1
|
Yao L, Ling B, Zhao S, Yu F, Liu H, Wang S, Xiao J. Versatile Self-Assembly of Triblock Peptides into Stable Collagen Mimetic Heterotrimers. Int J Mol Sci 2024; 25:6550. [PMID: 38928256 PMCID: PMC11203499 DOI: 10.3390/ijms25126550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The construction of peptides to mimic heterogeneous proteins such as type I collagen plays a pivotal role in deciphering their function and pathogenesis. However, progress in the field has been severely hampered by the lack of capability to create stable heterotrimers with desired functional sequences and without the effect of homotrimers. We have herein developed a set of triblock peptides that can assemble into collagen mimetic heterotrimers with desired amino acids and are free from the interference of homotrimers. The triblock peptides comprise a central collagen-like block and two oppositely charged N-/C-terminal blocks, which display inherent incompetency of homotrimer formation. The favorable electrostatic attraction between two paired triblock peptides with complementary terminal charged sequences promptly leads to stable heterotrimers with controlled chain composition. The independence of the collagen-like block from the two terminal blocks endows this system with the adaptability to incorporate desired amino acid sequences while maintaining the heterotrimer structure. The triblock peptides provide a versatile and robust tool to mimic the composition and function of heterotrimer collagen and may have great potential in the design of innovative peptides mimicking heterogeneous proteins.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Biyang Ling
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sha Zhao
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing 100871, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing 100871, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Islami V, Bittner P, Fiala T, Hentzen NB, Zenobi R, Wennemers H. Self-Sorting Collagen Heterotrimers. J Am Chem Soc 2024; 146:1789-1793. [PMID: 38156954 DOI: 10.1021/jacs.3c12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nature uses elaborate methods to control protein assembly, including that of heterotrimeric collagen. Here, we established design principles for the composition and register-selective assembly of synthetic collagen heterotrimers. The assembly code enabled the self-sorting of eight different strands into three─out of 512 possible─triple helices via complementary (4S)-aminoproline and aspartate residues. Native ESI-MS corroborated the specific assembly into coexisting heterotrimers.
Collapse
Affiliation(s)
- Valdrin Islami
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Philipp Bittner
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Tomas Fiala
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Nina B Hentzen
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Faruqui N, Williams DS, Briones A, Kepiro IE, Ravi J, Kwan TO, Mearns-Spragg A, Ryadnov MG. Extracellular matrix type 0: From ancient collagen lineage to a versatile product pipeline - JellaGel™. Mater Today Bio 2023; 22:100786. [PMID: 37692377 PMCID: PMC10491728 DOI: 10.1016/j.mtbio.2023.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular matrix type 0 is reported. The matrix is developed from a jellyfish collagen predating mammalian forms by over 0.5 billion years. With its ancient lineage, compositional simplicity, and resemblance to multiple collagen types, the matrix is referred to as the extracellular matrix type 0. Here we validate the matrix describing its physicochemical and biological properties and present it as a versatile, minimalist biomaterial underpinning a pipeline of commercialised products under the collective name of JellaGelTM. We describe an extensive body of evidence for folding and assembly of the matrix in comparison to mammalian matrices, such as bovine collagen, and its use to support cell growth and development in comparison to known tissue-derived products, such as Matrigel™. We apply the matrix to co-culture human astrocytes and cortical neurons derived from induced pluripotent stem cells and visualise neuron firing synchronicity with correlations indicative of a homogenous extracellular material in contrast to the performance of heterogenous commercial matrices. We prove the ability of the matrix to induce spheroid formation and support the 3D culture of human immortalised, primary, and mesenchymal stem cells. We conclude that the matrix offers an optimal solution for systemic evaluations of cell-matrix biology. It effectively combines the exploitable properties of mammalian tissue extracts or top-down matrices, such as biocompatibility, with the advantages of synthetic or bottom-up matrices, such as compositional control, while avoiding the drawbacks of the two types, such as biological and design heterogeneity, thereby providing a unique bridging capability of a stem extracellular matrix.
Collapse
Affiliation(s)
- Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Andrea Briones
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Ibolya E. Kepiro
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Tristan O.C. Kwan
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Maxim G. Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| |
Collapse
|
4
|
Huang Y, Lan J, Wu C, Zhang R, Zheng H, Fan S, Xu F. Stability of collagen heterotrimer with same charge pattern and different charged residue identities. Biophys J 2023; 122:2686-2695. [PMID: 37226442 PMCID: PMC10397569 DOI: 10.1016/j.bpj.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023] Open
Abstract
Salt bridges are important factors in maintaining the stability of proteins, and their contribution to protein folding has received much attention. Although the interaction energies, or stabilizing contributions, of individual salt bridges have been measured in various proteins, a systematic assessment of various types of salt bridges in a relatively uniform environment is still a valuable analysis. Here, we used a collagen heterotrimer as a host-guest platform to construct 48 heterotrimers with the same charge pattern. A variety of salt bridges were formed between the oppositely charged residues Lys, Arg, Asp, and Glu. The melting temperature (Tm) of the heterotrimers was measured with circular dichroism. The atomic structures of 10 salt bridges were shown in three x-ray crystals of heterotrimer. Molecular dynamics simulation based on the crystal structures indicated that strong, intermediate, and weak salt bridges have distinctive N-O distances. A linear regression model was used to predict the stability of heterotrimers with high accuracy (R2 = 0.93). We developed an online database to help readers understand how a salt bridge stabilizes collagen. This work will help us better understand the stabilizing mechanism of salt bridges in collagen folding and provide a new strategy to design collagen heterotrimers.
Collapse
Affiliation(s)
- Yujie Huang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jun Lan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Wu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruixue Zhang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongning Zheng
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Shilong Fan
- Ministry of Education Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Qiang S, Lu C, Xu F. Disrupting Effects of Osteogenesis Imperfecta Mutations Could Be Predicted by Local Hydrogen Bonding Energy. Biomolecules 2022; 12:biom12081104. [PMID: 36008998 PMCID: PMC9405839 DOI: 10.3390/biom12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Osteogenesis imperfecta(OI) is a disease caused by substitution in glycine residues with different amino acids in type I collagen (Gly-Xaa-Yaa)n. Collagen model peptides can capture the thermal stability loss of the helix after Gly mutations, most of which are homotrimers. However, a majority of natural collagen exists in heterotrimers. To investigate the effects of chain specific mutations in the natural state of collagen more accurately, here we introduce various lengths of side-chain amino acids into ABC-type heterotrimers. The disruptive effects of the mutations were characterized both experimentally and computationally. We found the stability decrease in the mutants was mainly caused by the disruption of backbone hydrogen bonds. Meanwhile, we found a threshold value of local hydrogen bonding energy that could predict triple helix folding or unfolding. Val caused the unfolding of triple helices, whereas Ser with a similar side-chain length did not. Structural details suggested that the side-chain hydroxyl group in Ser forms hydrogen bonds with the backbone, thereby compensating for the mutants’ decreased stability. Our study contributes to a better understanding of how OI mutations destabilize collagen triple helices and the molecular mechanisms underlying OI.
Collapse
|
6
|
Qi Y, Zhou D, Kessler JL, Qiu R, Yu SM, Li G, Qin Z, Li Y. Terminal repeats impact collagen triple-helix stability through hydrogen bonding. Chem Sci 2022; 13:12567-12576. [PMID: 36382282 PMCID: PMC9629113 DOI: 10.1039/d2sc03666e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Nearly 30% of human proteins have tandem repeating sequences. Structural understanding of the terminal repeats is well-established for many repeat proteins with the common α-helix and β-sheet foldings. By contrast, the sequence–structure interplay of the terminal repeats of the collagen triple-helix remains to be fully explored. As the most abundant human repeat protein and the most prevalent structural component of the extracellular matrix, collagen features a hallmark triple-helix formed by three supercoiled polypeptide chains of long repeating sequences of the Gly–X–Y triplets. Here, with CD characterization of 28 collagen-mimetic peptides (CMPs) featuring various terminal motifs, as well as DSC measurements, crystal structure analysis, and computational simulations, we show that CMPs only differing in terminal repeat may have distinct end structures and stabilities. We reveal that the cross-chain hydrogen bonding mediated by the terminal repeat is key to maintaining the triple-helix's end structure, and that disruption of it with a single amide to carboxylate substitution can lead to destabilization as drastic as 19 °C. We further demonstrate that the terminal repeat also impacts how strong the CMP strands form hybrid triple-helices with unfolded natural collagen chains in tissue. Our findings provide a spatial profile of hydrogen bonding within the CMP triple-helix, marking a critical guideline for future crystallographic or NMR studies of collagen, and algorithms for predicting triple-helix stability, as well as peptide-based collagen assemblies and materials. This study will also inspire new understanding of the sequence–structure relationship of many other complex structural proteins with repeating sequences. Collagen mimetic peptides (CMPs) only differing in terminal repeat have distinct stabilities and end structures due to a spatial hydrogen bonding profile that is useful for future crystallography, algorithm prediction, and materials of collagen.![]()
Collapse
Affiliation(s)
- Yingying Qi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Daoning Zhou
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Julian L. Kessler
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Gang Li
- Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhao Qin
- Department of Civil & Environmental Engineering, College of Engineering & Computer Science, Syracuse University, Syracuse, New York 13244, USA
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
7
|
Xu Y, Kirchner M. Collagen Mimetic Peptides. Bioengineering (Basel) 2021; 8:5. [PMID: 33466358 PMCID: PMC7824840 DOI: 10.3390/bioengineering8010005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Since their first synthesis in the late 1960s, collagen mimetic peptides (CMPs) have been used as a molecular tool to study collagen, and as an approach to develop novel collagen mimetic biomaterials. Collagen, a major extracellular matrix (ECM) protein, plays vital roles in many physiological and pathogenic processes. Applications of CMPs have advanced our understanding of the structure and molecular properties of a collagen triple helix-the building block of collagen-and the interactions of collagen with important molecular ligands. The accumulating knowledge is also paving the way for developing novel CMPs for biomedical applications. Indeed, for the past 50 years, CMP research has been a fast-growing, far-reaching interdisciplinary field. The major development and achievement of CMPs were documented in a few detailed reviews around 2010. Here, we provided a brief overview of what we have learned about CMPs-their potential and their limitations. We focused on more recent developments in producing heterotrimeric CMPs, and CMPs that can form collagen-like higher order molecular assemblies. We also expanded the traditional view of CMPs to include larger designed peptides produced using recombinant systems. Studies using recombinant peptides have provided new insights on collagens and promoted progress in the development of collagen mimetic fibrillar self-assemblies.
Collapse
Affiliation(s)
- Yujia Xu
- Department of Chemistry, Hunter College of the City University of New York, 695 Park Ave., New York, NY 10065, USA;
| | | |
Collapse
|
8
|
Sun X, Li W, Yu J, Luo L, Wang J, Xiao J. Ln 3+-Triggered self-assembly of a heterotrimer collagen mimetic peptide into luminescent nanofibers. Chem Commun (Camb) 2020; 56:15141-15144. [PMID: 33174875 DOI: 10.1039/d0cc06185a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type I collagen, the most abundant and arguably the most complex molecule in the human body, is an ABB heterotrimer that self-assembles to form well-defined nanofibers. We herein for the first time report the construction of peptides that could simultaneously mimic the heterotrimer composition and the self-assembly features of Type I collagen.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Merg AD, Touponse G, Genderen EV, Blum TB, Zuo X, Bazrafshan A, Siaw HMH, McCanna A, Brian Dyer R, Salaita K, Abrahams JP, Conticello VP. Shape-Shifting Peptide Nanomaterials: Surface Asymmetry Enables pH-Dependent Formation and Interconversion of Collagen Tubes and Sheets. J Am Chem Soc 2020; 142:19956-19968. [DOI: 10.1021/jacs.0c08174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin Touponse
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | | | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Arthur McCanna
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jan Pieter Abrahams
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | | |
Collapse
|
10
|
Hulgan SAH, Jalan AA, Li IC, Walker DR, Miller MD, Kosgei AJ, Xu W, Phillips GN, Hartgerink JD. Covalent Capture of Collagen Triple Helices Using Lysine–Aspartate and Lysine–Glutamate Pairs. Biomacromolecules 2020; 21:3772-3781. [DOI: 10.1021/acs.biomac.0c00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sarah A. H. Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - I-Che Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abigael J. Kosgei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijun Xu
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - George N. Phillips
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Sun X, Qiao Y, Li W, Sui Y, Ruan Y, Xiao J. A graphene oxide-aided triple helical aggregation-induced emission biosensor for highly specific detection of charged collagen peptides. J Mater Chem B 2020; 8:6027-6033. [PMID: 32568343 DOI: 10.1039/d0tb00476f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aggregation-induced emission (AIE) probes have emerged as promising "turn-on" sensing tools for DNA and proteins, and the AIE biosensors conjugated with graphene oxide (GO) have shown improved selectivity. Collagen is an essential structural protein in the human body, and its degraded products are involved in a plethora of severe diseases. Collagen has a high content of charged amino acids, while EOG represents one of the most abundant charged triplets in Type I collagen. We, herein, for the first time report the construction of a GO-aided AIE biosensor for the detection of charged collagen peptides. We have shown that an AIE fluorophore TPE conjugated with a triple helical peptide TPE-PRG possesses strong fluorescence due to the restriction of intramolecular rotation of TPE in the trimer state. The adsorption of the probe TPE-PRG by GO leads to efficient fluorescence quenching, while the addition of target collagen peptide EOG releases the probe peptide from the GO surface and recovers its fluorescence. We have demonstrated that the TPE-PRG/GO complex provides a highly specific "turn-on" sensing platform for the target collagen peptide with a typical charged amino acid-rich sequence. The assay has shown little interference from other biomolecules, and it can also effectively distinguish the target charged collagen peptide from its single amino acid mutant type. The development of robust analytical assays for charged collagen peptides could pronouncedly extend our capability to investigate the pathology of collagen diseases, showing great potential for their molecular diagnosis.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Hentzen NB, Islami V, Köhler M, Zenobi R, Wennemers H. A Lateral Salt Bridge for the Specific Assembly of an ABC-Type Collagen Heterotrimer. J Am Chem Soc 2020; 142:2208-2212. [DOI: 10.1021/jacs.9b13037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nina B. Hentzen
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Valdrin Islami
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Martin Köhler
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| |
Collapse
|
13
|
Köhler M, Marchand A, Hentzen NB, Egli J, Begley AI, Wennemers H, Zenobi R. Temperature-controlled electrospray ionization mass spectrometry as a tool to study collagen homo- and heterotrimers. Chem Sci 2019; 10:9829-9835. [PMID: 32015805 PMCID: PMC6977553 DOI: 10.1039/c9sc03248g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Collagen model peptides are useful for understanding the assembly and structure of collagen triple helices. The design of self-assembling heterotrimeric helices is particularly challenging and often affords mixtures of non-covalent assemblies that are difficult to characterize by conventional NMR and CD spectroscopic techniques. This can render a detailed understanding of the factors that control heterotrimer formation difficult and restrict rational design. Here, we present a novel method based on electrospray ionization mass spectrometry to investigate homo- and heterotrimeric collagen model peptides. Under native conditions, the high resolving power of mass spectrometry was used to access the stoichiometric composition of different triple helices in complex mixtures. A temperature-controlled electrospray ionization source was built to perform thermal denaturation experiments and provided melting temperatures of triple helices. These were found to be in good agreement with values obtained from CD spectroscopic measurements. Importantly, for mixtures of coexisting homo- and heterotrimers, which are difficult to analyze by conventional methods, our technique allowed for the identification and monitoring of the unfolding of each individual species. Their respective melting temperatures could easily be accessed in a single experiment, using small amounts of sample.
Collapse
Affiliation(s)
- Martin Köhler
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Adrien Marchand
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Nina B Hentzen
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Jasmine Egli
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Alina I Begley
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Helma Wennemers
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 , Zurich , Switzerland . ;
| |
Collapse
|
14
|
Kubyshkin V. Stabilization of the triple helix in collagen mimicking peptides. Org Biomol Chem 2019; 17:8031-8047. [PMID: 31464337 DOI: 10.1039/c9ob01646e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Collagen mimics are peptides designed to reproduce structural features of natural collagen. A triple helix is the first element in the hierarchy of collagen folding. It is an assembly of three parallel peptide chains stabilized by packing and interchain hydrogen bonds. In this review we summarize the existing chemical approaches towards stabilization of this structure including the most recent developments. Currently proposed methods include manipulation of the amino acid composition, application of unnatural amino acid analogues, stimuli-responsive modifications, chain tethering approaches, peptide amphiphiles, modifications that target interchain interactions and more. This ability to manipulate the triple helix as a supramolecular self-assembly contributes to our understanding of the collagen folding. It also provides essential information needed to design collagen-based biomaterials of the future.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, University of Manitoba, Dysart Rd. 144, R3T 2N2, Winnipeg, Manitoba, Canada.
| |
Collapse
|
15
|
Li IC, Hulgan SAH, Walker DR, Farndale RW, Hartgerink JD, Jalan AA. Covalent Capture of a Heterotrimeric Collagen Helix. Org Lett 2019; 21:5480-5484. [DOI: 10.1021/acs.orglett.9b01771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- I-Che Li
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah A. H. Hulgan
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Richard W. Farndale
- University of Cambridge Department of Biochemistry, Downing Site, Cambridge CB2 1QW, U.K
| | - Jeffrey D. Hartgerink
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- University of Bayreuth Department of Biochemistry, Universitätsstraße 30, Bayreuth 95447, Germany
| |
Collapse
|
16
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 571] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
17
|
|
18
|
Strawn R, Chen F, Jeet Haven P, Wong S, Park-Arias A, De Leeuw M, Xu Y. To achieve self-assembled collagen mimetic fibrils using designed peptides. Biopolymers 2018; 109:e23226. [PMID: 30133697 DOI: 10.1002/bip.23226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 11/07/2022]
Abstract
It has proven challenging to obtain collagen-mimetic fibrils by protein design. We recently reported the self-assembly of a mini-fibril showing a 35 nm, D-period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo-identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d-period of Col108 mini-fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter-helical interactions and produce the observed 35 nm d-period. Based on this unit-staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d-periodic mini-fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self-assemble into mini-fibrils having the same d-period of 35 nm. In contrast, no d-periodic mini-fibrils were observed for peptide 1U108, which does not have long-range repeating sequences in its primary structure. The findings of the periodic mini-fibrils of Col108 and 2U108 suggest a way forward to create collagen-mimetic fibrils for biomedical and industrial applications.
Collapse
Affiliation(s)
- Rebecca Strawn
- SGS, 606 Brandywine Pkwy, West Chester, Pennsylvania 19380, U.S.A
| | - FangFang Chen
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Parminder Jeet Haven
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Sam Wong
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Anne Park-Arias
- Radium2 Capital Inc., 300 RXR Plaza, Uniondale, New York 11556, U.S.A
| | - Monique De Leeuw
- Delft University of Technology, Mekelweg 2, 2628 CD Delft, 347-205-0465, Netherlands
| | - Yujia Xu
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| |
Collapse
|
19
|
A cysteine-based molecular code informs collagen C-propeptide assembly. Nat Commun 2018; 9:4206. [PMID: 30310058 PMCID: PMC6181919 DOI: 10.1038/s41467-018-06185-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/23/2018] [Indexed: 11/29/2022] Open
Abstract
Fundamental questions regarding collagen biosynthesis, especially with respect to the molecular origins of homotrimeric versus heterotrimeric assembly, remain unanswered. Here, we demonstrate that the presence or absence of a single cysteine in type-I collagen’s C-propeptide domain is a key factor governing the ability of a given collagen polypeptide to stably homotrimerize. We also identify a critical role for Ca2+ in non-covalent collagen C-propeptide trimerization, thereby priming the protein for disulfide-mediated covalent immortalization. The resulting cysteine-based code for stable assembly provides a molecular model that can be used to predict, a priori, the identity of not just collagen homotrimers, but also naturally occurring 2:1 and 1:1:1 heterotrimers. Moreover, the code applies across all of the sequence-diverse fibrillar collagens. These results provide new insight into how evolution leverages disulfide networks to fine-tune protein assembly, and will inform the ongoing development of designer proteins that assemble into specific oligomeric forms. Collagen proteins assemble into trimers from distinct monomers with high specificity, yet the molecular basis for this specificity remains unclear. Here the authors demonstrate the crucial role of conserved C-terminal domain cysteine residues and calcium in homotrimeric procollagen assembly.
Collapse
|
20
|
How electrostatic networks modulate specificity and stability of collagen. Proc Natl Acad Sci U S A 2018; 115:6207-6212. [PMID: 29844169 DOI: 10.1073/pnas.1802171115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One-quarter of the 28 types of natural collagen exist as heterotrimers. The oligomerization state of collagen affects the structure and mechanics of the extracellular matrix, providing essential cues to modulate biological and pathological processes. A lack of high-resolution structural information limits our mechanistic understanding of collagen heterospecific self-assembly. Here, the 1.77-Å resolution structure of a synthetic heterotrimer demonstrates the balance of intermolecular electrostatics and hydrogen bonding that affects collagen stability and heterospecificity of assembly. Atomistic simulations and mutagenesis based on the solved structure are used to explore the contributions of specific interactions to energetics. A predictive model of collagen stability and specificity is developed for engineering novel collagen structures.
Collapse
|
21
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
22
|
Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules 2017; 7:biom7040076. [PMID: 29104255 PMCID: PMC5745458 DOI: 10.3390/biom7040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ana Monica Nunes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Mullen AM, Álvarez C, Zeugolis DI, Henchion M, O'Neill E, Drummond L. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Sci 2017; 132:90-98. [PMID: 28502588 DOI: 10.1016/j.meatsci.2017.04.243] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Opportunities for exploiting the inherent value of protein-rich meat processing co-products, in the context of increased global demand for protein and for sustainable processing systems, are discussed. While direct consumption maybe the most profitable route for some, this approach is influenced greatly by local and cultural traditions. A more profitable and sustainable approach may be found in recognizing this readily available and under-utilised resource can provide high value components, such as proteins, with targeted high value functionality of relevance to a variety of sectors. Applications in food & beverages, petfood biomedical and nutrition arenas are discussed. Utilization of the raw material in its entirety is a necessary underlying principle in this approach to help maintain minimum waste generation. Understanding consumer attitudes to these products, in particular when used in food or beverage systems, is critical in optimizing commercialization strategies.
Collapse
Affiliation(s)
- Anne Maria Mullen
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland.
| | - Carlos Álvarez
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Maeve Henchion
- Teagasc Food Research Centre, Dep't Agrifood Business and Spatial Analysis, Ashtown, Dublin 15, Ireland
| | - Eileen O'Neill
- University College Cork, Department of Food & Nutritional Sciences, Cork, Dublin, Ireland
| | - Liana Drummond
- Teagasc Food Research Centre, Dep't of Food Quality and Sensory Science, Ashtown, Dublin 15, Ireland
| |
Collapse
|
24
|
Collagen structure: new tricks from a very old dog. Biochem J 2016; 473:1001-25. [PMID: 27060106 DOI: 10.1042/bj20151169] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.
Collapse
|
25
|
Kumar VA, Wang BK, Kanahara SM. Rational design of fiber forming supramolecular structures. Exp Biol Med (Maywood) 2016; 241:899-908. [PMID: 27022140 PMCID: PMC4950345 DOI: 10.1177/1535370216640941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 12/28/2022] Open
Abstract
Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry.
Collapse
Affiliation(s)
| | | | - Satoko M Kanahara
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sun X, Fan J, Li X, Zhang S, Liu X, Xiao J. Colorimetric and fluorometric monitoring of the helix composition of collagen-like peptides at the nM level. Chem Commun (Camb) 2016; 52:3107-10. [PMID: 26692232 DOI: 10.1039/c5cc09565d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated that the incorporation of a dye-labeled collagen-like peptide in the homotrimeric versus heterotrimeric context results in visible color changes and distinct fluorescence. The unique fluorescence self-quenching assay can unambiguously determine the helix composition of heterotrimers at the nM level, far extending our capability to characterize a collagen triple helix.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jun Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shanshan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
27
|
Sun X, Fan J, Ye W, Zhang H, Cong Y, Xiao J. A highly specific graphene platform for sensing collagen triple helix. J Mater Chem B 2016; 4:1064-1069. [DOI: 10.1039/c5tb02218e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed a dye-labeled, highly positively charged single stranded collagen (ssCOL) peptide probe whose adsorption into GO quenches its fluorescence. The hybridization of the ssCOL probe with a complementary target sequence forms a triple stranded collagen (tsCOL) peptide, resulting in the retention of the fluorescence of the probe.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jun Fan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Weiran Ye
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Han Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yong Cong
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
28
|
Two-Dimensional Peptide and Protein Assemblies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:29-60. [PMID: 27677508 DOI: 10.1007/978-3-319-39196-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two-dimensional nanoscale assemblies (nanosheets) represent a promising structural platform to arrange molecular and supramolecular substrates with precision for integration into devices. This nanoarchitectonic approach has gained significant traction over the last decade, as a general concept to guide the fabrication of functional nanoscale devices. Sequence-specific biomolecules, e.g., peptides and proteins, may be considered excellent substrates for the fabrication of two-dimensional nanoarchitectonics. Molecular level instructions can be encoded within the sequence of monomers, which allows for control over supramolecular structure if suitable design principles could be elaborated. Due to the complexity of interactions between protomers, the development of principles aimed toward rational design of peptide and protein nanosheets is at a nascent stage. This review discusses the known two-dimensional peptide and protein assemblies to further our understanding of how to control the arrangement of molecules in two-dimensions.
Collapse
|
29
|
Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CAE, Mitraki A. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration. Adv Healthc Mater 2015; 4:2557-86. [PMID: 26461979 DOI: 10.1002/adhm.201500402] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/24/2015] [Indexed: 12/15/2022]
Abstract
Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted.
Collapse
Affiliation(s)
- Yihua Loo
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Melis Goktas
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology; National Nanotechnology Research Center (UNAM); Bilkent University; Ankara Turkey 06800
| | - Charlotte A. E. Hauser
- Institute for Bioengineering and Nanotechnology; A* STAR; 31 Biopolis Way The Nanos 138669 Singapore
| | - Anna Mitraki
- Department of Materials Science and Technology; University of Crete; Greece 70013
- Institute for Electronic Structure and Lasers (IESL); Foundation for Research and Technology Hellas (FORTH); Vassilika Vouton; Heraklion Crete Greece 70013
| |
Collapse
|
30
|
Xiao J, Sun X, Madhan B, Brodsky B, Baum J. NMR studies demonstrate a unique AAB composition and chain register for a heterotrimeric type IV collagen model peptide containing a natural interruption site. J Biol Chem 2015. [PMID: 26209635 DOI: 10.1074/jbc.m115.654871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
All non-fibrillar collagens contain interruptions in the (Gly-X-Y)n repeating sequence, such as the more than 20 interruptions found in chains of basement membrane type IV collagen. Two selectively doubly labeled peptides are designed to model a site in type IV collagen with a GVG interruption in the α1(IV) and a corresponding GISLK sequence within the α2(IV) chain. CD and NMR studies on a 2:1 mixture of these two peptides support the formation of a single-component heterotrimer that maintains the one-residue staggering in the triple-helix, has a unique chain register, and contains hydrogen bonds at the interruption site. Formation of hydrogen bonds at interruption sites may provide a driving force for self-assembly and chain register in type IV and other non-fibrillar collagens. This study illustrates the potential role of interruptions in the structure, dynamics, and folding of natural collagen heterotrimers and forms a basis for understanding their biological role.
Collapse
Affiliation(s)
- Jianxi Xiao
- the Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China, From the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Xiuxia Sun
- the Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Balaraman Madhan
- the Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai-600020, India
| | - Barbara Brodsky
- the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02446, and
| | - Jean Baum
- From the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854,
| |
Collapse
|
31
|
Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control. J Am Chem Soc 2015; 137:7793-802. [DOI: 10.1021/jacs.5b03326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Jiang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Owen A. Vail
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | |
Collapse
|
32
|
Xiao J, Yang Z, Sun X, Addabbo R, Baum J. Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease Osteogenesis Imperfecta resulting from Gly mutations. J Struct Biol 2015; 192:127-37. [PMID: 25980613 DOI: 10.1016/j.jsb.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 12/30/2022]
Abstract
Osteogenesis Imperfecta (OI), a hereditary connective tissue disease in collagen that arises from a single Gly → X mutation in the collagen chain, varies widely in phenotype from perinatal lethal to mild. It is unclear why there is such a large variation in the severity of the disease considering the repeating (Gly-X-Y)n sequence and the uniform rod-like structure of collagen. We systematically evaluate the effect of local (Gly-X-Y)n sequence around the mutation site on OI phenotype using integrated bio-statistical approaches, including odds ratio analysis and decision tree modeling. We show that different Gly → X mutations have different local sequence patterns that are correlated with lethal and nonlethal phenotypes providing a mechanism for understanding the sensitivity of local context in defining lethal and non-lethal OI. A number of important trends about which factors are related to OI phenotypes are revealed by the bio-statistical analyses; most striking is the complementary relationship between the placement of Pro residues and small residues and their correlation to OI phenotype. When Pro is present or small flexible residues are absent nearby a mutation site, the OI case tends to be lethal; when Pro is present or small flexible residues are absent further away from the mutation site, the OI case tends to be nonlethal. The analysis also reveals the dominant role of local sequence around mutation sites in the Major Ligand Binding Regions that are primarily responsible for collagen binding to its receptors and shows that non-lethal mutations are highly predicted by local sequence considerations alone whereas lethal mutations are not as easily predicted and may be a result of more complex interactions. Understanding the sequence determinants of OI mutations will enhance genetic counseling and help establish which steps in the collagen hierarchy to target for drug therapy.
Collapse
Affiliation(s)
- Jianxi Xiao
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States; State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhangfu Yang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Rayna Addabbo
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
33
|
Jalan AA, Jochim KA, Hartgerink JD. Rational Design of a Non-canonical “Sticky-Ended” Collagen Triple Helix. J Am Chem Soc 2014; 136:7535-8. [DOI: 10.1021/ja5001246] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Abhishek A. Jalan
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Katherine A. Jochim
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Jalan AA, Hartgerink JD. Pairwise interactions in collagen and the design of heterotrimeric helices. Curr Opin Chem Biol 2013; 17:960-7. [DOI: 10.1016/j.cbpa.2013.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
|
35
|
Jalan AA, Demeler B, Hartgerink JD. Hydroxyproline-free single composition ABC collagen heterotrimer. J Am Chem Soc 2013; 135:6014-7. [PMID: 23574286 PMCID: PMC3663077 DOI: 10.1021/ja402187t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydroxyproline plays a major role in stabilizing collagenous domains in eukaryotic organisms. Lack of this modification is associated with significant lowering in the thermal stability of the collagen triple helix and may also affect fibrillogenesis and folding of the peptide chains. In contrast, even though bacterial collagens lack hydroxyproline, their thermal stability is comparable to that of fibrillar collagen. This has been attributed to the high frequency of charged amino acids found in bacterial collagen. Here we report a thermally stable hydroxyproline-free ABC heterotrimeric collagen mimetic system composed of decapositive and decanegative peptides and a zwitterionic peptide. None of the peptides contain hydroxyproline, and furthermore the zwitterionic peptide does not even contain proline. The heterotrimer is electrostatically stabilized via multiple interpeptide lysine-aspartate and lysine-glutamate salt bridges and maintains good thermal stability with a melting temperature of 37 °C. The ternary peptide mixture also populates a single composition ABC heterotrimer as confirmed by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. This system illustrates the power of axial salt bridges to direct and stabilize the self-assembly of a triple helix and may be useful in analogous designs in expression systems where the incorporation of hydroxyproline is challenging.
Collapse
Affiliation(s)
- Abhishek A. Jalan
- Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005
| | - Borries Demeler
- Department of Biochemistry, U. T Health Science Center, San Antonio, TX 78229
| | | |
Collapse
|
36
|
Cook NP, Archer CM, Fawver JN, Schall HE, Rodriguez-Rivera J, Dineley KT, Martı́ AA, Murray IVJ. Ruthenium red colorimetric and birefringent staining of amyloid-β aggregates in vitro and in Tg2576 mice. ACS Chem Neurosci 2013; 4:379-84. [PMID: 23509974 DOI: 10.1021/cn300219n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease most notably characterized by the misfolding of amyloid-β (Aβ) into fibrils and its accumulation into plaques. In this Article, we utilize the affinity of Aβ fibrils to bind metal cations and subsequently imprint their chirality to bound molecules to develop novel imaging compounds for staining Aβ aggregates. Here, we investigate the cationic dye ruthenium red (ammoniated ruthenium oxychloride) that binds calcium-binding proteins, as a labeling agent for Aβ deposits. Ruthenium red stained amyloid plaques red under light microscopy, and exhibited birefringence under crossed polarizers when bound to Aβ plaques in brain tissue sections from the Tg2576 mouse model of AD. Staining of Aβ plaques was confirmed via staining of the same sections with the fluorescent amyloid binding dye Thioflavin S. In addition, it was confirmed that divalent cations such as calcium displace ruthenium red, consistent with a mechanism of binding by electrostatic interaction. We further characterized the interaction of ruthenium red with synthetic Aβ fibrils using independent biophysical techniques. Ruthenium red exhibited birefringence and induced circular dichroic bands at 540 nm upon binding to Aβ fibrils due to induced chirality. Thus, the chirality and cation binding properties of Aβ aggregates could be capitalized for the development of novel amyloid labeling methods, adding to the arsenal of AD imaging techniques and diagnostic tools.
Collapse
Affiliation(s)
| | - Clarissa M. Archer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Janelle N. Fawver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Hayley E. Schall
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| | - Jennifer Rodriguez-Rivera
- Department
of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas
77555, United States
| | - Kelly T. Dineley
- Department
of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas
77555, United States
| | | | - Ian V. J. Murray
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, 77807-3260, United States
| |
Collapse
|
37
|
Jalan AA, Hartgerink JD. Simultaneous control of composition and register of an AAB-type collagen heterotrimer. Biomacromolecules 2012; 14:179-85. [PMID: 23210738 DOI: 10.1021/bm3015818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over composition and register of the peptide chains in AAB-type collagen mimetic heterotrimers is critical in developing systems that show fidelity to native collagen. However, their design is challenging due to the eight competing states possible for a mixture of nonidentical peptides A and B. Interpeptide salt-bridges have been used previously as keystone interactions to bias the population of competing states to favor a target heterotrimer. The designed heterotrimers were electroneutral and relied on pairing of acidic and basic residues but could not differentiate between all of the competing states and reported systems populated either multiple heterotrimer compositions or registers. Here our design methodology includes both positive and negative elements. First, an excess of acidic or basic residues, which always remain unpaired, introduces a negative design component to destabilize the competing triple helical compositions and registers. Second, charge pairs introduce a positive design component and stabilize the target assembly. These antagonistic factors are optimized in the target heterotrimer that forms the maximum number of charge pairs and minimizes unpaired charged residues. Additionally, we find that not just the number of paired and unpaired residues are important, but also the type. By a systematic study of different types of charge pairs and unpaired residues, we are able to populate a single composition-single register AAB heterotrimer. The insights gained here may be useful in designing composition and register specific heterotrimeric ligands with domains that recognize collagen-binding proteins.
Collapse
Affiliation(s)
- Abhishek A Jalan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | | |
Collapse
|
38
|
Computational design of self-assembling register-specific collagen heterotrimers. Nat Commun 2012; 3:1087. [DOI: 10.1038/ncomms2084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/22/2012] [Indexed: 01/13/2023] Open
|
39
|
Fletcher JM, Boyle AL, Bruning M, Bartlett GJ, Vincent TL, Zaccai NR, Armstrong CT, Bromley EHC, Booth PJ, Brady RL, Thomson AR, Woolfson DN. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth Biol 2012; 1:240-50. [PMID: 23651206 DOI: 10.1021/sb300028q] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein engineering, chemical biology, and synthetic biology would benefit from toolkits of peptide and protein components that could be exchanged reliably between systems while maintaining their structural and functional integrity. Ideally, such components should be highly defined and predictable in all respects of sequence, structure, stability, interactions, and function. To establish one such toolkit, here we present a basis set of de novo designed α-helical coiled-coil peptides that adopt defined and well-characterized parallel dimeric, trimeric, and tetrameric states. The designs are based on sequence-to-structure relationships both from the literature and analysis of a database of known coiled-coil X-ray crystal structures. These give foreground sequences to specify the targeted oligomer state. A key feature of the design process is that sequence positions outside of these sites are considered non-essential for structural specificity; as such, they are referred to as the background, are kept non-descript, and are available for mutation as required later. Synthetic peptides were characterized in solution by circular-dichroism spectroscopy and analytical ultracentrifugation, and their structures were determined by X-ray crystallography. Intriguingly, a hitherto widely used empirical rule-of-thumb for coiled-coil dimer specification does not hold in the designed system. However, the desired oligomeric state is achieved by database-informed redesign of that particular foreground and confirmed experimentally. We envisage that the basis set will be of use in directing and controlling protein assembly, with potential applications in chemical and synthetic biology. To help with such endeavors, we introduce Pcomp, an on-line registry of peptide components for protein-design and synthetic-biology applications.
Collapse
Affiliation(s)
- Jordan M. Fletcher
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Aimee L. Boyle
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Marc Bruning
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Gail J. Bartlett
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Thomas L. Vincent
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Nathan R. Zaccai
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Craig T. Armstrong
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | | | - Paula J. Booth
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - R. Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| | - Andrew R. Thomson
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8
1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
40
|
Fallas JA, Lee MA, Jalan AA, Hartgerink JD. Rational design of single-composition ABC collagen heterotrimers. J Am Chem Soc 2012; 134:1430-3. [PMID: 22239117 DOI: 10.1021/ja209669u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of heterotrimeric ABC collagen triple helices is challenging due to the large number of competing species that may be formed. Given the required one amino acid stagger between adjacent peptide strands in this fold, a ternary mixture of peptides can form as many as 27 triple helices with unique composition or register. Previously we have demonstrated that electrostatic interactions can be used to bias the helix population toward a desired target. However, homotrimeric assemblies have always remained the most thermally stable species in solution and therefore comprised a significant component of the peptide mixture. In this work we incorporate complementary modifications to this triple-helical design strategy to destabilize an undesirable competing state while compensating for this destabilization in the desired ABC composition. The result of these modifications is a new ABC triple-helical system with high thermal stability and control over composition, as observed by NMR. An additional set of modifications, which exchanges aspartate for glutamate, results in an overall lowering of stability of the ABC triple helix yet shows further improvement in the system's specificity. This rationally designed system helps to elucidate the rules governing the self-assembly of synthetic collagen triple helices and sheds light on the biological mechanisms of collagen assembly.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
41
|
Fallas JA, Dong J, Tao YJ, Hartgerink JD. Structural insights into charge pair interactions in triple helical collagen-like proteins. J Biol Chem 2011; 287:8039-47. [PMID: 22179819 DOI: 10.1074/jbc.m111.296574] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The collagen triple helix is the most abundant protein fold in humans. Despite its deceptively simple structure, very little is understood about its folding and fibrillization energy landscape. In this work, using a combination of x-ray crystallography and nuclear magnetic resonance spectroscopy, we carry out a detailed study of stabilizing pair-wise interactions between the positively charged lysine and the negatively charged amino acids aspartate and glutamate. We find important differences in the side chain conformation of amino acids in the crystalline and solution state. Structures from x-ray crystallography may have similarities to the densely packed triple helices of collagen fibers whereas solution NMR structures reveal the simpler interactions of isolated triple helices. In solution, two distinct types of contacts are observed: axial and lateral. Such register-specific interactions are crucial for the understanding of the registration process of collagens and the overall stability of proteins in this family. However, in the crystalline state, there is a significant rearrangement of the side chain conformation allowing for packing interactions between adjacent helices, which suggests that charged amino acids may play a dual role in collagen stabilization and folding, first at the level of triple helical assembly and second during fibril formation.
Collapse
Affiliation(s)
- Jorge A Fallas
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
42
|
Bella A, Ray S, Shaw M, Ryadnov MG. Arbitrary Self-Assembly of Peptide Extracellular Microscopic Matrices. Angew Chem Int Ed Engl 2011; 51:428-31. [DOI: 10.1002/anie.201104647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/12/2011] [Indexed: 01/07/2023]
|
43
|
Bella A, Ray S, Shaw M, Ryadnov MG. Arbitrary Self-Assembly of Peptide Extracellular Microscopic Matrices. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol Adv 2011; 30:593-603. [PMID: 22041166 DOI: 10.1016/j.biotechadv.2011.10.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 12/15/2022]
Abstract
In the last few years, a variety of self-assembling short peptides that consist exclusively of simple amino acids have been designed and modified. These peptides exhibit self-assembling dynamic behaviors. At the molecular structural level, they form α-helical, β-sheet and β-hairpins structures in water. These structures further undergo spontaneous assembly to form nanofibers which aggregate into supramolecular scaffolds that entrap large volumes of water. Furthermore, nanostructures and supramolecular structures that self-organized from these short peptides also have a broad spectrum of biotechnological applications. They are useful as biological materials for 2D and 3D tissue cell cultures, regenerative and reparative medicine, tissue engineering as well as injectable drug delivery matrices that gel in situ. We have endeavored to do a comprehensive review of short peptides that form nanofibrous hydrogels. In particular, we have focused on recent advances in peptide assembly motifs and applications.
Collapse
|
45
|
Xu F, Zahid S, Silva T, Nanda V. Computational design of a collagen A:B:C-type heterotrimer. J Am Chem Soc 2011; 133:15260-3. [PMID: 21902217 DOI: 10.1021/ja205597g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have successfully designed an A:B:C collagen peptide heterotrimer using an automated computational approach. The algorithm maximizes the energy gap between the target and competing misfolded states while enforcing a minimum target stability. Circular dichroism (CD) measurements confirm that all three peptides are required to form a stable, structured triple helix. This study highlights the power of automated computational design, providing model systems to probe the biophysics of collagen assembly and developing general methods for the design of fibrous proteins.
Collapse
Affiliation(s)
- Fei Xu
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ and the Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, United States
| | | | | | | |
Collapse
|