitive methionine motif is competent for metal binding at low pH. The easy interconversion of monovalent cations between different coordination modes was supported by DFT calculations.
Collapse
Affiliation(s)
| | - Mariagrazia Fortino
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | | | - Giovanni Natile
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Walke G, Aupič J, Kashoua H, Janoš P, Meron S, Shenberger Y, Qasem Z, Gevorkyan-Airapetov L, Magistrato A, Ruthstein S. Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophys J 2022; 121:1194-1204. [PMID: 35202609 PMCID: PMC9034245 DOI: 10.1016/j.bpj.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 02/17/2022] [Indexed: 11/02/2022] Open
Abstract
Abnormal cellular copper levels have been clearly implicated in genetic diseases, cancer, and neurodegeneration. Ctr1, a high-affinity copper transporter, is a homotrimeric integral membrane protein that provides the main route for cellular copper uptake. Together with a sophisticated copper transport system, Ctr1 regulates Cu(I) metabolism in eukaryotes. Despite its pivotal role in normal cell function, the molecular mechanism of copper uptake and transport via Ctr1 remains elusive. In this study, electron paramagnetic resonance (EPR), UV-visible spectroscopy, and all-atom simulations were employed to explore Cu(I) binding to full-length human Ctr1 (hCtr1), thereby elucidating how metal binding at multiple distinct sites affects the hCtr1 conformational dynamics. We demonstrate that each hCtr1 monomer binds up to five Cu(I) ions and that progressive Cu(I) binding triggers a marked structural rearrangement in the hCtr1 C-terminal region. The observed Cu(I)-induced conformational remodeling suggests that the C-terminal region may play a dual role, serving both as a channel gate and as a shuttle mediating the delivery of copper ions from the extracellular hCtr1 selectivity filter to intracellular metallochaperones. Our findings thus contribute to a more complete understanding of the mechanism of hCtr1-mediated Cu(I) uptake and provide a conceptual basis for developing mechanism-based therapeutics for treating pathological conditions linked to de-regulated copper metabolism.
Collapse
Affiliation(s)
- Gulshan Walke
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Jana Aupič
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Hadeel Kashoua
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Pavel Janoš
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Shelly Meron
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Zena Qasem
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Alessandra Magistrato
- Department National Research Council of Italy (CNR) - Institute of Material (IOM) c/o International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
14
|
Magrì A, Tabbì G, Naletova I, Attanasio F, Arena G, Rizzarelli E. A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu 2+ and Mononuclear Ag + Complex Species. Int J Mol Sci 2022; 23:ijms23062929. [PMID: 35328348 PMCID: PMC8953729 DOI: 10.3390/ijms23062929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ctr1 regulates copper uptake and its intracellular distribution. The first 14 amino acid sequence of the Ctr1 ectodomain Ctr1(1-14) encompasses the characteristic Amino Terminal Cu2+ and Ni2+ binding motif (ATCUN) as well as the bis-His binding motif (His5 and His6). We report a combined thermodynamic and spectroscopic (UV-vis, CD, EPR) study dealing with the formation of Cu2+ homobinuclear complexes with Ctr1(1-14), the percentage of which is not negligible even in the presence of a small Cu2+ excess and clearly prevails at a M/L ratio of 1.9. Ascorbate fails to reduce Cu2+ when bound to the ATCUN motif, while it reduces Cu2+ when bound to the His5-His6 motif involved in the formation of binuclear species. The histidine diade characterizes the second binding site and is thought to be responsible for ascorbate oxidation. Binding constants and speciation of Ag+ complexes with Ctr1(1-14), which are assumed to mimic Cu+ interaction with N-terminus of Ctr1(1-14), were also determined. A preliminary immunoblot assay evidences that the anti-Ctr1 extracellular antibody recognizes Ctr1(1-14) in a different way from the longer Ctr1(1-25) that encompasses a second His and Met rich domain.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| |
Collapse
|
15
|
Copper(II) import and reduction are dependent on His-Met clusters in the extracellular amino terminus of human copper transporter-1. J Biol Chem 2022; 298:101631. [PMID: 35090891 PMCID: PMC8867124 DOI: 10.1016/j.jbc.2022.101631] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.
Collapse
|
16
|
Heinrich J, Bossak‐Ahmad K, Riisom M, Haeri HH, Steel TR, Hergl V, Langhans A, Schattschneider C, Barrera J, Jamieson SMF, Stein M, Hinderberger D, Hartinger CG, Bal W, Kulak N. Incorporation of β-Alanine in Cu(II) ATCUN Peptide Complexes Increases ROS Levels, DNA Cleavage and Antiproliferative Activity. Chemistry 2021; 27:18093-18102. [PMID: 34658072 PMCID: PMC9299640 DOI: 10.1002/chem.202102601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 12/30/2022]
Abstract
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (• OH and H2 O2 ). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.
Collapse
Affiliation(s)
- Julian Heinrich
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Karolina Bossak‐Ahmad
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Mie Riisom
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Haleh H. Haeri
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Tasha R. Steel
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Vinja Hergl
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Alexander Langhans
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Corinna Schattschneider
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Jannis Barrera
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstrasse 139106MagdeburgGermany
| | - Dariush Hinderberger
- Institute of ChemistryMartin-Luther-Universität Halle-WittenbergVon-Danckelmann-Platz 406120HalleGermany
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Wojciech Bal
- Institute of Biochemistry and BiophysicsPolish Academy of SciencePawińskiego 5a02-106WarsawPoland
| | - Nora Kulak
- Institute of Chemistry and BiochemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
- Institute of ChemistryOtto-von-Guericke-Universität MagdeburgUniversitätsplatz 239106MagdeburgGermany
| |
Collapse
|
17
|
Płonka D, Kotuniak R, Dąbrowska K, Bal W. Electrospray-Induced Mass Spectrometry Is Not Suitable for Determination of Peptidic Cu(II) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2766-2776. [PMID: 34738801 PMCID: PMC8640992 DOI: 10.1021/jasms.1c00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.
Collapse
|
18
|
Interactions between copper (II) and β-amyloid peptide using capillary electrophoresis-ICP-MS: Kd measurements at the nanogram scale. Anal Bioanal Chem 2021; 414:5347-5355. [PMID: 34812903 DOI: 10.1007/s00216-021-03769-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Although the interaction between the β-amyloid peptide and copper (II) appears to play an important role in Alzheimer's disease, the affinity constant is still controversial and values are ranging from 107 to 1011 M-1. With the aim of clarifying this point, a complementary method, based on the capillary electrophoresis-ICP-MS hyphenation, was developed and competitive binding experiments were conducted in the presence of nitrilotriacetic acid. The effect of the capillary surface (neutral or positively charged) and nature of the buffer (Tris or Hepes) have been studied. Tris buffer was found to be inappropriate for such determination as it enhances the dissociation of copper (II) complexes, already occurring in the presence of an electric field in capillary electrophoresis. Using Hepes, a value of 1010 M-1 was found for the affinity of the small β-amyloid peptide 1-16 for copper (II), which is in agreement with the values obtained for other proteins involved in neurodegenerative diseases. These constants were also determined in conditions closer to those of biological media (higher ionic strength, presence of carbonates).
Collapse
|
19
|
Moracci L, Crotti S, Traldi P, Cosma C, Lapolla A, Pucciarelli S, Agostini M. An electrospray ionization study on complexes of amylin with Cu(II) and Cu(I). JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4773. [PMID: 34120371 DOI: 10.1002/jms.4773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Human amylin (hIAPP) is one of a number of different peptides known to be responsible for the formation of amyloid fibrils in the pancreas of subjects with Type 2 diabetes mellitus. It was recognized that metal ions such as Cu(II) are implicated in the aggregation process of amyloidogenic peptides. However, the role of Cu(II) ions in the aggregation and dyshomeostasis of amylin has been controversial. Considering that most of the research reported in the literature pertain to the interactions between Cu(II) and amylin, we thought of interest to compare the interactions of Cu(II) and Cu(I) ions with amylin by electrospray ionization (ESI) mass spectrometry and collisional experiments, to elucidate possible differences in structural aspects of the complexes so formed. The ESI mass spectra of solutions containing hIAPP and Cu(I) or Cu(II) ions show the formation of hIAPP-Cu complexes. In both cases, M + Cu ions with three and four positive charges are detected. However, a series of fragment ions, absent in the ESI spectrum of untreated hIAPP, become detectable. Some of them are common for both Cu(I) and Cu(II) complexes, whereas others are specific for the complexes containing Cu in different oxidation states. Some fragments imply the involvement of residues His18, Ser19, Ser20, Asn21, and Asn22 in the complex formation, but the detection of the fragment b22 3+ indicates the presence of copper ions in a different position. This suggests different interaction sites between Cu(II) and Cu(I) and hIAPP. In contrast to Cu(II) complex, in the Cu(I) complex, some peculiar structures are present, corresponding to the cleavage of Asn-Asn peptidic bond and to [b30 + Cu(I)]4+ and [b28 + Cu(I)]4+ species. These results are in agreement with the coordination vacancy in [Cu(I)-(peptide)] species, which promotes Cu(I) interaction with additional neighboring donors (mainly N-histidine, and also S-methionine or other groups depending on the peptide conformation) through formation of trigonal T-shaped intermediates.
Collapse
Affiliation(s)
- Laura Moracci
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Chiara Cosma
- Department of Medicine, University of Padova, Padua, Italy
| | | | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|
20
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
22
|
Maiti BK, Govil N, Kundu T, Moura JJ. Designed Metal-ATCUN Derivatives: Redox- and Non-redox-Based Applications Relevant for Chemistry, Biology, and Medicine. iScience 2020; 23:101792. [PMID: 33294799 PMCID: PMC7701195 DOI: 10.1016/j.isci.2020.101792] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The designed "ATCUN" motif (amino-terminal copper and nickel binding site) is a replica of naturally occurring ATCUN site found in many proteins/peptides, and an attractive platform for multiple applications, which include nucleases, proteases, spectroscopic probes, imaging, and small molecule activation. ATCUN motifs are engineered at periphery by conjugation to recombinant proteins, peptides, fluorophores, or recognition domains through chemically or genetically, fulfilling the needs of various biological relevance and a wide range of practical usages. This chemistry has witnessed significant growth over the last few decades and several interesting ATCUN derivatives have been described. The redox role of the ATCUN moieties is also an important aspect to be considered. The redox potential of designed M-ATCUN derivatives is modulated by judicious choice of amino acid (including stereochemistry, charge, and position) that ultimately leads to the catalytic efficiency. In this context, a wide range of M-ATCUN derivatives have been designed purposefully for various redox- and non-redox-based applications, including spectroscopic probes, target-based catalytic metallodrugs, inhibition of amyloid-β toxicity, and telomere shortening, enzyme inactivation, biomolecules stitching or modification, next-generation antibiotic, and small molecule activation.
Collapse
Affiliation(s)
- Biplab K. Maiti
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Nidhi Govil
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - Taraknath Kundu
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| | - José J.G. Moura
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Esmieu C, Ferrand G, Borghesani V, Hureau C. Impact of N-Truncated Aβ Peptides on Cu- and Cu(Aβ)-Generated ROS: Cu I Matters! Chemistry 2020; 27:1777-1786. [PMID: 33058356 DOI: 10.1002/chem.202003949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/07/2020] [Indexed: 12/15/2022]
Abstract
In vitro Cu(Aβ1-x )-induced ROS production has been extensively studied. Conversely, the ability of N-truncated isoforms of Aβ to alter the Cu-induced ROS production has been overlooked, even though they are main constituents of amyloid plaques found in the human brain. N-Truncated peptides at the positions 4 and 11 (Aβ4-x and Aβ11-x ) contain an amino-terminal copper and nickel (ATCUN) binding motif (H2 N-Xxx-Zzz-His) that confer them different coordination sites and higher affinities for CuII compared to the Aβ1-x peptide. It has further been proposed that the role of Aβ4-x peptide is to quench CuII toxicity in the brain. However, the role of CuI coordination has not been investigated to date. In contrast to CuII , CuI coordination is expected to be the same for N-truncated and N-intact peptides. Herein, we report in-depth characterizations and ROS production studies of Cu (CuI and CuII ) complexes of the Aβ4-16 and Aβ11-16 N-truncated peptides. Our findings show that the N-truncated peptides do produce ROS when CuI is present in the medium, albeit to a lesser extent than the unmodified counterpart. In addition, when used as competitor ligands (i.e., in the presence of Aβ1-16 ), the N-truncated peptides are not able to fully preclude Cu(Aβ1-16 )-induced ROS production.
Collapse
Affiliation(s)
- Charlène Esmieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France
| | - Guillaume Ferrand
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| | - Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France.,current address: School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
24
|
Stefaniak E, Pushie MJ, Vaerewyck C, Corcelli D, Griggs C, Lewis W, Kelley E, Maloney N, Sendzik M, Bal W, Haas KL. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorg Chem 2020; 59:16952-16966. [PMID: 33211469 DOI: 10.1021/acs.inorgchem.0c02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1-16 and Aβ4-16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aβ4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Catherine Vaerewyck
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David Corcelli
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Chloe Griggs
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Whitney Lewis
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Emma Kelley
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Noreen Maloney
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| |
Collapse
|
25
|
Bartnicka JJ, Al-Salemee F, Firth G, Blower PJ. L-Cysteine-mediated modulation of copper trafficking in prostate cancer cells: an in vitro and in vivo investigation with 64Cu and 64Cu-PET. Metallomics 2020; 12:1508-1520. [PMID: 32959856 DOI: 10.1039/d0mt00161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 μM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.
Collapse
Affiliation(s)
- Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
26
|
Galler T, Lebrun V, Raibaut L, Faller P, Wezynfeld NE. How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry. Chem Commun (Camb) 2020; 56:12194-12197. [PMID: 32914794 DOI: 10.1039/d0cc04693k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Employing peptide-based models of copper transporter 1 (CTR1), we show that the trimeric arrangement of its N-terminus tunes its reactivity with Cu, promoting Cu(ii) reduction and stabilizing Cu(i). Hence, the employed multimeric models of CTR1 provide an important contribution to studies on early steps of Cu uptake by cells.
Collapse
Affiliation(s)
- Thibaut Galler
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Vincent Lebrun
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Laurent Raibaut
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France.
| | - Nina E Wezynfeld
- Institut de Chimie, UMR 7177, CNRS-Universitéde Strasbourg, 4 rue Blaise Pascal, Strasbourg 67000, France. and Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw 00-664, Poland.
| |
Collapse
|
27
|
Kotuniak R, Strampraad MJF, Bossak‐Ahmad K, Wawrzyniak UE, Ufnalska I, Hagedoorn P, Bal W. Key Intermediate Species Reveal the Copper(II)-Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angew Chem Int Ed Engl 2020; 59:11234-11239. [PMID: 32267054 PMCID: PMC7383912 DOI: 10.1002/anie.202004264] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/31/2023]
Abstract
The amino-terminal copper and nickel/N-terminal site (ATCUN/NTS) present in proteins and bioactive peptides exhibits high affinity towards CuII ions and have been implicated in human copper physiology. Little is known, however, about the rate and exact mechanism of formation of such complexes. We used the stopped-flow and microsecond freeze-hyperquenching (MHQ) techniques supported by steady-state spectroscopic and electrochemical data to demonstrate the formation of partially coordinated intermediate CuII complexes formed by glycyl-glycyl-histidine (GGH) peptide, the simplest ATCUN/NTS model. One of these novel intermediates, characterized by two-nitrogen coordination, t1/2 ≈100 ms at pH 6.0 and the ability to maintain the CuII /CuI redox pair is the best candidate for the long-sought reactive species in extracellular copper transport.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| | - Marc J. F. Strampraad
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Karolina Bossak‐Ahmad
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| | - Urszula E. Wawrzyniak
- Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of TechnologyNoakowskiego 300-664WarsawPoland
| | - Iwona Ufnalska
- Chair of Medical BiotechnologyFaculty of ChemistryWarsaw University of TechnologyNoakowskiego 300-664WarsawPoland
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Wojciech Bal
- Department of BiophysicsInstitute of Biochemistry and Biophysics Polish Academy of SciencesPawińskiego 5a02-106WarsawPoland
| |
Collapse
|
28
|
Perkal O, Qasem Z, Turgeman M, Schwartz R, Gevorkyan-Airapetov L, Pavlin M, Magistrato A, Major DT, Ruthstein S. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study. J Phys Chem B 2020; 124:4399-4411. [PMID: 32396355 PMCID: PMC7294806 DOI: 10.1021/acs.jpcb.0c01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Atox1 is a human
copper metallochaperone that is responsible for
transferring copper ions from the main human copper transporter, hCtr1,
to ATP7A/B in the Golgi apparatus. Atox1 interacts with the Ctr1 C-terminal
domain as a dimer, although it transfers the copper ions to ATP7A/B
in a monomeric form. The copper binding site in the Atox1 dimer involves
Cys12 and Cys15, while Lys60 was also suggested to play a role in
the copper binding. We recently showed that Atox1 can adopt various
conformational states, depending on the interacting protein. In the
current study, we apply EPR experiments together with hybrid quantum
mechanics–molecular mechanics molecular dynamics simulations
using a recently developed semiempirical density functional theory
approach, to better understand the effect of Atox1’s conformational
states on copper coordination. We propose that the flexibility of
Atox1 occurs owing to protonation of one or more of the cysteine residues,
and that Cys15 is an important residue for Atox1 dimerization, while
Cys12 is a critical residue for Cu(I) binding. We also show that Lys60
electrostatically stabilizes the Cu(I)–Atox1 dimer.
Collapse
Affiliation(s)
- Ortal Perkal
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zena Qasem
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Meital Turgeman
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Renana Schwartz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lada Gevorkyan-Airapetov
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Matic Pavlin
- CNR-IOM at SISSA, via Bonomea 265, 34135, Trieste, Italy
| | | | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
29
|
Kotuniak R, Strampraad MJF, Bossak‐Ahmad K, Wawrzyniak UE, Ufnalska I, Hagedoorn P, Bal W. Key Intermediate Species Reveal the Copper(II)‐Exchange Pathway in Biorelevant ATCUN/NTS Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Radosław Kotuniak
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Marc J. F. Strampraad
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Karolina Bossak‐Ahmad
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Urszula E. Wawrzyniak
- Chair of Medical Biotechnology Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Ufnalska
- Chair of Medical Biotechnology Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Peter‐Leon Hagedoorn
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Wojciech Bal
- Department of Biophysics Institute of Biochemistry and Biophysics Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| |
Collapse
|
30
|
Uceda AB, Mariño L, Adrover M, Vilanova B. Understanding metal binding in neuromedin C. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Bacchella C, Gentili S, Bellotti D, Quartieri E, Draghi S, Baratto MC, Remelli M, Valensin D, Monzani E, Nicolis S, Casella L, Tegoni M, Dell'Acqua S. Binding and Reactivity of Copper to R 1 and R 3 Fragments of tau Protein. Inorg Chem 2019; 59:274-286. [PMID: 31820933 DOI: 10.1021/acs.inorgchem.9b02266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tau protein is present in significant amounts in neurons, where it contributes to the stabilization of microtubules. Insoluble neurofibrillary tangles of tau are associated with several neurological disorders known as tauopathies, among which is Alzheimer's disease. In neurons, tau binds tubulin through its microtubule binding domain which comprises four imperfect repeats (R1-R4). The histidine residues contained in these fragments are potential binding sites for metal ions and are located close to the regions that drive the formation of amyloid aggregates of tau. In this study, we present a detailed characterization through potentiometric and spectroscopic methods of the binding of copper in both oxidation states to R1 and R3 peptides, which contain one and two histidine residues, respectively. We also evaluate how the redox cycling of copper bound to tau peptides can mediate oxidation that can potentially target exogenous substrates such as neuronal catecholamines. The resulting quinone oxidation products undergo oligomerization and can competitively give post-translational peptide modifications yielding catechol adducts at amino acid residues. The presence of His-His tandem in the R3 peptide strongly influences both the binding of copper and the reactivity of the resulting copper complex. In particular, the presence of the two adjacent histidines makes the copper(I) binding to R3 much stronger than in R1. The copper-R3 complex is also much more active than the copper-R1 complex in promoting oxidative reactions, indicating that the two neighboring histidines activate copper as a catalyst in molecular oxygen activation reactions.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Silvia Gentili
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Denise Bellotti
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Eleonora Quartieri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Sara Draghi
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maria Camilla Baratto
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Maurizio Remelli
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Ferrara , Via Luigi Borsari 46 , 44121 Ferrara , Italy
| | - Daniela Valensin
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , Via A. Moro 2 , 53100 , Siena , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale , Università di Parma , Parco Area delle Scienze 11/A , 43124 Parma , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
32
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Wu D, Narayanan U, Zhang L, Cooper GJS. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics 2019; 12:259-272. [PMID: 31821401 DOI: 10.1039/c9mt00223e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes impairs systemic copper regulation, and acts as a major independent risk factor for heart failure (HF) wherein mitochondrial dysfunction is a key pathogenic process. Here we asked whether diabetes might alter mitochondrial structure/function and thus impair cardiac performance by damaging myocellular pathways that mediate cell-copper homeostasis. We measured activity of major mitochondria-resident copper-enzymes cytochrome c oxidase (mt-Cco) and superoxide dismutase 1 (mt-Sod1); expression of three main mitochondrial copper-chaperones [Cco copper chaperone 17 (Cox17), Cox11, and mitochondria-resident copper chaperone for Sod1 (mt-Ccs)]; of copper-dependent Cco-assembly protein Sco1; and regulation of mitochondrial biogenesis, in left-ventricular (LV) tissue from groups of non-diabetic-control, untreated-diabetic, and divalent-copper-selective chelator-treated diabetic rats. Diabetes impaired LV pump function; ∼halved LV-copper levels; substantively decreased myocellular expression of copper chaperones, and enzymatic activity of mt-Cco and mt-Sod1. Divalent-copper chelation with triethylenetetramine improved cardiac pump function, restored levels of myocardial copper, the copper chaperones, and Sco1; and enzymatic activity of mt-Cco and mt-Sod1. Copper chelation also restored expression of the key mitochondrial biogenesis regulator, peroxisome-proliferator-activated receptor gamma co-activator-1α (Pgc-1α). This study shows for the first time that altered myocardial copper-trafficking is a key pathogenic process in diabetes-evoked HF. We also describe a novel therapeutic effect of divalent-copper-selective chelation, namely restoration of myocellular copper trafficking, which is thus revealed as a potentially tractable target for novel pharmacological intervention to improve cardiac function.
Collapse
Affiliation(s)
- Shaoping Zhang
- School of Biological Sciences, University of Auckland, Private Bag 92 019, Auckland 1010, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Garai A, Delangle P. Recent advances in uranyl binding in proteins thanks to biomimetic peptides. J Inorg Biochem 2019; 203:110936. [PMID: 31864150 DOI: 10.1016/j.jinorgbio.2019.110936] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022]
Abstract
Uranium is an element belonging to the actinide series. It is ubiquitous in rock, soil, and water. Uranium is found in the ecosystem due to mining and milling industrial activities and processing to nuclear fuel, but also to the extensive use of phosphate fertilizers. Understanding uranium binding in vivo is critical, first to deepen our knowledge of molecular events leading to chemical toxicity, but also to provide new mechanistic information useful for the development of efficient decorporation treatments to be applied in case of intoxication. The most stable form in physiological conditions is the uranyl cation (UO22+), in which uranium oxidation state is +VI. This short review presents uranyl coordination properties and chelation, and what is currently known about uranium binding to proteins. Although several target proteins have been identified, the UO22+ binding sites have barely been identified. Biomimetic approaches using model peptides are good options to shed light on high affinity uranyl binding sites in proteins. A strategy based on constrained cyclodecapeptides allowed recently to propose a tetraphosphate binding site for uranyl that provides an affinity similar to the one measured with the phosphoprotein osteopontin.
Collapse
Affiliation(s)
- Aditya Garai
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
34
|
Bossak‐Ahmad K, Frączyk T, Bal W, Drew SC. The Sub‐picomolar Cu2+Dissociation Constant of Human Serum Albumin. Chembiochem 2019; 21:331-334. [DOI: 10.1002/cbic.201900435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Karolina Bossak‐Ahmad
- Institute of Biochemistry and BiophysicsPolish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and BiophysicsPolish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
- Department of Immunology, Transplantology and Internal MedicineMedical University of Warsaw Nowogrodzka 59 02-006 Warsaw Poland
| | - Wojciech Bal
- Institute of Biochemistry and BiophysicsPolish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - Simon C. Drew
- Institute of Biochemistry and BiophysicsPolish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| |
Collapse
|
35
|
Stefaniak E, Płonka D, Drew SC, Bossak-Ahmad K, Haas KL, Pushie MJ, Faller P, Wezynfeld NE, Bal W. The N-terminal 14-mer model peptide of human Ctr1 can collect Cu(ii) from albumin. Implications for copper uptake by Ctr1. Metallomics 2019; 10:1723-1727. [PMID: 30489586 DOI: 10.1039/c8mt00274f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cells acquire copper primarily via the copper transporter 1 protein, hCtr1. We demonstrate that at extracellular pH 7.4 CuII is bound to the model peptide hCtr11-14via an ATCUN motif and such complexes are strong enough to collect CuII from albumin, supporting the potential physiological role of CuII binding to hCtr1.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan W, Wang Y, Wang N. A new metal affinity NCTR 25 tag as a better alternative to the His-tag for the expression of recombinant fused proteins. Protein Expr Purif 2019; 164:105477. [PMID: 31419547 DOI: 10.1016/j.pep.2019.105477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/20/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
Abstract
His-tagging is commonly used in fusion protein production, but the His-tag is usually prohibited in medicinal proteins and must be removed. A fragment (NCTR25-tag) truncated from the N-terminus of human copper transporter 1 was tested for feasibility as a replacement for the His-tag in fusion proteins. The NCTR25-tag and His-tag were separately fused to the transthyretin (TTR) protein, and the expression, affinity purification, refolding and stability of the two kinds of fusions were compared. NCTR25 fusion produced a 63% higher yield of the recombinant protein, which was purified by metal affinity chromatography with an efficiency similar to that of His-tagged protein. NCTR25-tag fusion had much less impact on the foldability, kinetic and thermodynamic stability of tetrameric TTR than His-tag fusion. When the tags were individually fused to enhanced green fluorescent protein (EGFP), NCTR25 fusion yielded 29-128% more product than His-EGFP. NCTR25-EGFP could be purified by metal affinity chromatography and showed better foldability than His-EGFP. Furthermore, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) fusion with the third disulfide loop of TGF-α (TGF3L-TRAIL) fused with the NCTR25-tag retained the stability and superactivity of His-TGF3L-TRAIL. Therefore, the native tag NCTR25-tag is a feasible alternative to the His-tag in medicinal recombinant proteins.
Collapse
Affiliation(s)
- Weitong Pan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Nan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Walke G, Ruthstein S. Does the ATSM-Cu(II) Biomarker Integrate into the Human Cellular Copper Cycle? ACS OMEGA 2019; 4:12278-12285. [PMID: 31460344 PMCID: PMC6681976 DOI: 10.1021/acsomega.9b01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is commonly encountered in the tumor microenvironment and drives proliferation, angiogenesis, and resistance to therapy. Imaging of hypoxia is important in many disease states in oncology, cardiology, and neurology. Finding clinically approved imaging biomarkers for hypoxia has proved challenging. Candidate biomarkers have shown low uptake into tumors and low signal to background ratios that adversely affect imaging quality. Copper complexes have been identified as potential biomarkers for hypoxia owing to their redox ability. Active uptake of copper complexes into cells could ensure selectivity and high sensitivity. We explored the reactivity and selectivity of the ATSM-Cu(II) biomarker to proteins that are involved in the copper cycle using electron paramagnetic resonance (EPR) spectroscopy and UV-vis measurements. We show that the affinity of the ATSM-Cu(II) complex to proteins in the copper cycle is low and the cell probably does not actively uptake ATSM-Cu(II).
Collapse
|
38
|
Saito K, Watanabe K, Yanaoka R, Kageyama L, Miura T. Potential role of serotonin as a biological reductant associated with copper transportation. J Inorg Biochem 2019; 199:110770. [PMID: 31336257 DOI: 10.1016/j.jinorgbio.2019.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is a neurotransmitter that is derived from tryptophan. Owing to a hydroxyl group attached to the indole nucleus, 5-HT exhibits a considerably higher redox activity than tryptophan. To gain insight into the biological relevance of the redox activity of 5-HT, the effect of Cu(I)-binding ligands on the 5-HT-mediated copper reduction was investigated. The d-d transition band of Cu(II) complexed with glycine [Cu(II)-Gly2] was not affected by addition of 5-HT alone but was diminished when a thioether-containing compound coexists with 5-HT. Concomitant with disappearance of the d-d transition band of Cu(II)-Gly2, the π-π* transition band of 5-hydroxyindole of 5-HT exhibits a red-shift which is consistently explained by oxidation of 5-HT and subsequent formation of a dimeric species. The redox reactions between 5-HT and copper are also accelerated by a peptide composed of a methionine (Met)-rich region in the extracellular domain of an integral membrane protein, copper transporter 1 (Ctr1). Since Ctr1 transports copper across the plasma membrane with specificity for Cu(I), reduction of extracellular Cu(II) to Cu(I) is required for copper uptake by Ctr1. Metalloreductases that can donate Cu(I) for Ctr1 have been identified in yeast but not yet been found in mammals. The results of this study indicate that the Met-rich region in the N-terminal extracellular domain of Ctr1 promotes the 5-HT-mediated Cu(II) reduction in order to acquire Cu(I) via a non-enzymatic process.
Collapse
Affiliation(s)
- Kaede Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Kasumi Watanabe
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Risa Yanaoka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Lisa Kageyama
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan.
| |
Collapse
|
39
|
Tabbì G, Magrì A, Rizzarelli E. The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment. J Inorg Biochem 2019; 199:110759. [PMID: 31299377 DOI: 10.1016/j.jinorgbio.2019.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
Copper is involved in several biological processes. The static and labile copper pools are controlled by means of a network of influx and efflux transporters, storage proteins, chaperones, transcription factors and small molecules as glutathione (GSH), which contributes to the cell reducing environment. To follow the fate of intracellular copper labile pool, a variant of human apocarbonic anhydrase has been proposed as fluorescent probe to monitor cytoplasmic Cu2+. Aware that in this cellular compartment copper ion is present as Cu+, electron spin resonance technique (ESR) was used to ascertain whether (bovine or human) carbonic anhydrase (CA) was able to accommodate Cu+ in the same sites occupied by Cu2+, in the presence of naturally occurring reducing agents such as ascorbate and GSH. Our ESR results on Cu2+ complexes with CA allow for a complete characterization of the two metal binding sites of the protein in solution. The use of the reported affinity constants of zinc in the catalytic site and of Cu2+ in the peripheral and catalytic site, allow us to obtain the speciation of copper species mimicking the spectroscopic study conditions. The different Cu2+ coordination features in the catalytic and the peripheral (the N-terminus cleft mouth) binding sites influence the chemical reduction effect of the two main naturally occurring reductants. Ascorbate reversibly reduces the Cu2+ complex with CA, while glutathione irreversibly induces the formation of Cu2+ complex with its oxidized form (GSSG). Our results questioned the use of CA as intracellular Cu2+ sensor. Furthermore, translating these findings to intracellular environment, the conversion of GSH in GSSG can significantly alter the metallostasis.
Collapse
Affiliation(s)
- Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy; Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, Bari, Italy.
| |
Collapse
|
40
|
Wezynfeld NE, Vileno B, Faller P. Cu(II) Binding to the N-Terminal Model Peptide of the Human Ctr2 Transporter at Lysosomal and Extracellular pH. Inorg Chem 2019; 58:7488-7498. [PMID: 31083932 DOI: 10.1021/acs.inorgchem.9b00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It was shown that His3 of human copper transporter 1 (hCtr1) prompts the ATCUN-like Cu(II) coordination for model peptides of the hCtr1 N-terminus. Its high Cu(II) affinity is a potential driving force for the transfer of Cu(II) from extracellular Cu(II) carriers to hCtr1. Having a sequence similar to that of hCtr1, hCtr2 has been proposed as another human copper transporter. However, the N-terminal domain of hCtr2 is much shorter than that of hCtr1, with different copper binding motifs at its N-terminus. Employing a model peptide of the hCtr2 N-terminus, MAMHF-am, we demonstrated that His4 provides a unique pattern of Cu(II) complexes, involving Met sulfurs in their Cu(II) coordination sphere. The affinity of Cu(II) for MAMHF-am is a few orders of magnitude lower than that reported for the hCtr1 model peptides at the extracellular pH of 7.4, suggesting a maximal complementary role of Cu(II) binding to hCtr2 in the import of copper from the extracellular space to the cytoplasm. On the other hand, the ability of the hCtr2 model peptide to capture Cu(II) from amino acids and short peptides (potential degradation products of proteins) at pH 5.0 and the known predominant lysosomal localization of hCtr2 support an important potential role of the Cu(II)-hCtr2 interaction in the recovery of copper from lysosomes.
Collapse
Affiliation(s)
- Nina E Wezynfeld
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France.,Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France.,French EPR Federation of Research (REseau NAtional de Rpe interDisciplinaire (RENARD) Fédération IR-RPE CNRS #3443) , 67081 Strasbourg , France
| | - Peter Faller
- Institut de Chimie, UMR 7177 , CNRS-Université de Strasbourg , 4 rue Blaise Pascal , 67000 Strasbourg , France
| |
Collapse
|
41
|
De Gregorio G, Biasotto F, Hecel A, Luczkowski M, Kozlowski H, Valensin D. Structural analysis of copper(I) interaction with amyloid β peptide. J Inorg Biochem 2019; 195:31-38. [DOI: 10.1016/j.jinorgbio.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/01/2022]
|
42
|
Laporte FA, Lebrun C, Vidaud C, Delangle P. Phosphate-Rich Biomimetic Peptides Shed Light on High-Affinity Hyperphosphorylated Uranyl Binding Sites in Phosphoproteins. Chemistry 2019; 25:8570-8578. [PMID: 30908736 DOI: 10.1002/chem.201900646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Some phosphoproteins such as osteopontin (OPN) have been identified as high-affinity uranyl targets. However, the binding sites required for interaction with uranyl and therefore involved in its toxicity have not been identified in the whole protein. The biomimetic approach proposed here aimed to decipher the nature of these sites and should help to understand the role of the multiple phosphorylations in UO2 2+ binding. Two hyperphosphorylated cyclic peptides, pS168 and pS1368 containing up to four phosphoserine (pSer) residues over the ten amino acids present in the sequences, were synthesized with all reactions performed in the solid phase, including post-phosphorylation. These β-sheet-structured peptides present four coordinating residues from four amino acid side chains pointing to the metal ion, either three pSer and one glutamate in pS168 or four pSer in pS1368 . Significantly, increasing the number of pSer residues up to four in the cyclodecapeptide scaffolds produced molecules with an affinity constant for UO2 2+ that is as large as that reported for osteopontin at physiological pH. The phosphate-rich pS1368 can thus be considered a relevant model of UO2 2+ coordination in this intrinsically disordered protein, which wraps around the metal ion to gather four phosphate groups in the UO2 2+ coordination sphere. These model hyperphosphorylated peptides are highly selective for UO2 2+ with respect to endogenous Ca2+ , which makes them good starting structures for selective UO2 2+ complexation.
Collapse
Affiliation(s)
- Fanny A Laporte
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Colette Lebrun
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Claude Vidaud
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute of Aix-Marseille, 30207, Bagnols sur Céze, France
| | - Pascale Delangle
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
43
|
Hecel A, Kolkowska P, Krzywoszynska K, Szebesczyk A, Rowinska-Zyrek M, Kozlowski H. Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Curr Med Chem 2019; 26:624-647. [DOI: 10.2174/0929867324666170920125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Karolina Krzywoszynska
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | - Agnieszka Szebesczyk
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | | | - Henryk Kozlowski
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
44
|
Ren F, Logeman BL, Zhang X, Liu Y, Thiele DJ, Yuan P. X-ray structures of the high-affinity copper transporter Ctr1. Nat Commun 2019; 10:1386. [PMID: 30918258 PMCID: PMC6437178 DOI: 10.1038/s41467-019-09376-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/06/2019] [Indexed: 02/02/2023] Open
Abstract
Copper (Cu) is an essential trace element for growth and development and abnormal Cu levels are associated with anemia, metabolic disease and cancer. Evolutionarily conserved from fungi to humans, the high-affinity Cu+ transporter Ctr1 is crucial for both dietary Cu uptake and peripheral distribution, yet the mechanisms for selective permeation of potentially toxic Cu+ ions across cell membranes are unknown. Here we present X-ray crystal structures of Ctr1 from Salmo salar in both Cu+-free and Cu+-bound states, revealing a homo-trimeric Cu+-selective ion channel-like architecture. Two layers of methionine triads form a selectivity filter, coordinating two bound Cu+ ions close to the extracellular entrance. These structures, together with Ctr1 functional characterization, provide a high resolution picture to understand Cu+ import across cellular membranes and suggest therapeutic opportunities for intervention in diseases characterized by inappropriate Cu accumulation. Copper (Cu) is an essential trace element for growth and development and the Cu+ transporter Ctr1 is crucial for both dietary Cu uptake and peripheral distribution. Here authors solve Cu+ -free and Cu+ -bound Ctr1 structures which adopt a homo-trimeric Cu+ -selective ion channel-like architecture
Collapse
Affiliation(s)
- Feifei Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brandon L Logeman
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
45
|
The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences. J Inorg Biochem 2019; 182:230-237. [PMID: 29402466 DOI: 10.1016/j.jinorgbio.2018.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 1013 M-1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 1014 M-1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function.
Collapse
|
46
|
Yang Y, Zhu Y, Hu H, Cheng L, Liu M, Ma G, Yuan S, Cui P, Liu Y. Cuprous binding promotes interaction of copper transport protein hCTR1 with cell membranes. Chem Commun (Camb) 2019; 55:11107-11110. [DOI: 10.1039/c9cc04859f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(i) binding promotes the interaction of hCTR1 with cell membranes, which could initiate the cellular uptake of copper ions.
Collapse
Affiliation(s)
- Yang Yang
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Yang Zhu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Hongze Hu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Lanjun Cheng
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Manman Liu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Guolin Ma
- Institute of Biosciences and Technology
- College of Medicine
- Texas A&M University
- Houston
- USA
| | - Siming Yuan
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- the Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Yangzhong Liu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| |
Collapse
|
47
|
Carlotto S, Bonna A, Bossak-Ahmad K, Bal W, Porchia M, Casarin M, Tisato F. Coordinative unsaturated CuI entities are crucial intermediates governing cell internalization of copper. A combined experimental ESI-MS and DFT study. Metallomics 2019; 11:1800-1804. [DOI: 10.1039/c9mt00236g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Model peptides relevant to hCtr1 transchelate CuI from the anti-tumour [CuI(PTA)4]+ complex before metal internalization into tumor cells.
Collapse
Affiliation(s)
- Silvia Carlotto
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | - Arkadiusz Bonna
- Department of Biochemistry
- University of Cambridge
- Tennis Court Road
- Cambridge
- UK
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences, Pawińskiego 5a
- 02-106 Warsaw
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences, Pawińskiego 5a
- 02-106 Warsaw
- Poland
| | | | - Maurizio Casarin
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | | |
Collapse
|
48
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
49
|
Libardo MDJ, de la Fuente-Nuñez C, Anand K, Krishnamoorthy G, Kaiser P, Pringle SC, Dietz C, Pierce S, Smith MB, Barczak A, Kaufmann SHE, Singh A, Angeles-Boza AM. Phagosomal Copper-Promoted Oxidative Attack on Intracellular Mycobacterium tuberculosis. ACS Infect Dis 2018; 4:1623-1634. [PMID: 30141623 DOI: 10.1021/acsinfecdis.8b00171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper (Cu) ions are critical in controlling bacterial infections, and successful pathogens like Mycobacterium tuberculosis (Mtb) possess multiple Cu resistance mechanisms. We report, as proof of concept, that a novel Cu hypersensitivity phenotype can be generated in mycobacteria, including Mtb, through a peptide, DAB-10, that is able to form reactive oxygen species (ROS) following Cu-binding. DAB-10 induces intramycobacterial oxidative stress in a Cu-dependent manner in vitro and during infection. DAB-10 penetrates murine macrophages and encounters intracellular mycobacteria. Significant intracellular Cu-dependent protection was observed when Mtb-infected macrophages were treated with DAB-10 alongside a cell-permeable Cu chelator. Treatment with the Cu chelator reversed the intramycobacterial oxidative shift induced by DAB-10. We conclude that DAB-10 utilizes the pool of phagosomal Cu ions in the host-Mtb interface to augment the mycobactericidal activity of macrophages while simultaneously exploiting the susceptibility of Mtb to ROS. DAB-10 serves as a model with which to develop next-generation, multifunctional antimicrobials.
Collapse
Affiliation(s)
- M. Daben J. Libardo
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Cesar de la Fuente-Nuñez
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 21 Ames Street, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02139, United States
| | - Kushi Anand
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Gopinath Krishnamoorthy
- Department of Immunology, Max Planck Institute for Infection Biology, Virchowweg 12, Berlin 10117, Germany
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Virchowweg 12, Berlin 10117, Germany
| | - Stephanie C. Pringle
- The Ragon Institute of Harvard, MIT, and Massachusetts General Hospital, 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Christopher Dietz
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Scott Pierce
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Michael B. Smith
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Amy Barczak
- The Ragon Institute of Harvard, MIT, and Massachusetts General Hospital, 400 Technology Square, Cambridge, Massachusetts 02139, United States
- Division of Infectious Disease, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, United States
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Virchowweg 12, Berlin 10117, Germany
| | - Amit Singh
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
50
|
Logeman BL, Thiele DJ. Reconstitution of a thermophilic Cu + importer in vitro reveals intrinsic high-affinity slow transport driving accumulation of an essential metal ion. J Biol Chem 2018; 293:15497-15512. [PMID: 30131336 PMCID: PMC6177576 DOI: 10.1074/jbc.ra118.004802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of the trace element copper (Cu) is critical to drive essential eukaryotic processes such as oxidative phosphorylation, iron mobilization, peptide hormone biogenesis, and connective tissue maturation. The Ctr1/Ctr3 family of Cu importers, first discovered in fungi and conserved in mammals, are critical for Cu+ movement across the plasma membrane or mobilization from endosomal compartments. Whereas ablation of Ctr1 in mammals is embryonic lethal, and Ctr1 is critical for dietary Cu absorption, cardiac function, and systemic iron distribution, little is known about the intrinsic contribution of Ctr1 for Cu+ permeation through membranes or its mechanism of action. Here, we identify three members of a Cu+ importer family from the thermophilic fungus Chaetomium thermophilum: Ctr3a and Ctr3b, which function on the plasma membrane, and Ctr2, which likely functions in endosomal Cu mobilization. All three proteins drive Cu and isoelectronic silver (Ag) uptake in cells devoid of Cu+ importers. Transport activity depends on signature amino acid motifs that are conserved and essential for all Ctr1/3 transporters. Ctr3a is stable and amenable to purification and was incorporated into liposomes to reconstitute an in vitro Ag+ transport assay characterized by stopped-flow spectroscopy. Ctr3a has intrinsic high-affinity metal ion transport activity that closely reflects values determined in vivo, with slow turnover kinetics. Given structural models for mammalian Ctr1, Ctr3a likely functions as a low-efficiency Cu+ ion channel. The Ctr1/Ctr3 family may be tuned to import essential yet potentially toxic Cu+ ions at a slow rate to meet cellular needs, while minimizing labile intracellular Cu+ pools.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Biochemistry, and
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|