1
|
Ranganathan S, Reddy A, Russo A, Malepelle U, Desai A. Double agents in immunotherapy: Unmasking the role of antibody drug conjugates in immune checkpoint targeting. Crit Rev Oncol Hematol 2024; 202:104472. [PMID: 39111458 DOI: 10.1016/j.critrevonc.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have high specificity with lesser off-target effects, thus providing improved efficacy over traditional chemotherapies. A total of 14 ADCs have been approved for use against cancer by the US Food and Drug Administration (FDA), with more than 100 ADCs currently in clinical trials. Of particular interest ADCs targeting immune antigens PD-L1, B7-H3, B7-H4 and integrins. Specifically, we describe ADCs in development along with the gene and protein expression of these immune checkpoints across a wide range of cancer types let url = window.clickTag || window.clickTag1 || window.clickTag2 || window.clickTag3 || window.clickTag4 || window.bsClickTAG || window.bsClickTAG1 || window.bsClickTAG2 || window.url || ''; if(typeof url == 'string'){ document.body.dataset['perxceptAdRedirectUrl'] = url;}.
Collapse
Affiliation(s)
| | | | | | - Umberto Malepelle
- Department of Public Health University Federico II of Naples, Naples, Italy
| | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, United States.
| |
Collapse
|
2
|
Nakagome K, Nagata M. Allergen immunotherapy in asthma. Allergol Int 2024:S1323-8930(24)00056-X. [PMID: 38955611 DOI: 10.1016/j.alit.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Allergen immunotherapy (AIT), including SCIT and SLIT, is a treatment that involves the administration of allergens to which patients with allergic diseases have been sensitized. HDM-SCIT for asthma is indicated in cases of HDM-sensitized allergic asthma with normal lung function. HDM-SCIT improves asthma symptoms and AHR, and decreases the medication dose. Importantly, AIT can improve other allergic diseases complicated by asthma, such as allergic rhinitis, which can also contribute to the improvement of asthma symptoms. Several studies have suggested that HDM-SLIT also attenuates the risk of asthma exacerbations, and improves lung function in asthma cases with allergic rhinitis. Furthermore, AIT can modify the natural course of allergic diseases, including asthma. For example, the effects of AIT are maintained for at least several years after treatment discontinuation. AIT can prevent the onset of asthma when introduced in allergic rhinitis, and can also inhibit or reduce new allergen sensitizations. Recent data have suggested that AIT may suppress non-targeted allergen-induced immune responses in addition to targeted allergen-induced responses, and suppress infections of the lower respiratory tract by enhancing IFN responses.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine and Allergy Center, Saitama Medical University, Saitama, Japan.
| | - Makoto Nagata
- Department of Respiratory Medicine and Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
3
|
Zhang W, Chen X, Chen X, Li J, Wang H, Yan X, Zha H, Ma X, Zhao C, Su M, Hong L, Li P, Ling Y, Zhao W, Xia Y, Li B, Zheng T, Gu J. Fc-Fc interactions and immune inhibitory effects of IgG4: implications for anti-PD-1 immunotherapies. J Immunother Cancer 2024; 12:e009034. [PMID: 38925680 PMCID: PMC11203076 DOI: 10.1136/jitc-2024-009034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The majority of anti-programmed cell-death 1 (PD-1) monoclonal antibodies (mAbs) use S228P mutation IgG4 as the structural basis to avoid the activation of immune cells or complement. However, little attention has been paid to the Fc-Fc interactions between IgG4 and other IgG Fc fragments that could result in adverse effects. Fc-null IgG1 framework is a potential safer alternative to avoid the undesirable Fc-Fc interactions and Fc receptor binding derived effects observed with IgG4. This study provides a comprehensive evaluation of anti-PD-1 mAbs of these two frameworks. METHODS Trastuzumab and rituximab (both IgG1), wildtype IgG1 and IgG4 were immobilized on nitrocellulose membranes, coated to microplates and biosensor chips, and bound to tumor cells as targets for Fc-Fc interactions. Wildtype IgG1 and IgG4, anti-PD-1 mAb nivolumab (IgG4 S228P), penpulimab (Fc-null IgG1), and tislelizumab (Fc-null IgG4 S228P-R409K) were assessed for their binding reactions to the immobilized IgG proteins and quantitative kinetic data were obtained. To evaluate the effects of the two anti-PD-1 mAbs on immune responses mediated by trastuzumab and rituximab in the context of combination therapy, we employed classic immune models for antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement dependent cytotoxicity. Tumor-bearing mouse models, both wildtype and humanized, were used for in vivo investigation. Furthermore, we also examined the effects of IgG1 and IgG4 on diverse immune cell populations RESULTS: Experiments demonstrated that wildtype IgG4 and nivolumab bound to immobilized IgG through Fc-Fc interactions, diminishing antibody-dependent cell-mediated cytotoxicity and phagocytosis reactions. Quantitative analysis of kinetic parameters suggests that nivolumab and wildtype IgG4 exhibit comparable binding affinities to immobilized IgG1 in both non-denatured and denatured states. IgG4 exerted inhibitory effects on various immune cell types. Wildtype IgG4 and nivolumab both promoted tumor growth in wildtype mouse models. Conversely, wildtype IgG1, penpulimab, and tislelizumab did not show similar adverse effects. CONCLUSIONS Fc-null IgG1 represents a safer choice for anti-PD-1 immunotherapies by avoiding both the adverse Fc-Fc interactions and Fc-related immune inhibitory effects of IgG4. Fc-null IgG4 S228P-R409K and Fc-null IgG1 displayed similar structural properties and benefits. This study contributes to the understanding of immunotherapy resistance and the advancement of safer immune therapies for cancer.
Collapse
Affiliation(s)
- Weifeng Zhang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xueling Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xingxing Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jirui Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Hui Wang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xiaomiao Yan
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Han Zha
- The People's Hospital of Qijiang District Chongqing, Chongqing, China
| | - Xiaonan Ma
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Chanyuan Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Meng Su
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Liangli Hong
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Penghao Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Yanyu Ling
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Wenhui Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Yu Xia
- Akeso Biopharma Inc, Zhongshan, China
| | | | - Tianjing Zheng
- Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, China
| | - Jiang Gu
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
4
|
Goggins E, Glass WF, Cavanaugh C. Serum protein electrophoresis patterns and misleading laboratory values in IgG4-RD: what the nephrologist should know. J Nephrol 2024:10.1007/s40620-024-01992-x. [PMID: 38888869 DOI: 10.1007/s40620-024-01992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - William F Glass
- Department of Pathology and Laboratory Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Corey Cavanaugh
- Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Kim CK, Callaway Z, Park JS, Pawankar R, Fujisawa T. Biomarkers in allergen immunotherapy: Focus on eosinophilic inflammation. Asia Pac Allergy 2024; 14:32-38. [PMID: 38482456 PMCID: PMC10932480 DOI: 10.5415/apallergy.0000000000000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/20/2023] [Indexed: 11/02/2024] Open
Abstract
Asthma and allergic rhinitis (AR) are 2 of the most common chronic inflammatory disorders and they appear to be on the rise. Current pharmacotherapy effectively controls symptoms but does not alter the underlying pathophysiology. Allergen immunotherapy (AIT) is an evidence-based therapy for asthma and AR and has been recognized as the only therapeutic method that actually modifies the allergic disease process. There is a lack of objective markers that accurately and reliably reflect the therapeutic benefits of AIT. A biomarker indicating patients that would benefit most from AIT would be invaluable. Eosinophilic inflammation is a cardinal feature of many allergic diseases. Biomarkers that accurately reflect this inflammation are needed to better diagnose, treat, and monitor patients with allergic disorders. This review examines the current literature regarding AIT's effects on eosinophilic inflammation and biomarkers that may be used to determine the extent of these effects.
Collapse
Affiliation(s)
- Chang-Keun Kim
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Zak Callaway
- Asthma and Allergy Center, Inje University Sanggye Paik Hospital, Seoul, Korea
- Science Division, Mahidol University International College, Nakhon Pathom, Thailand
| | - Jin-Sung Park
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| |
Collapse
|
7
|
Rathay V, Fürle K, Kiehl V, Ulmer A, Lanzer M, Thomson-Luque R. IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1). Vaccines (Basel) 2024; 12:208. [PMID: 38400191 PMCID: PMC10893298 DOI: 10.3390/vaccines12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.
Collapse
Affiliation(s)
- Veronika Rathay
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Viktoria Kiehl
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Ulmer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Thomson-Luque
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG, 69115 Heidelberg, Germany
| |
Collapse
|
8
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Yao X, Xie M, Ben Y, Zhu Y, Yang G, Kwong SCW, Zhang Z, Chiu ML. Large scale controlled Fab exchange GMP process to prepare bispecific antibodies. Front Bioeng Biotechnol 2024; 11:1298890. [PMID: 38283167 PMCID: PMC10812119 DOI: 10.3389/fbioe.2023.1298890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Objective: Bispecific antibodies (BsAbs) have demonstrated significant therapeutic impacts for the treatment of a broad spectrum of diseases that include oncology, auto-immune, and infectious diseases. However, the large-scale production of clinical batches of bispecific antibodies still has many challenges that include having low yield, poor stability, and laborious downstream purification processes. To address such challenges, we describe the optimization of the controlled Fab arm exchange (cFAE) process for the efficient generation of BsAbs. Methods: The process optimization of a large-scale good manufacturing practice (GMP) cFAE strategy to prepare BsAbs was based on screening the parameters of temperature, reduction, oxidation, and buffer exchange. We include critical quality standards for the reducing agent cysteamine hydrochloride. Results: This large-scale production protocol enabled the generation of bispecific antibodies with >90% exchange yield and at >95% purity. The subsequent downstream processing could use typical mAb procedures. Furthermore, we demonstrated that the bispecific generation protocol can be scaled up to ∼60 L reaction scale using parental monoclonal antibodies that were expressed in a 200 L bioreactor. Conclusion: We presented a robust development strategy for the cFAE process that can be used for a larger scale GMP BsAb production.
Collapse
Affiliation(s)
- Xia Yao
- Tavotek Biotherapeutics, Suzhou, China
| | | | | | - Yixiang Zhu
- Bioworkshops (Suzhou) Limited, Suzhou, China
| | | | | | | | - Mark L. Chiu
- Tavotek Biotherapeutics, Suzhou, China
- Tavotek Biotherapeutics, Lower Gwynedd, PA, United States
| |
Collapse
|
10
|
Medernach JG, Li RC, Zhao XY, Yin B, Noonan EA, Etter EF, Raghavan SS, Borish LC, Wilson JM, Barnes BH, Platts-Mills TAE, Ewald SE, Sauer BG, McGowan EC. Immunoglobulin G4 in eosinophilic esophagitis: Immune complex formation and correlation with disease activity. Allergy 2023; 78:3193-3203. [PMID: 37497566 DOI: 10.1111/all.15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Recent studies have shown deposition of immunoglobulin G4 (IgG4) and food proteins in the esophageal mucosa of eosinophilic esophagitis (EoE) patients. Our aims were to assess whether co-localization of IgG4 and major cow's milk proteins (CMPs) was associated with EoE disease activity and to investigate the proteins enriched in proximity to IgG4 deposits. METHODS This study included adult subjects with EoE (n = 13) and non-EoE controls (n = 5). Esophageal biopsies were immunofluorescence stained for IgG4 and CMPs. Co-localization in paired samples from active disease and remission was assessed and compared to controls. The proteome surrounding IgG4 deposits was evaluated by the novel technique, AutoSTOMP. IgG4-food protein interactions were confirmed with co-immunoprecipitation and mass spectrometry. RESULTS IgG4-CMP co-localization was higher in the active EoE group compared to paired remission samples (Bos d 4, p = .02; Bos d 5, p = .002; Bos d 8, p = .002). Co-localization was also significantly higher in the active EoE group compared to non-EoE controls (Bos d 4, p = .0013; Bos d 5, p = .0007; Bos d 8, p = .0013). AutoSTOMP identified eosinophil-derived proteins (PRG 2 and 3, EPX, RNASE3) and calpain-14 in IgG4-enriched areas. Co-immunoprecipitation and mass spectrometry confirmed IgG4 binding to multiple food allergens. CONCLUSION These findings further contribute to the understanding of the interaction of IgG4 with food antigens as it relates to EoE disease activity. These data strongly suggest the immune complex formation of IgG4 and major cow's milk proteins. These immune complexes may have a potential role in the pathophysiology of EoE by contributing to eosinophil activation and disease progression.
Collapse
Affiliation(s)
- Jonathan G Medernach
- Division of Pediatric Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rung-Chi Li
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emily A Noonan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Elaine F Etter
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Shyam S Raghavan
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Larry C Borish
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jeffrey M Wilson
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Barrett H Barnes
- Division of Pediatric Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas A E Platts-Mills
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology and The Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emily C McGowan
- Division of Allergy and Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol 2023; 23:763-778. [PMID: 37095254 PMCID: PMC10123589 DOI: 10.1038/s41577-023-00871-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.
Collapse
Affiliation(s)
- Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Kappen J, Diamant Z, Agache I, Bonini M, Bousquet J, Canonica GW, Durham SR, Guibas GV, Hamelmann E, Jutel M, Papadopoulos NG, Roberts G, Shamji MH, Zieglmayer P, Gerth van Wijk R, Pfaar O. Standardization of clinical outcomes used in allergen immunotherapy in allergic asthma: An EAACI position paper. Allergy 2023; 78:2835-2850. [PMID: 37449468 DOI: 10.1111/all.15817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION In allergic asthma patients, one of the more common phenotypes might benefit from allergen immunotherapy (AIT) as add-on intervention to pharmacological treatment. AIT is a treatment with disease-modifying modalities, the evidence for efficacy is based on controlled clinical trials following standardized endpoint measures. However, so far there is a lack of a consensus for asthma endpoints in AIT trials. The aim of a task force (TF) of the European Academy of Allergy and Clinical Immunology (EAACI) is evaluating several outcome measures for AIT in allergic asthma. METHODS The following domains of outcome measures in asthmatic patients have been evaluated for this position paper (PP): (i) exacerbation rate, (ii) lung function, (iii) ICS withdrawal, (iv) symptoms and rescue medication use, (v) questionnaires (PROMS), (vi) bronchial/nasal provocation, (vii) allergen exposure chambers (AEC) and (viii) biomarkers. RESULTS Exacerbation rate can be used as a reliable objective primary outcome; however, there is limited evidence due to different definitions of exacerbation. The time after ICS withdrawal to first exacerbation is considered a primary outcome measure. Besides, the advantages and disadvantages and clinical implications of further domains of asthma endpoints in AIT trials are elaborated in this PP. CONCLUSION This EAACI-PP aims to highlight important aspects of current asthma measures by critically evaluating their applicability for controlled trials of AIT.
Collapse
Affiliation(s)
- Jasper Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | - Matteo Bonini
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Clinical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Jean Bousquet
- Charite Universitatsmedizin Berlin Campus Berlin Buch, MASK-air, Montpellier, France
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic Humanitas University & Research Hospital-IRCCS, Milan, Italy
| | - Stephen R Durham
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - George V Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, UK
| | - Eckard Hamelmann
- Children's Center Bethel, University Hospital Bielefeld, University Bielefeld, Bielefeld, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | | | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Petra Zieglmayer
- Karl Landsteiner University, Competence Center for Allergology and Immunology, Krems, Austria
| | - Roy Gerth van Wijk
- Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
13
|
Abdeldaim DT, Schindowski K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023; 15:2402. [PMID: 37896162 PMCID: PMC10610324 DOI: 10.3390/pharmaceutics15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs.
Collapse
Affiliation(s)
- Dalia T. Abdeldaim
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
| |
Collapse
|
14
|
Yadavilli S, Waight JD, Brett S, Bi M, Zhang T, Liu YB, Ellis C, Turner DC, Hahn A, Shi H, Seestaller-Wehr L, Jing J, Xie Q, Shaik JS, Ji X, Gagnon R, Fieles W, Hook L, Grant S, Hopley S, DeYoung MP, Blackwell C, Chisamore M, Biddlecombe R, Figueroa DJ, Hopson CB, Srinivasan R, Smothers J, Maio M, Rischin D, Olive D, Paul E, Mayes PA, Hoos A, Ballas M. Activating Inducible T-cell Costimulator Yields Antitumor Activity Alone and in Combination with Anti-PD-1 Checkpoint Blockade. CANCER RESEARCH COMMUNICATIONS 2023; 3:1564-1579. [PMID: 37593752 PMCID: PMC10430783 DOI: 10.1158/2767-9764.crc-22-0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
In recent years, there has been considerable interest in mAb-based induction of costimulatory receptor signaling as an approach to combat cancer. However, promising nonclinical data have yet to translate to a meaningful clinical benefit. Inducible T-cell costimulator (ICOS) is a costimulatory receptor important for immune responses. Using a novel clinical-stage anti-ICOS immunoglobulin G4 mAb (feladilimab), which induces but does not deplete ICOS+ T cells and their rodent analogs, we provide an end-to-end evaluation of the antitumor potential of antibody-mediated ICOS costimulation alone and in combination with programmed cell death protein 1 (PD-1) blockade. We demonstrate, consistently, that ICOS is expressed in a range of cancers, and its induction can stimulate growth of antitumor reactive T cells. Furthermore, feladilimab, alone and with a PD-1 inhibitor, induced antitumor activity in mouse and humanized tumor models. In addition to nonclinical evaluation, we present three patient case studies from a first-time-in-human, phase I, open-label, dose-escalation and dose-expansion clinical trial (INDUCE-1; ClinicalTrials.gov: NCT02723955), evaluating feladilimab alone and in combination with pembrolizumab in patients with advanced solid tumors. Preliminary data showing clinical benefit in patients with cancer treated with feladilimab alone or in combination with pembrolizumab was reported previously; with example cases described here. Additional work is needed to further validate the translation to the clinic, which includes identifying select patient populations that will benefit from this therapeutic approach, and randomized data with survival endpoints to illustrate its potential, similar to that shown with CTLA-4 and PD-1 blocking antibodies. Significance Stimulation of the T-cell activation marker ICOS with the anti-ICOS agonist mAb feladilimab, alone and in combination with PD-1 inhibition, induces antitumor activity across nonclinical models as well as select patients with advanced solid tumors.
Collapse
Affiliation(s)
| | | | - Sara Brett
- GSK, Stevenage, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | - Xiao Ji
- GSK, Collegeville, Pennsylvania
| | | | | | - Laura Hook
- GSK, Stevenage, Hertfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Michele Maio
- University of Siena and Center for Immuno-Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Olive
- CRCM, Immunity and Cancer, Inserm, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM105, CNRS, UMR7258, Marseille, France
| | | | | | | | | |
Collapse
|
15
|
Nakagome K, Fujio K, Nagata M. Potential Effects of AIT on Nonspecific Allergic Immune Responses or Symptoms. J Clin Med 2023; 12:jcm12113776. [PMID: 37297972 DOI: 10.3390/jcm12113776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Allergen immunotherapy (AIT) is a treatment in which clinically corresponding allergens are administered to patients with allergic diseases, either by subcutaneous immunotherapy (SCIT) or sublingual immunotherapy (SLIT), or by oral immunotherapy (OIT) in the case of food allergy. Since etiological allergens are administered to patients, AIT is presumed to modify mainly allergen-specific immune responses. In bronchial asthma, AIT with house dust mites (HDM) alleviates clinical symptoms, suppresses airway hyperresponsiveness, and reduces medication doses of HDM-sensitive asthmatics. Moreover, AIT can suppress the symptoms of other allergic diseases associated with asthma including allergic rhinitis. However, AIT sometimes reduces allergic symptoms not induced by the responsible allergens, such as non-targeted allergens, in clinical settings. Furthermore, AIT can suppress the spread of sensitization to new allergens that are not targeted allergens by AIT, suggesting the suppression of allergic immune responses in an allergen-nonspecific manner. In this review, the nonspecific suppression of allergic immune responses by AIT is discussed. AIT has been reported to increase regulatory T cells that produce IL-10, transforming growth factor-β, and IL-35, IL-10-producing regulatory B cells, and IL-10-producing innate lymphoid cells. These cells can suppress type-2 mediated immune responses mainly through the production of anti-inflammatory cytokines or a cell-cell contact mechanism, which may be involved in the nonspecific suppression of allergic immune responses by AIT.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
16
|
Soldati S, Bär A, Vladymyrov M, Glavin D, McGrath JL, Gosselet F, Nishihara H, Goelz S, Engelhardt B. High levels of endothelial ICAM-1 prohibit natalizumab mediated abrogation of CD4 + T cell arrest on the inflamed BBB under flow in vitro. J Neuroinflammation 2023; 20:123. [PMID: 37221552 DOI: 10.1186/s12974-023-02797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION The humanized anti-α4 integrin blocking antibody natalizumab (NTZ) is an effective treatment for relapsing-remitting multiple sclerosis (RRMS) that is associated with the risk of progressive multifocal leukoencephalopathy (PML). While extended interval dosing (EID) of NTZ reduces the risk for PML, the minimal dose of NTZ required to maintain its therapeutic efficacy remains unknown. OBJECTIVE Here we aimed to identify the minimal NTZ concentration required to inhibit the arrest of human effector/memory CD4+ T cell subsets or of PBMCs to the blood-brain barrier (BBB) under physiological flow in vitro. RESULTS Making use of three different human in vitro BBB models and in vitro live-cell imaging we observed that NTZ mediated inhibition of α4-integrins failed to abrogate T cell arrest to the inflamed BBB under physiological flow. Complete inhibition of shear resistant T cell arrest required additional inhibition of β2-integrins, which correlated with a strong upregulation of endothelial intercellular adhesion molecule (ICAM)-1 on the respective BBB models investigated. Indeed, NTZ mediated inhibition of shear resistant T cell arrest to combinations of immobilized recombinant vascular cell adhesion molecule (VCAM)-1 and ICAM-1 was abrogated in the presence of tenfold higher molar concentrations of ICAM-1 over VCAM-1. Also, monovalent NTZ was less potent than bivalent NTZ in inhibiting T cell arrest to VCAM-1 under physiological flow. In accordance with our previous observations ICAM-1 but not VCAM-1 mediated T cell crawling against the direction of flow. CONCLUSION Taken together, our in vitro observations show that high levels of endothelial ICAM-1 abrogate NTZ mediated inhibition of T cell interaction with the BBB. EID of NTZ in MS patients may thus require consideration of the inflammatory status of the BBB as high levels of ICAM-1 may provide an alternative molecular cue allowing for pathogenic T cell entry into the CNS in the presence of NTZ.
Collapse
Affiliation(s)
- Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Alexander Bär
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Mykhailo Vladymyrov
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Dale Glavin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, University of Artois, Lens, France
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
- Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, Japan
| | | | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| |
Collapse
|
17
|
Zhang W, Quan Y, Ma X, Zeng L, Li J, Chen S, Su M, Hong L, Li P, Wang H, Xu Q, Zhao C, Zhu X, Geng Y, Yan X, Fang Z, Chen M, Tian D, Su M, Chen X, Gu J. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox Biol 2023; 60:102608. [PMID: 36681047 PMCID: PMC9868885 DOI: 10.1016/j.redox.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Quan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaonan Ma
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuqi Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Penghao Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Xu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chanyuan Zhao
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqing Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiqun Geng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Zheng Fang
- Motic China Group Co, Ltd, Xiamen, China
| | | | - Dongping Tian
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China.
| |
Collapse
|
18
|
Lanzillotta M, Stone JH, Della-Torre E. B-Cell depletion therapy in IgG4-related disease: State of the art and future perspectives. Mod Rheumatol 2023; 33:258-265. [PMID: 35983918 DOI: 10.1093/mr/roac098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
IgG4-related disease (IgG4-RD) is an increasingly recognized immune-mediated fibroinflammatory disorder that promptly responds to glucocorticoids but commonly relapses during steroid tapering or after discontinuation. In the last few years, B-cell depletion therapy with rituximab (RTX) proved to be effective in the induction of remission and maintenance treatment of IgG4-RD, providing a new powerful tool in the management of this emerging condition. In this review, we outline the pathogenetic rationale for using B-cell depleting agents in IgG4-RD, we summarize available clinical experience with RTX in this disease, and we describe future possible therapies targeting B-lymphocytes that are now in the pipeline.
Collapse
Affiliation(s)
- Marco Lanzillotta
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - John H Stone
- Rheumatology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuel Della-Torre
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
McGowan EC, Medernach J, Keshavarz B, Workman LJ, Li RC, Barnes BH, Sauer B, Wilson JM, Platts-Mills TAE. Food antigen consumption and disease activity affect food-specific IgG4 levels in patients with eosinophilic esophagitis (EoE). Clin Exp Allergy 2023; 53:307-315. [PMID: 35980663 PMCID: PMC9938092 DOI: 10.1111/cea.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION High levels of serum food-specific IgG4 (sIgG4) have been reported in patients with EoE. The objective of this study was to examine whether serum sIgG4 levels to foods and aeroallergens are higher in EoE patients than allergic controls and to investigate the association between sIgG4 and EoE clinical characteristics. METHODS This was a case-control study nested in a prospective EoE Cohort. EoE cases were defined per consensus guidelines, and controls were individuals with symptoms who were confirmed to be EoE-negative on upper endoscopy. Demographic and clinical information was prospectively collected. Serum IgE and sIgG4 were measured to foods and aeroallergens by ImmunoCAP. Mean levels of sIgG4 were compared between cases and controls, and logistic regression models were used to examine predictors of elevated milk sIgG4 levels. RESULTS The analysis included 123 individuals (EoE n = 93, control n = 30) with a similar distribution of allergic disease between EoE patients and controls (86% vs. 93%; p = .30). EoE patients had significantly higher sIgG4 levels to all allergens evaluated, with the exception of birch (p = .24). Milk sIgG4 levels were independently associated with milk consumption (OR 4.95; p = .01) and the presence of sIgE to milk (OR 4.23; p = .008). CONCLUSION Serum sIgG4 levels to food and aeroallergen proteins were higher in patients with EoE than non-EoE controls, and higher levels of milk sIgG4 were independently associated with milk consumption and the presence of sIgE to milk proteins. Whether sIgG4 plays a pathogenic role in EoE or could be used as an EoE biomarker remains unknown and warrants further study.
Collapse
Affiliation(s)
- Emily C McGowan
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Medernach
- Department of Pediatrics, Division of Pediatric Gastroenterology/Nutrition, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Behnam Keshavarz
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Lisa J Workman
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rung-Chi Li
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Barrett H Barnes
- Department of Pediatrics, Division of Pediatric Gastroenterology/Nutrition, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Bryan Sauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jeffrey M Wilson
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas A E Platts-Mills
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Samantasinghar A, Sunildutt NP, Ahmed F, Soomro AM, Salih ARC, Parihar P, Memon FH, Kim KH, Kang IS, Choi KH. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate. Biomed Pharmacother 2023; 161:114408. [PMID: 36841027 DOI: 10.1016/j.biopha.2023.114408] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Antibody Drug Conjugate (ADC) is an emerging technology to overcome the limitations of chemotherapy by selectively targeting the cancer cells. ADC binds with an antigen, specifically over expressed on the surface of cancer cells, results decrease in bystander effect and increase in therapeutic index. The potency of an ideal ADC is entirely depending on several physicochemical factors such as site of conjugation, molecular weight, linker length, Steric hinderance, half-life, conjugation method, binding energy and so on. Inspite of the fact that there is more than 100 of ADCs are in clinical trial only 14 ADCs are approved by FDA for clinical use. However, to design an ideal ADC is still challenging and there is much more to be done. Here in this review, we have discussed the key components along with their significant role or contribution towards the efficacy of an ADC. Moreover, we also explained about the recent advancement in the conjugation method. Additionally, we spotlit the mode of action of an ADC, recent challenges, and future perspective regarding ADC. The profound knowledge regarding key components and their properties will help in the synthesis or production of different engineered ADCs. Therefore, contributes to develop an ADC with low safety concern and high therapeutic index. We hope this review will improve the understanding and encourage the practicing of research in anticancer ADCs development.
Collapse
Affiliation(s)
| | | | - Faheem Ahmed
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | | | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | | | - In Suk Kang
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, the Republic of Korea.
| |
Collapse
|
21
|
Corren J, Larson D, Altman MC, Segnitz RM, Avila PC, Greenberger PA, Baroody F, Moss MH, Nelson H, Burbank AJ, Hernandez ML, Peden D, Saini S, Tilles S, Hussain I, Whitehouse D, Qin T, Villarreal M, Sever M, Wheatley LM, Nepom GT, Sanda S. Effects of combination treatment with tezepelumab and allergen immunotherapy on nasal responses to allergen: A randomized controlled trial. J Allergy Clin Immunol 2023; 151:192-201. [PMID: 36223848 DOI: 10.1016/j.jaci.2022.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) has been shown to play a central role in the initiation and persistence of allergic responses. OBJECTIVE We evaluated whether tezepelumab, a human monoclonal anti-TSLP antibody, improved the efficacy of subcutaneous allergen immunotherapy (SCIT) and promoted the development of tolerance in patients with allergic rhinitis. METHODS We conducted a double-blind parallel design trial in patients with cat allergy. A total of 121 patients were randomized to receive either intravenous tezepelumab plus subcutaneous cat SCIT, cat SCIT alone, tezepelumab alone, or placebo for 52 weeks, followed by 52 weeks of observation. Nasal allergen challenge (NAC), skin testing, and blood and nasal samples were obtained throughout the study. RESULTS At week 52, the NAC-induced total nasal symptom scores (TNSS) (calculated as area under the curve [AUC0-1h] and as peak score [Peak0-1h] during the first hour after NAC) were significantly reduced in patients receiving tezepelumab/SCIT compared to SCIT alone. At week 104, one year after stopping treatment, the primary end point TNSS AUC0-1h was not significantly different in the tezepelumab/SCIT group compared to SCIT alone, while TNSS Peak0-1h was significantly lower in those receiving combination treatment versus SCIT. Transcriptomic analysis of nasal epithelial samples demonstrated that treatment with the combination of SCIT/tezepelumab, but neither monotherapy, caused persistent downregulation of a gene network related to type 2 inflammation that was associated with improvement in NAC responses. CONCLUSIONS Inhibition of TSLP augments the efficacy of SCIT during therapy and may promote tolerance after a 1-year course of treatment. (ClinicalTrials.gov NCT02237196).
Collapse
Affiliation(s)
- Jonathan Corren
- Departments of Medicine and Pediatrics, David Geffen School of Medicine, University of California, Los Angeles.
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle; Benaroya Research Institute, Seattle
| | - R Max Segnitz
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle
| | - Pedro C Avila
- Division of Allergy-Immunology, Feinberg School of Medicine, Chicago
| | | | - Fuad Baroody
- University of Chicago Medicine and Comer Children's Hospital, Chicago
| | - Mark H Moss
- Section of Allergy, Pulmonary and Critical Care, University of Wisconsin Hospital and Clinics, Madison
| | - Harold Nelson
- Department of Medicine, Division of Allergy and Clinical Immunology, National Jewish Health, Denver
| | - Allison J Burbank
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| | | | - David Peden
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| | - Sarbjit Saini
- Division of Allergy & Clinical Immunology, Johns Hopkins University, Baltimore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther 2022; 6:13-29. [PMID: 36683767 PMCID: PMC9847343 DOI: 10.1093/abt/tbac029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.
Collapse
Affiliation(s)
- Weijie Zhang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Hao Wang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Nan Feng
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologicals, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jijie Gu
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Zhuozhi Wang
- To whom correspondence should be addressed. Biologics Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China, Phone number: +86-21-50518899
| |
Collapse
|
23
|
Gehin JE, Goll GL, Brun MK, Jani M, Bolstad N, Syversen SW. Assessing Immunogenicity of Biologic Drugs in Inflammatory Joint Diseases: Progress Towards Personalized Medicine. BioDrugs 2022; 36:731-748. [PMID: 36315391 PMCID: PMC9649489 DOI: 10.1007/s40259-022-00559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
Biologic drugs have greatly improved treatment outcomes of inflammatory joint diseases, but a substantial proportion of patients either do not respond to treatment or lose response over time. Drug immunogenicity, manifested as the formation of anti-drug antibodies (ADAb), constitute a significant clinical problem. Anti-drug antibodies influence the pharmacokinetics of the drug, are associated with reduced clinical efficacy, and an increased risk of adverse events such as infusion reactions. The prevalence of ADAb differs among drugs and diseases, and the detection of ADAb also depends on the assay format. Most data exist for the tumor necrosis factor-alpha inhibitors infliximab and adalimumab, with a frequency of ADAb that ranges from 10 to 60% across studies. Measurement of ADAb and serum drug concentrations, therapeutic drug monitoring, has been suggested as a strategy to optimize therapy with biologic drugs. Although the recent randomized clinical Norwegian Drug Monitoring (NOR-DRUM) trials show promise towards a personalized medicine prescribing approach by therapeutic drug monitoring, several challenges remain. A plethora of assay formats, with widely differing properties, is currently used for measuring ADAb. Comparing results between different assays and laboratories is difficult, which complicates the development of cut-offs necessary for guidelines and the implementation of ADAb measurements in clinical practice. With the possible exception of infliximab, limited data on clinical relevance and cost effectiveness exist to support therapeutic drug monitoring as a routine clinical strategy to monitor biologic drugs in inflammatory joint diseases. The aim of this review is to provide an overview of the characteristics and prevalence of ADAb, predisposing factors to ADAb formation, commonly used assessment methods, clinical consequences of ADAb, and the potential implications of ADAb assessments for everyday treatment of inflammatory joint diseases.
Collapse
Affiliation(s)
- Johanna Elin Gehin
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, Nydalen, Box 4953, 0424, Oslo, Norway.
| | - Guro Løvik Goll
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Marthe Kirkesæther Brun
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Meghna Jani
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, Nydalen, Box 4953, 0424, Oslo, Norway
| | - Silje Watterdal Syversen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
24
|
Li M, Bai X, Xu K, Wu X, Guo T, Jiang Q, Wang Q, Zhang S, Yang Y, Feng Y, Yang A. Peripancreatic vascular involvement in patients with type 1 autoimmune pancreatitis. Hepatobiliary Surg Nutr 2022; 11:355-362. [PMID: 35693390 PMCID: PMC9186208 DOI: 10.21037/hbsn-21-82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/13/2021] [Indexed: 08/30/2023]
Abstract
BACKGROUND Type 1 autoimmune pancreatitis (AIP) is the pancreatic manifestation of IgG4-related disease. However, this benign disease can result in the peripancreatic vascular involvement (PVI) on occasion, which increases the difficulty of diagnosis and treatment of this clinical entity as well as for differentiating it from pancreatic malignancies. METHODS We retrospectively reviewed the information on demographics, clinical presentation, laboratory, imaging and endoscopic findings of 101 hospitalized patients with type 1 AIP treated in our department. All the patients were divided into non-PVI and PVI groups according to the first hospitalized medical data. Univariate and multivariate analyses were performed to analyse the potential predictive parameter(s) of PVI in AIP patients. RESULTS Among the 101 type 1 AIP patients, 52 (51.5%) exhibited PVI, with a male/female ratio 5.5:1. Their average age was 58.37±8.68 years old. Univariate analysis revealed that the location of pancreatitis lesions, including the pancreatic tail (P=0.010), the presence of splenomegaly (P=0.001) and the white blood cell (WBC) number in peripheral blood (P=0.020), were significantly associated with PVI. The location of pancreatitis lesions, including the pancreatic tail (P=0.023), and the presence of splenomegaly (P=0.010) were found to be independent predictors of the development of PVI by a multivariable regression analysis. A total of 18 out of 25 patients in PVI group who underwent corticosteroid treatment and no less than 6 months radiological follow-up showed improvement in vascular lesions, and no case exhibited exacerbation of PVI lesions during follow-up. Of 36 patients in non-PVI group who were followed up for no less than 6 months, only one case exhibited PVI. CONCLUSIONS This retrospective study demonstrated that type 1 AIP was associated with a high proportion of PVI. Pancreatic tail involvement and splenomegaly may predict the PVI in type 1 AIP. PVI lesions are reversible in a subset of patients.
Collapse
Affiliation(s)
- Meizi Li
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyin Bai
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Xu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Xi Wu
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Guo
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qingwei Jiang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Wang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunlu Feng
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Sharma SK, Suzuki M, Xu H, Korsen JA, Samuels Z, Guo H, Nemieboka B, Piersigilli A, Edwards KJ, Cheung NKV, Lewis JS. Influence of Fc Modifications and IgG Subclass on Biodistribution of Humanized Antibodies Targeting L1CAM. J Nucl Med 2022; 63:629-636. [PMID: 34353869 PMCID: PMC8973293 DOI: 10.2967/jnumed.121.262383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Immuno-PET is a powerful tool to noninvasively characterize the in vivo biodistribution of engineered antibodies. Methods: L1 cell adhesion molecule-targeting humanized (HuE71) IgG1 and IgG4 antibodies bearing identical variable heavy- and light-chain sequences but different fragment crystallizable (Fc) portions were radiolabeled with 89Zr, and the in vivo biodistribution was studied in SKOV3 ovarian cancer xenografted nude mice. Results: In addition to showing uptake in L1 cell adhesion molecule-expressing SKOV3 tumors, as does its parental counterpart HuE71 IgG1, the afucosylated variant having enhanced Fc-receptor affinity showed high nonspecific uptake in lymph nodes. On the other hand, aglycosylated HuE71 IgG1 with abrogated Fc-receptor binding did not show lymphoid uptake. The use of the IgG4 subclass showed high nonspecific uptake in the kidneys, which was prevented by mutating serine at position 228 to proline in the hinge region of the IgG4 antibody to mitigate in vivo fragment antigen-binding arm exchange. Conclusion: Our findings highlight the influence of Fc modifications and the choice of IgG subclass on the in vivo biodistribution of antibodies and the potential outcomes thereof.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maya Suzuki
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Zachary Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Nemieboka
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Rockefeller University, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York; and
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Wang B, Goodman J, Roskos LK. Mechanistic modeling of a human IgG
4
monoclonal antibody (tralokinumab) Fab‐arm exchange with endogenous IgG
4
in healthy volunteers. CPT Pharmacometrics Syst Pharmacol 2022; 11:438-446. [PMID: 35023315 PMCID: PMC9007600 DOI: 10.1002/psp4.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/16/2020] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
Therapeutic IgG4 antibodies engage in Fab‐arm exchange with endogenous human immunoglobulin G4 (IgG4) to form monovalent hybrid molecules. A mechanistic population model was developed to quantitatively characterize the dynamic Fab‐arm exchange of tralokinumab, a human IgG4 monoclonal antibody currently being developed for the treatment of atopic dermatitis, with endogenous IgG4 in healthy volunteers. The estimated pharmacokinetic parameters for IgG4 were similar to those of immunoglobulin G1 or immunoglobulin G2 in humans. However, the mechanistically modeled clearance of half molecules is 21‐fold higher, likely due to the loss of avidity for the neonatal Fc receptor. Half molecules of tralokinumab randomly associate with those of endogenous IgG4 to form monovalent hybrid molecules, which became the dominant form of tralokinumab within 1 day postdose in healthy volunteers. As the potency of monovalent tralokinumab is comparable with that of bivalent tralokinumab, the IgG4 Fab‐arm exchange with endogenous IgG4 is not expected to affect the potency of neutralization of interleukin‐13 in vivo.
Collapse
Affiliation(s)
- Bing Wang
- Amador Bioscience Pleasanton California USA
| | - Jo Goodman
- Clinical Pharmacology and Safety Sciences AstraZeneca BioPharmaceuticals, R&D Cambridge UK
| | - Lorin K. Roskos
- Clinical Pharmacology and Safety Sciences AstraZeneca BioPharmaceuticals, R&D Gaithersburg Maryland USA
| |
Collapse
|
27
|
Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther 2022; 7:93. [PMID: 35318309 PMCID: PMC8941077 DOI: 10.1038/s41392-022-00947-7] [Citation(s) in RCA: 486] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Antibody-drug conjugate (ADC) is typically composed of a monoclonal antibody (mAbs) covalently attached to a cytotoxic drug via a chemical linker. It combines both the advantages of highly specific targeting ability and highly potent killing effect to achieve accurate and efficient elimination of cancer cells, which has become one of the hotspots for the research and development of anticancer drugs. Since the first ADC, Mylotarg® (gemtuzumab ozogamicin), was approved in 2000 by the US Food and Drug Administration (FDA), there have been 14 ADCs received market approval so far worldwide. Moreover, over 100 ADC candidates have been investigated in clinical stages at present. This kind of new anti-cancer drugs, known as "biological missiles", is leading a new era of targeted cancer therapy. Herein, we conducted a review of the history and general mechanism of action of ADCs, and then briefly discussed the molecular aspects of key components of ADCs and the mechanisms by which these key factors influence the activities of ADCs. Moreover, we also reviewed the approved ADCs and other promising candidates in phase-3 clinical trials and discuss the current challenges and future perspectives for the development of next generations, which provide insights for the research and development of novel cancer therapeutics using ADCs.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, (Parkville Campus) 381 Royal Parade,, Parkville, VIC, 3052, Australia
- Faculty of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing, 211198, People's Republic of China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
28
|
Frequency and Clinical Significance of Elevated IgG4 in Rheumatoid Arthritis: A Systematic Review. Biomedicines 2022; 10:biomedicines10030558. [PMID: 35327360 PMCID: PMC8945114 DOI: 10.3390/biomedicines10030558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Immunoglobulin (Ig)G4 is a unique protein molecule and its role in autoimmune diseases remains elusive and controversial. Accumulating evidence suggests a pathogenic role of IgG4 in rheumatoid arthritis (RA). Rheumatoid factors (RF) in RA can recognize the Fc domains of IgG4 to form RF-IgG4 immune complexes that may activate the complement system leading to synovial injury. The aim of this article was to systematically review the literature from the past 2 decades to determine the frequency of elevated IgG4 and its clinical significance in RA. We comprehensively searched the Pubmed, Scopus, and Web of Science databases with the following terms: “IgG4”, “rheumatoid arthritis”, and “immunoglobulin G4”, and scrutinized all of the relevant publications. Based on the selection criteria, 12 studies were incorporated, which involved a total of 1715 RA patients. Out of 328 subjects from three studies, the pooled frequency of elevated non-specific IgG4 was 35.98%. There was a significant positive correlation between the IgG4 levels and the RA disease activity based on DAS-28 measurements (r = 0.245–0.253) and inflammatory markers, i.e., erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels (r = 0.262–0.389). Longitudinal studies that measured the serial levels of IgG4 consistently showed a decline in the concentrations (up to 48% less than baseline) with disease modifying anti-rheumatic drug (DMARD) treatment. Current evidence suggests that serum IgG4 levels are significantly elevated in RA compared to the general population. This review indicates that IgG4 is a promising biomarker of disease activity and tends to decline in response to DMARD therapies. Biologic therapies have revolutionized the therapeutic armamentarium of RA in the recent decade, and IgG4 appears to be a potential treatment target.
Collapse
|
29
|
Pomarici ND, Fernández-Quintero ML, Quoika PK, Waibl F, Bujotzek A, Georges G, Liedl KR. Bispecific antibodies-effects of point mutations on CH3-CH3 interface stability. Protein Eng Des Sel 2022; 35:gzac012. [PMID: 36468666 PMCID: PMC9741699 DOI: 10.1093/protein/gzac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022] Open
Abstract
A new format of therapeutic proteins is bispecific antibodies, in which two different heavy chains heterodimerize to obtain two different binding sites. Therefore, it is crucial to understand and optimize the third constant domain (CH3-CH3) interface to favor heterodimerization over homodimerization, and to preserve the physicochemical properties, as thermal stability. Here, we use molecular dynamics simulations to investigate the dissociation process of 19 CH3-CH3 crystal structures that differ from each other in few point mutations. We describe the dissociation of the dimeric interface as a two-steps mechanism. As confirmed by a Markov state model, apart from the bound and the dissociated state, we observe an additional intermediate state, which corresponds to an encounter complex. The analysis of the interdomain contacts reveals key residues that stabilize the interface. We expect that our results will improve the understanding of the CH3-CH3 interface interactions and thus advance the developability and design of new antibodies formats.
Collapse
Affiliation(s)
- Nancy D Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Patrick K Quoika
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Center for Protein Assemblies (CPA), Department of Physics, Chair of Theoretical Biophysics, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, Penzberg, 82377, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Nonnenwald 2, Penzberg, 82377, Germany
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
The Blood of the HIV-Infected Patients Contains κ-IgG, λ-IgG, and Bispecific κλ-IgG, Which Possess DNase and Amylolytic Activity. Life (Basel) 2022; 12:life12020304. [PMID: 35207591 PMCID: PMC8880267 DOI: 10.3390/life12020304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Though hundreds of thousands of papers are currently being published on HIV/AIDS, only tens of hundreds of them are devoted to the antibodies generated during the disease. Most of these papers discuss antibodies in HIV/AIDS as a diagnostic tool, and some articles describe neutralizing antibodies as a promising treatment. In this paper, we used affinity chromatography and ELISA to isolate natural IgG from the blood of 26 HIV-infected patients. IgG preparations were separated into the subfractions containing different types of light chains, and catalytic activities of subfractions were analyzed. Here, we show for the first time that the blood of HIV patients contains ~20% of bispecific κλ-IgG, presented with all IgG subclasses. Analysis of DNA-hydrolyzing and amylolytic activity show that most IgG preparations and subfractions are catalytically active. Our results expand the possible biological functions of natural IgG in HIV infection.
Collapse
|
31
|
Yanakieva D, Pekar L, Evers A, Fleischer M, Keller S, Mueller-Pompalla D, Toleikis L, Kolmar H, Zielonka S, Krah S. Beyond bispecificity: Controlled Fab arm exchange for the generation of antibodies with multiple specificities. MAbs 2022; 14:2018960. [PMID: 35014603 PMCID: PMC8757479 DOI: 10.1080/19420862.2021.2018960] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
Controlled Fab arm exchange (cFAE) has proven to be a generic and versatile technology for the efficient generation of IgG-like bispecific antibodies (DuoBodies or DBs), with several in clinical development and one product, amivantamab, approved by the Food and Drug Administration. In this study, we expand the cFAE-toolbox by incorporating VHH-modules at the C-termini of DB-IgGs, termed DB-VHHs. This approach enables the combinatorial generation of tri- and tetraspecific molecules with flexible valencies in a straightforward fashion. Using cFAE, a variety of multispecific molecules was produced and assessed for manufacturability and physicochemical characteristics. In addition, we were able to generate DB-VHHs that efficiently triggered natural killer cell mediated lysis of tumor cells, demonstrating the utility of this format for potential therapeutic applications.
Collapse
Affiliation(s)
- Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Andreas Evers
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Markus Fleischer
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stephan Keller
- Protein and Cell Sciences, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
32
|
Shamji MH, Sharif H, Layhadi JA, Zhu R, Kishore U, Renz H. Diverse Immune Mechanisms of Allergen Immunotherapy for allergic rhinitis with and without asthma. J Allergy Clin Immunol 2022; 149:791-801. [DOI: 10.1016/j.jaci.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
33
|
Zheng P, Liu X, Lin L, Wu H, Zhao X, Sun B. Efficacy of mite allergen immunotherapy in allergic rhinitis and the immune synergistic effect on cross-allergens. Immunotherapy 2021; 14:217-233. [PMID: 34845913 DOI: 10.2217/imt-2020-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To compare the efficacy of single- and double-species mite allergen immunotherapy. Materials and methods: An open, pseudo-randomized, controlled study was conducted (n = 125 allergic rhinitis patients). The primary end point involved the visual analogue scale. Secondary end points included a basophil activation test and serum specific IgE and IgG4 assays. Results: Visual analogue scale analysis indicated considerable reductions in both groups. Both treatments improved quality of life and induced sIgG4 antibody production. Basophil activation and serum IgE inhibition were not evident in either treatment. Neither treatment displayed an early stage immune synergistic effect on cross-allergens. Conclusions: Both treatments were effective against allergic rhinitis, and statistical differences were not observed. Future studies may require long-term, large-scale research.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoqing Liu
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Lili Lin
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Huiqin Wu
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Xiaoming Zhao
- Department of Otolaryngology Head & Neck Surgery, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519070, China
| | - Baoqing Sun
- Department of Allergy & Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
34
|
Lai PK, Ghag G, Yu Y, Juan V, Fayadat-Dilman L, Trout BL. Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions. MAbs 2021; 13:1991256. [PMID: 34747330 PMCID: PMC8583000 DOI: 10.1080/19420862.2021.1991256] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human/humanized IgG4 antibodies have reduced effector function relative to IgG1 antibodies, which is desirable for certain therapeutic purposes. However, the developability and biophysical properties for IgG4 antibodies are not well understood. This work focuses on the head-to-head comparison of key biophysical properties, such as self-interaction and viscosity, for 14 human/humanized, and chimeric IgG1 and IgG4 S228P monoclonal antibody pairs that contain the identical variable regions. Experimental measurements showed that the IgG4 S228P antibodies have similar or higher self-interaction and viscosity than that of IgG1 antibodies in 20 mM sodium acetate, pH 5.5. We report sequence and structural drivers for the increased viscosity and self-interaction detected in IgG4 S228P antibodies through a combination of experimental data and computational models. Further, we applied and extended a previously established computational model for IgG1 antibodies to predict the self-interaction and viscosity behavior for each antibody pair, providing insight into the structural characteristics and differences of these two isotypes. Interestingly, we observed that the IgG4 S228P swapped variants, where the CH3 domain was swapped for that of an IgG1, showed reduced self-interaction behavior. These domain swapped IgG4 S228P molecules also showed reduced viscosity from experiment and coarse-grained simulations. We also observed that experimental diffusion interaction parameter (kD) values have a high correlation with computational diffusivity prediction for both IgG1 and IgG4 S228P isotypes. Abbreviations: AHc, constant region Hamaker constant; AHv, variable region Hamaker constant; CDRs, Complementarity-determining regions; CG, Coarse-grained model; CH1, Constant heavy chain 1; CH2 Constant heavy chain 2; CH3 Constant heavy chain 3; chgCH3 Effective charge on the CH3 region; CL Constant light chain; cP, Centipoise; DLS, Dynamic light scattering; Fab, Fragment antigen-binding; Fc, Fragment crystallizable; Fv, Variable domaing; (r) Radial distribution function; H1 CDR1 of Heavy Chain; H2 CDR2 of Heavy Chain; H3 CDR3 of Heavy Chain; HVI, High viscosity index; IgG1 human immunoglobulin of IgG1 subclass; IgG4 human immunoglobulin of IgG4 subclass; kD, Diffusion interaction parameter; L1 CDR1 of Light Chain; L2 CDR2 of Light Chain; L3 CDR3 of Light Chain; mAb, Monoclonal antibody; MD, Molecular dynamics; PPI Protein–protein interactions; SCM, Spatial charge map; UP-SEC, Ultra-high-performance size-exclusion chromatography; VH, Variable domain of Heavy Chain; VL, Variable domain of Light Chain
Collapse
Affiliation(s)
- Pin-Kuang Lai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts USA.,Current Address: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey USA
| | - Gaurav Ghag
- Merck & Co, Discovery Biologics, Protein Sciences Department, South San Francisco, CA , USA
| | - Yao Yu
- Merck & Co, Discovery Biologics, Protein Sciences Department, South San Francisco, CA , USA
| | - Veronica Juan
- Merck & Co, Discovery Biologics, Protein Sciences Department, South San Francisco, CA , USA
| | | | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| |
Collapse
|
35
|
Nakagome K, Nagata M. Allergen Immunotherapy in Asthma. Pathogens 2021; 10:pathogens10111406. [PMID: 34832562 PMCID: PMC8618936 DOI: 10.3390/pathogens10111406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/03/2022] Open
Abstract
Allergen immunotherapy (AIT) is a specific treatment involving the administration of relevant allergens to allergic patients, with subtypes including subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). In asthma, AIT using the house dust mite (HDM) alleviates clinical symptoms and decreases airway hyper responsiveness and medication dose. In addition, AIT can improve the natural course of asthma. For example, the effects of AIT can be preserved for at least a few years, even after ending treatment. AIT may increase the remission rate of asthma in children and suppress sensitization to new allergens. If AIT is introduced in pollinosis, AIT may prevent the development of asthma. Moreover, AIT can control other allergic diseases complicated by asthma, such as allergic rhinitis, which also improves the control of asthma. The indication of HDM-SCIT for asthma is mild-to-moderate HDM-sensitized allergic asthma in a patient with normal respiratory function. To date, HDM-SLIT is applicable in Japan for allergic rhinitis, not for asthma. However, the effect of SLIT on asthma has been confirmed internationally, and SLIT is available for asthma in Japan if allergic rhinitis is present as a complication.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan;
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
- Correspondence: ; Tel.: +81-49-276-1319
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama 350-0495, Japan;
- Allergy Center, Saitama Medical University, Saitama 350-0495, Japan
| |
Collapse
|
36
|
In vivo pharmacokinetic enhancement of monomeric Fc and monovalent bispecific designs through structural guidance. Commun Biol 2021; 4:1048. [PMID: 34497355 PMCID: PMC8426389 DOI: 10.1038/s42003-021-02565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
In a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life. Lu Shan et al. present a structure-guided approach to engineer a monovalent form of the fragment crystallizable (Fc) region of an IgG4 antibody to adapt multiple versions of half-life extension modifications and bispecific targeting. Additionally, they report co-crystal structures of the variants bound to the Fc neonatal receptor that allow insights into the binding interactions.
Collapse
|
37
|
Bogen JP, Grzeschik J, Jakobsen J, Bähre A, Hock B, Kolmar H. Treating Bladder Cancer: Engineering of Current and Next Generation Antibody-, Fusion Protein-, mRNA-, Cell- and Viral-Based Therapeutics. Front Oncol 2021; 11:672262. [PMID: 34123841 PMCID: PMC8191463 DOI: 10.3389/fonc.2021.672262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Bladder cancer is a frequent malignancy and has a clinical need for new therapeutic approaches. Antibody and protein technologies came a long way in recent years and new engineering approaches were applied to generate innovative therapeutic entities with novel mechanisms of action. Furthermore, mRNA-based pharmaceuticals recently reached the market and CAR-T cells and viral-based gene therapy remain a major focus of biomedical research. This review focuses on the engineering of biologics, particularly therapeutic antibodies and their application in preclinical development and clinical trials, as well as approved monoclonal antibodies for the treatment of bladder cancer. Besides, newly emerging entities in the realm of bladder cancer like mRNA, gene therapy or cell-based therapeutics are discussed and evaluated. As many discussed molecules exhibit unique mechanisms of action based on innovative protein engineering, they reflect the next generation of cancer drugs. This review will shed light on the engineering strategies applied to develop these next generation treatments and provides deeper insights into their preclinical profiles, clinical stages, and ongoing trials. Furthermore, the distribution and expression of the targeted antigens and the intended mechanisms of action are elucidated.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Joern Jakobsen
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Alexandra Bähre
- Ferring Pharmaceuticals, International PharmaScience Center, Copenhagen, Denmark
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
38
|
Cargill T, Culver EL. The Role of B Cells and B Cell Therapies in Immune-Mediated Liver Diseases. Front Immunol 2021; 12:661196. [PMID: 33936097 PMCID: PMC8079753 DOI: 10.3389/fimmu.2021.661196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
B cells form a branch of the adaptive immune system, essential for the body’s immune defense against pathogens. B cell dysfunction has been implicated in the pathogenesis of immune mediated liver diseases including autoimmune hepatitis, IgG4-related hepatobiliary disease, primary biliary cholangitis and primary sclerosing cholangitis. B cells may initiate and maintain immune related liver diseases in several ways including the production of autoantibodies and the activation of T cells via antigen presentation or cytokine production. Here we comprehensively review current knowledge on B cell mechanisms in immune mediated liver diseases, exploring disease pathogenesis, B cell therapies, and novel treatment targets. We identify key areas where future research should focus to enable the development of targeted B cell therapies.
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L Culver
- Oxford Liver Unit, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
39
|
|
40
|
Abstract
Allergen immunotherapy may modify the natural course of allergic diseases and induce remission. It includes subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). For asthma, allergen immunotherapy using house dust mite (HDM) improves clinical symptoms and airway hyperresponsiveness and decreases drug requirements. Furthermore, it has been suggested that allergen immunotherapy also has the following effects: (1) the effect can be maintained for more than a year even if the treatment is terminated, (2) the remission rate of childhood asthma can be increased, (3) new allergen sensitization can be suppressed, and (4) asthma development can be prevented if allergen immunotherapy was performed in the case of pollinosis. Allergen immunotherapy differs from conventional drug therapy, in particular the effect of modifying the natural course of allergic diseases and the effect of controlling complicated allergic diseases such as rhinoconjunctivitis. The general indication for HDM-SCIT in asthma is HDM-sensitized atopic asthma with mild-to-moderate disease and normal respiratory function. HDM allergens should be involved in the pathogenesis of asthma, and a duration of illness of less than 10 years is desirable. HDM-SLIT is available for allergic rhinitis but not for asthma in Japan. However, as the efficacy of SLIT for asthma has been fully proven internationally, SLIT is also applied in asthmatics with complicated allergic rhinitis in Japan.
Collapse
|
41
|
Gorovits B. Current Considerations for Immunoglobulin Isotype Characterization of Antibody Response against Biotherapeutics. AAPS JOURNAL 2020; 22:144. [PMID: 33161459 DOI: 10.1208/s12248-020-00530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
The ability of biotherapeutics to induce immune response in patients has been broadly accepted. Humoral immune response to biotherapeutics is expected to be polyclonal in nature with a high degree of diversity, including treatment-induced anti-drug antibodies (ADA) immunoglobulin isotype composition. Therapeutics with strong potential to induce immunity may produce a T cell-dependent response resulting in a gradual transition from initial IgM based to mature, IgG-based ADAs. Immunoglobulin class switch and transition to high affinity IgG1 and IgG4 antibodies were linked to a reduced drug efficacy, accelerated clearance, development of drug neutralizing antibodies, and modulation of hypersensitivity reaction rates. Examples presented herein demonstrate that understanding of isotype composition of ADA response can be highly important to predict future of disease progression. Isotype characterization of ADA response can be viewed highly useful, particularly for high immunogenicity risk biotherapeutics although may be less relevant or used as a research tool only for medium and low immunogenicity risk level therapeutics. Isotype-specific characteristics, methods of detection, and several case studies are presented herein.
Collapse
|
42
|
Mozziconacci O, Subelzu N, Schöneich C, Liu Y, Abend A, Wuelfing WP. Probing Protein Conformation Destabilization in Sterile Liquid Formulations through the Formation of 3,4-Dihydroxyphenylalanine. Mol Pharm 2020; 17:3783-3793. [PMID: 32910663 DOI: 10.1021/acs.molpharmaceut.0c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work demonstrates the use of a fluorescent probe to screen protein conformational changes in mixtures of monoclonal antibodies and determine the region of where such changes may originate through a footprinting mass spectrometry approach. The oxidative stress of mixtures of two different immunoglobulins (IgG1, IgG2, or IgG4) performed in the presence of 2,2'-azobis(2-amidinopropane dihydrochloride) results in sequence-specific tyrosine oxidation reactions depending on the time of incubation of the IgG molecules and the nature of the excipients present in the formulation. The combination of a fluorescence assay, based on the detection of 3,4-dihydroxyphenylalanine (DOPA) and mass spectrometry analyses, permits the identification of protein conformation changes. In a mixture of IgG2 and IgG4, a destabilization of IgG4 in the presence of IgG2 is observed. The destabilized region involves the Fab region of IgG4 between Tyr63 and Tyr81 and potentially multiple regions of IgG2.
Collapse
Affiliation(s)
| | - Natalia Subelzu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Yong Liu
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andreas Abend
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | |
Collapse
|
43
|
Taking the Hinge off: An Approach to Effector-Less Monoclonal Antibodies. Antibodies (Basel) 2020; 9:antib9040050. [PMID: 32977708 PMCID: PMC7709103 DOI: 10.3390/antib9040050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
A variety of Fc domain engineering approaches for abrogating the effector functions of mAbs exists. To address some of the limitations of the current Fc domain silencing approaches, we are exploring a less commonly considered option which relies on the deletion of the hinge. Removal of the hinge domain in humanized IgG1 and IgG4 mAbs obliterates their ability to bind to activating human Fc gamma receptors I and IIIA, while leaving their ability to engage their target antigen intact. Deletion of the hinge also reduces binding to the Fc neonatal receptor, although Fc engineering allows partial recovery of affinity. Engineering of the CH3 domain, stabilizes hinge deleted IgG4s and prevents Fab arm exchange. The faster clearing properties together with the pacified Fc make modality of the hinge deleted mAb an appealing solution for therapeutic and diagnostic applications.
Collapse
|
44
|
Gstöttner C, Vergoossen DLE, Wuhrer M, Huijbers MGM, Domínguez-Vega E. Sheathless CE-MS as a tool for monitoring exchange efficiency and stability of bispecific antibodies. Electrophoresis 2020; 42:171-176. [PMID: 32901958 DOI: 10.1002/elps.202000166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/14/2020] [Indexed: 01/17/2023]
Abstract
Bispecific monoclonal antibodies (BsAbs) are receiving great attention due to their extensive benefits as biopharmaceuticals and their involvement in IgG4 mediated autoimmune diseases. While the production of BsAbs is getting more accessible, their analytical characterization remains challenging. We explored the potential of sheathless CE-MS for monitoring exchange efficiency and stability of in-house produced bispecific antibodies. Two IgG4 bispecific antibodies with different molecular characteristics were prepared using controlled Fragment antigen binding (Fab)-arm exchange. Separation of BsAbs from their parent monospecific antibodies was achieved using a polyethyleniimine (PEI)-coated capillary and acidic background electrolytes permitting reliable assessment of the exchange efficiency. This was especially valuable for a Fab-glycosylated BsAb where the high glycan heterogeneity resulted in an overlap of masses with the monospecific parent antibody, hindering their discrimination by MS only. The method showed also good capabilities to monitor the stability of the generated BsAbs under different storage conditions. The levels of degradation products were different for the studied antibodies indicating pronounced differences in stability. Overall, the proposed method represents a useful analytical tool for exchange efficiency and stability studies of bispecific antibodies.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G M Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Hsieh SC, Shen CY, Liao HT, Chen MH, Wu CH, Li KJ, Lu CS, Kuo YM, Tsai HC, Tsai CY, Yu CL. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. Int J Mol Sci 2020; 21:ijms21145082. [PMID: 32708432 PMCID: PMC7404109 DOI: 10.3390/ijms21145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is a spectrum of complex fibroinflammatory disorder with protean manifestations mimicking malignant neoplasms, infectious or non-infectious inflammatory process. The histopathologic features of IgG4-RD include lymphoplasmacytic infiltration, storiform fibrosis and obliterative phlebitis together with increased in situ infiltration of IgG4 bearing-plasma cells which account for more than 40% of all IgG-producing B cells. IgG4-RD can also be diagnosed based on an elevated serum IgG4 level of more than 110 mg/dL (normal < 86.5 mg/mL in adult) in conjunction with protean clinical manifestations in various organs such as pancreato–hepatobiliary inflammation with/without salivary/lacrimal gland enlargement. In the present review, we briefly discuss the role of genetic predisposition, environmental factors and candidate autoantibodies in the pathogenesis of IgG4-RD. Then, we discuss in detail the immunological paradox of IgG4 antibody, the mechanism of modified Th2 response for IgG4 rather than IgE antibody production and the controversial issues in the allergic reactions of IgG4-RD. Finally, we extensively review the implications of different immune-related cells, cytokines/chemokines/growth factors and Toll-like as well as NOD-like receptors in the pathogenesis of tissue fibro-inflammatory reactions. Our proposals for the future investigations and prospective therapeutic strategies for IgG4-RD are shown in the last part.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| |
Collapse
|
46
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
47
|
Botzanowski T, Hernandez-Alba O, Malissard M, Wagner-Rousset E, Deslignière E, Colas O, Haeuw JF, Beck A, Cianférani S. Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Anal Chem 2020; 92:8827-8835. [DOI: 10.1021/acs.analchem.0c00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Martine Malissard
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Olivier Colas
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Jean-François Haeuw
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Alain Beck
- IRPF—Centre d’Immunologie Pierre-Fabre (CIPF), 74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
48
|
Deveuve Q, Gouilleux-Gruart V, Thibault G, Lajoie L. [The hinge region of therapeutic antibodies: major importance of a short sequence]. Med Sci (Paris) 2020; 35:1098-1105. [PMID: 31903923 DOI: 10.1051/medsci/2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hinge region is a short sequence of the heavy chains (H) of antibodies linking the Fab (Fragment antigen binding) region to the Fc (Fragment crystallisable) region. The functional properties of the four IgG subclasses partly result from the sequence differences of their hinge regions as some amino acids of the lower hinge region are located within or in the close vicinity of the C1q and FcγR binding sites on the IgG H chains. In addition, the hinge is susceptible to proteolytic cleavage by many proteases present in tumor and/or inflammatory microenvironment capable of affecting functional responses. Thus, an optimal format of the hinge region remains a major challenge for the development of new therapeutic antibodies.
Collapse
Affiliation(s)
- Quentin Deveuve
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Gilles Thibault
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Laurie Lajoie
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| |
Collapse
|
49
|
Kang H, Larson NR, White DR, Middaugh CR, Tolbert T, Schöneich C. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc. J Pharm Sci 2020; 109:677-689. [DOI: 10.1016/j.xphs.2019.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
|
50
|
Tian X, Deng Z, Wang S, Wang Y. Basic Research and Clinical Reports Associated with Low Serum IgG4 Concentrations. Int Arch Allergy Immunol 2019; 181:149-158. [PMID: 31805576 DOI: 10.1159/000503967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Elevated IgG4 concentrations in serum have received a great deal of attention recently, whereas the significance of decreased IgG4 levels was frequently neglected in spite of its close relation with infectious and noninfectious inflammations. In this review, based on the structural and functional characteristics of IgG4, we bring together case reports and research related to low levels of IgG4 and try to scratch the importance of decreased IgG4 concentrations in serum. As with elevated IgG4 levels, low serum IgG4-related diseases can be involved in multiple systems such as infection in the respiratory system, stroke in the circulatory system, and glomerulonephritis in the urinary system. Both genetic and immune dysregulation can contribute to decreased IgG4 levels. In the light of animal experiments, we believe that the mystery of low IgG4 can be revealed as long as enough attention is acquired.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Song Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China,
| |
Collapse
|