1
|
Halder P, Mitra P. Human prion protein: exploring the thermodynamic stability and structural dynamics of its pathogenic mutants. J Biomol Struct Dyn 2022; 40:11274-11290. [PMID: 34338141 DOI: 10.1080/07391102.2021.1957715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Human familial prion diseases are known to be associated with different single-point mutants of the gene coding for prion protein with a primary focus at several locations of the globular domain. We have identified 12 different single-point pathogenic mutants of human prion protein (HuPrP) with the help of extensive perturbations/mutation technique at multiple locations of HuPrP sequence related to potentiality towards conformational disorders. Among these, some of the mutants include pathogenic variants that corroborate well with the literature reported proteins while majority include some unique single-point mutants that are either not explicitly studied early or studied for variants with different residues at the specific position. Primarily, our study sheds light on the unfolding mechanism of the above mentioned mutants in depth. Besides, we could identify some mutants under investigation that demonstrates not only unfolding of the helical structures but also extension and generation of the β-sheet structures and or simultaneously have highly exposed hydrophobic surface which is assumed to be linked with the production of aggregate/fibril structures of the prion protein. Among the identified mutants, Q212E needs special attention due to its maximum exposure of hydrophobic core towards solvent and E200Q is found to be important due to its maximum extent of β-content. We are also able to identify different respective structural conformations of the proteins according to their degree of structural unfolding and those conformations can be extracted and further studied in detail. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
2
|
Elathram N, Ackermann BE, Debelouchina GT. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100057. [PMID: 35707629 PMCID: PMC9191766 DOI: 10.1016/j.jmro.2022.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved 13C-13C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature 13C-13C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced 15N-13C histone-histone interactions within the nucleosome core is complicated by the natural 13C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
Collapse
Affiliation(s)
| | | | - Galia T. Debelouchina
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
3
|
Qi Z, Surewicz K, Surewicz WK, Jaroniec CP. Influence of the Dynamically Disordered N-Terminal Tail Domain on the Amyloid Core Structure of Human Y145Stop Prion Protein Fibrils. Front Mol Biosci 2022; 9:841790. [PMID: 35237664 PMCID: PMC8883029 DOI: 10.3389/fmolb.2022.841790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
The Y145Stop mutant of human prion protein (huPrP23-144) is associated with a familial prionopathy and provides a convenient in vitro model for investigating amyloid strains and cross-seeding barriers. huPrP23-144 fibrils feature a compact and relatively rigid parallel in-register β-sheet amyloid core spanning ∼30 C-terminal amino acid residues (∼112–141) and a large ∼90-residue dynamically disordered N-terminal tail domain. Here, we systematically evaluate the influence of this dynamic domain on the structure adopted by the huPrP23-144 amyloid core region, by investigating using magic-angle spinning solid-state nuclear magnetic resonance (NMR) spectroscopy a series of fibril samples formed by huPrP23-144 variants corresponding to deletions of large segments of the N-terminal tail. We find that deletion of the bulk of the N-terminal tail, up to residue 98, yields amyloid fibrils with native-like huPrP23-144 core structure. Interestingly, deletion of additional flexible residues in the stretch 99–106 located outside of the amyloid core yields shorter heterogenous fibrils with fingerprint NMR spectra that are clearly distinct from those for full-length huPrP23-144, suggestive of the onset of perturbations to the native structure and degree of molecular ordering for the core residues. For the deletion variant missing residues 99–106 we show that native huPrP23-144 core structure can be “restored” by seeding the fibril growth with preformed full-length huPrP23-144 fibrils.
Collapse
Affiliation(s)
- Zhe Qi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Christopher P. Jaroniec,
| |
Collapse
|
4
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
5
|
Dao HH, Hlaing MZ, Ma Y, Surewicz K, Surewicz WK, Jaroniec CP. 13C and 15N chemical shift assignments of A117V and M129V human Y145Stop prion protein amyloid fibrils. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:45-51. [PMID: 33123960 PMCID: PMC7979434 DOI: 10.1007/s12104-020-09981-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The C-terminally truncated Y145Stop variant of prion protein (PrP23-144) has been linked to a heritable prionopathy in humans and is also capable of triggering a transmissible prion disease in mice. PrP23-144 can be converted from soluble monomeric form to amyloid under physiological conditions, providing an in vitro model for investigating the molecular basis of amyloid strains and cross-seeding barriers. Here, we use magic-angle spinning solid-state NMR to establish the sequential backbone and sidechain 13C and 15N chemical shift assignments for amyloid fibrils formed by the A117V and M129V mutants of human PrP23-144, which in the context of full length PrP in vivo are among the specific residues associated with development of Gerstmann-Straüssler-Scheinker disease. The chemical shift data are utilized to identify amino acids comprising the rigid amyloid core regions and to predict the protein secondary structures for human PrP23-144 A117V and M129V fibrils.
Collapse
Affiliation(s)
- Hanh H Dao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - May Z Hlaing
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Yixuan Ma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Azizyan RA, Wang W, Anikeenko A, Radkova Z, Bakulina A, Garro A, Charlier L, Dumas C, Ventura S, Kajava AV. Amyloidogenicity as a driving force for the formation of functional oligomers. J Struct Biol 2020; 212:107604. [PMID: 32805411 DOI: 10.1016/j.jsb.2020.107604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Insoluble amyloid fibrils formed by self-assembly of amyloidogenic regions of proteins have a cross-β-structure. In this work, by using targeted molecular dynamics and rigid body simulation, we demonstrate that if a protein consists of an amyloidogenic region and a globular domain(s) and if the linker between them is short enough, such molecules cannot assemble into amyloid fibrils, instead, they form oligomers with a defined and limited number of β-strands in the cross-β core. We show that this blockage of the amyloid growth is due to the steric repulsion of the globular structures linked to amyloidogenic regions. Furthermore, we establish a relationship between the linker length and the number of monomers in such nanoparticles. We hypothesise that such oligomerisation can be a yet unrecognised way to form natural protein complexes involved in biological processes. Our results can also be used in protein engineering for designing soluble nanoparticles carrying different functional domains.
Collapse
Affiliation(s)
- Rafayel A Azizyan
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France
| | - Weiqiang Wang
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
| | | | | | | | - Adriana Garro
- Universidad Nacional de San Luis IMASL-CONICET, San Luis, Argentina
| | - Landry Charlier
- Institut des Biomolécules Max Mousseron, Montpellier, France
| | - Christian Dumas
- Centre de Biochimie Structurale, CNRS, UMR5048, INSERM, U1054, Université de Montpellier, Montpellier, France
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, Université Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech 2020; 10:193. [PMID: 32269898 PMCID: PMC7128022 DOI: 10.1007/s13205-020-2166-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Protein aggregation, their mechanisms and trends in the field of neurodegenerative diseases is still far from completely being decoded. It is mainly attributed to the complexity surrounding the interaction between proteins which includes various regulatory mechanisms involved with the presentation of abnormal conditions. Although most proteins are functional in their soluble form, they have also been reported to convert themselves into insoluble aggregates under certain conditions naturally. Misfolded protein forms aggregates which are mostly unwanted by the cellular system and are mostly involved in various pathophysiologies including Alzheimer's, Type II Diabetes mellitus, Kurus's etc. Challenges lie in understanding the complex mechanism of protein misfolding and its correlation with clinical evidence. It is often understood that due to the slowness of the process and its association with ageing, timely intervention with drugs or preventive measures will play an essential role in lowering the rate of dementia causing diseases and associated ailments in the future. Today approximately more than 35 proteins have been identified capable of forming amyloids under defined conditions, and nearly all of them have been associated with disease outcomes. This review incorporates a major understanding from the history of diseases associated with protein misfolding, to the current state of neurodegenerative diseases globally, highlighting challenges in drug development and current state of research in a comprehensive manner in the field of protein misfolding diseases. There is increasing clinical association of protein misfolding with regards to amyloids compelling us to thread questions solved and further helping us design possible solutions by generating a pathway-based research on which future work in this field could be driven.
Collapse
Affiliation(s)
- Debanjan Kundu
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Kumari Prerna
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| | - Rahul Chaurasia
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Manoj Kumar Bharty
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP 221005 India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, UP 221005 India
| |
Collapse
|
8
|
Vanni I, Pirisinu L, Acevedo-Morantes C, Kamali-Jamil R, Rathod V, Di Bari MA, D’Agostino C, Marcon S, Esposito E, Riccardi G, Hornemann S, Senatore A, Aguzzi A, Agrimi U, Wille H, Nonno R. Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. Brain 2020; 143:1512-1524. [PMID: 32303068 PMCID: PMC7241950 DOI: 10.1093/brain/awaa078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90-150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.
Collapse
Affiliation(s)
- Ilaria Vanni
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Laura Pirisinu
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia Acevedo-Morantes
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Razieh Kamali-Jamil
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michele Angelo Di Bari
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Claudia D’Agostino
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Stefano Marcon
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Elena Esposito
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Geraldina Riccardi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Simone Hornemann
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Assunta Senatore
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute for Neuropathology, University of Zürich, Zürich, Switzerland
| | - Umberto Agrimi
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Romolo Nonno
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| |
Collapse
|
9
|
Shen HCH, Chen YH, Lin YS, Chu BKY, Liang CS, Yang CC, Chen RPY. Segments in the Amyloid Core that Distinguish Hamster from Mouse Prion Fibrils. Neurochem Res 2019; 44:1399-1409. [PMID: 30603982 DOI: 10.1007/s11064-018-02709-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/29/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and other mammals. The disease transmission can occur between different species but is limited by the sequence homology between host and inoculum. The crucial molecular event in the progression of this disease is prion formation, starting from the conformational conversion of the normal, membrane-anchored prion protein (PrPC) into the misfolded, β-sheet-rich and aggregation-prone isoform (PrPSc), which then self-associates into the infectious amyloid form called prion. Amyloid is the aggregate formed from one-dimensional protein association. As amyloid formation is a key hallmark in prion pathogenesis, studying which segments in prion protein are involved in the amyloid formation can provide molecular details in the cross-species transmission barrier of prion diseases. However, due to the difficulties of studying protein aggregates, very limited knowledge about prion structure or prion formation was disclosed by now. In this study, cross-seeding assay was used to identify the segments involved in the amyloid fibril formation of full-length hamster prion protein, SHaPrP(23-231). Our results showed that the residues in the segments 108-127, 172-194 (helix 2 in PrPC) and 200-227 (helix 3 in PrPC) are in the amyloid core of hamster prion fibrils. The segment 127-143, but not 107-126 (which corresponds to hamster sequence 108-127), was previously reported to be involved in the amyloid core of full-length mouse prion fibrils. Our results indicate that hamster prion protein and mouse prion protein use different segments to form the amyloid core in amyloidogenesis. The sequence-dependent core formation can be used to explain the seeding barrier between mouse and hamster.
Collapse
Affiliation(s)
- Howard C-H Shen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yung-Han Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan
| | - Yu-Sheng Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Brett K-Y Chu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Shin Liang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chien-Chih Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei, 11529, Taiwan. .,Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV. BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics 2018; 34:599-608. [PMID: 29444233 DOI: 10.1093/bioinformatics/btx629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/03/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Numerous experimental studies have suggested that polypeptide chains of large amyloidogenic regions zig-zag in β-serpentine arrangements. These β-serpentines are stacked axially and form the superpleated β-structure. Despite this progress in the understanding of amyloid folds, the determination of their 3D structure at the atomic level is still a problem due to the polymorphism of these fibrils and incompleteness of experimental structural data. Today, the way to get insight into the atomic structure of amyloids is a combination of experimental studies with bioinformatics. Results We developed a computer program BetaSerpentine that reconstructs β-serpentine arrangements from individual β-arches predicted by ArchCandy program and ranks them in order of preference. It was shown that the BetaSerpentine program in combination with the experimental data can be used to gain insight into the detailed 3D structure of amyloids. It opens avenues to the structure-based interpretation and design of the experiments. Availability and implementation BetaSerpentine webserver can be accessed through website: http://bioinfo.montp.cnrs.fr/b-serpentine. Source code is available in git.hub repository (github.com/stanislavspbgu/BetaSerpentine). Contact stanislavspbgu@gmail.com or andrey.kajava@crbm.cnrs.fr. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Olga V Bondareva
- Laboratory of Molecular Systematics, Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St. Petersburg State University, Saint Petersburg 199034, Russia
| | - Andrey V Kajava
- Structural Bioinformatics and Molecular Modeling, Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France.,Institut de Biologie Computationnelle, Montpellier 34095, France.,Bioengineering Department, University ITMO, Saint Petersburg, 197101, Russia
| |
Collapse
|
11
|
Mukhopadhyay D, Gupta C, Theint T, Jaroniec CP. Peptide bond conformation in peptides and proteins probed by dipolar coupling-chemical shift tensor correlation solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:152-160. [PMID: 30396157 PMCID: PMC6289736 DOI: 10.1016/j.jmr.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 05/30/2023]
Abstract
Multidimensional magic-angle spinning solid-state NMR experiments are described that permit cis and trans peptide bonds in uniformly 13C,15N-labeled peptides and proteins to be unambiguously distinguished in residue-specific manner by determining the relative orientations of the amide 13C' CSA and 1H-15N dipolar coupling tensors. The experiments are demonstrated for model peptides glycylglycine and 2,5-diketopiperazine containing trans and cis peptide bonds, respectively. Subsequently, the measurements are extended to two representative proteins that contain exclusively trans peptide bonds, microcrystalline B3 immunoglobulin domain of protein G and Y145Stop human prion protein amyloid fibrils, to illustrate their applicability to a wide range of protein systems.
Collapse
Affiliation(s)
- Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Chitrak Gupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
12
|
Shannon MD, Theint T, Mukhopadhyay D, Surewicz K, Surewicz WK, Marion D, Schanda P, Jaroniec CP. Conformational Dynamics in the Core of Human Y145Stop Prion Protein Amyloid Probed by Relaxation Dispersion NMR. Chemphyschem 2018; 20:311-317. [PMID: 30276945 DOI: 10.1002/cphc.201800779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 11/08/2022]
Abstract
Microsecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using 15 N rotating frame (R1ρ ) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1000 s-1 , corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2 %. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (∼5-15 %) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of ∼100-300 μs. The slow backbone dynamics of the core residues were evaluated in the context of the structural model of human Y145Stop PrP amyloid.
Collapse
Affiliation(s)
- Matthew D Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, 44106, United States
| | | | - Paul Schanda
- Institut de Biologie Structurale (IBS), 38027, Grenoble, France
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
13
|
Theint T, Xia Y, Nadaud PS, Mukhopadhyay D, Schwieters CD, Surewicz K, Surewicz WK, Jaroniec CP. Structural Studies of Amyloid Fibrils by Paramagnetic Solid-State Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2018; 140:13161-13166. [PMID: 30295029 DOI: 10.1021/jacs.8b06758] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Application of paramagnetic solid-state NMR to amyloids is demonstrated, using Y145Stop human prion protein modified with nitroxide spin-label or EDTA-Cu2+ tags as a model. By using sample preparation protocols based on seeding with preformed fibrils, we show that paramagnetic protein analogs can be induced into adopting the wild-type amyloid structure. Measurements of residue-specific intramolecular and intermolecular paramagnetic relaxation enhancements enable determination of protein fold within the fibril core and protofilament assembly. These methods are expected to be widely applicable to other amyloids and protein assemblies.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Yongjie Xia
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles D Schwieters
- Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Witold K Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
14
|
Establishment of Constraints on Amyloid Formation Imposed by Steric Exclusion of Globular Domains. J Mol Biol 2018; 430:3835-3846. [DOI: 10.1016/j.jmb.2018.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Accepted: 05/27/2018] [Indexed: 11/18/2022]
|
15
|
Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018; 54:6230-6242. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Misfolding and aggregation of the prion protein is responsible for multiple neurodegenerative diseases. Works from several laboratories on folding of both the WT and multiple pathogenic mutant variants of the prion protein have identified several structurally dissimilar intermediates, which might be potential precursors to misfolding and aggregation. The misfolded aggregates themselves are morphologically distinct, critically dependent on the solution conditions under which they are prepared, but always β-sheet rich. Despite the lack of an atomic resolution structure of the infectious pathogenic agent in prion diseases, several low resolution models have identified the β-sheet rich core of the aggregates formed in vitro, to lie in the α2-α3 subdomain of the prion protein, albeit with local stabilities that vary with the type of aggregate. This feature article describes recent advances in the investigation of in vitro prion protein aggregation using multiple spectroscopic probes, with particular focus on (1) identifying aggregation-prone conformations of the monomeric protein, (2) conditions which trigger misfolding and oligomerization, (3) the mechanism of misfolding and aggregation, and (4) the structure of the misfolded intermediates and final aggregates.
Collapse
Affiliation(s)
- Ishita Sengupta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | | |
Collapse
|
16
|
Flores-Fernández JM, Rathod V, Wille H. Comparing the Folds of Prions and Other Pathogenic Amyloids. Pathogens 2018; 7:E50. [PMID: 29734684 PMCID: PMC6027354 DOI: 10.3390/pathogens7020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt⁻Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc.
Collapse
Affiliation(s)
- José Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Vineet Rathod
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| |
Collapse
|
17
|
Aucoin D, Xia Y, Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy. J Struct Biol 2018; 206:36-42. [PMID: 29679649 DOI: 10.1016/j.jsb.2018.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/24/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022]
Abstract
The C-terminally truncated Y145Stop variant of prion protein (PrP23-144), which is associated with heritable PrP cerebral amyloid angiopathy in humans and also capable of triggering a transmissible prion disease in mice, serves as a useful in vitro model for investigating the molecular and structural basis of amyloid strains and cross-seeding specificities. Here, we determine the protein-solvent interfaces in human PrP23-144 amyloid fibrils generated from recombinant 13C,15N-enriched protein and incubated in aqueous solution containing paramagnetic Cu(II)-EDTA, by measuring residue-specific 15N longitudinal paramagnetic relaxation enhancements using two-dimensional magic-angle spinning solid-state NMR spectroscopy. To further probe the interactions of the amyloid core residues with solvent molecules we perform complementary measurements of amide hydrogen/deuterium exchange detected by solid-state NMR and solution NMR methods. The solvent accessibility data are evaluated in the context of the structural model for human PrP23-144 amyloid.
Collapse
Affiliation(s)
- Darryl Aucoin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Yongjie Xia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
19
|
Pope GM, Hung I, Gan Z, Mobarak H, Widmalm G, Harper JK. Exploiting 13C/14N solid-state NMR distance measurements to assign dihedral angles and locate neighboring molecules. Chem Commun (Camb) 2018; 54:6376-6379. [DOI: 10.1039/c8cc02597e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The RESPDOR NMR method rapidly provides multiple 13C/14N distance measurements in natural abundance solids.
Collapse
Affiliation(s)
- Giovanna M. Pope
- Department of Chemistry, University of Central Florida
- Orlando
- USA
| | - Ivan Hung
- National High Magnetic Field Laboratory
- Tallahassee
- USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory
- Tallahassee
- USA
| | - Hani Mobarak
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
- S-106 91 Stockholm
- Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University
- S-106 91 Stockholm
- Sweden
| | - James K. Harper
- Department of Chemistry, University of Central Florida
- Orlando
- USA
| |
Collapse
|
20
|
Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state NMR spectroscopy. Nat Commun 2017; 8:753. [PMID: 28963458 PMCID: PMC5622040 DOI: 10.1038/s41467-017-00794-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
One of the most puzzling aspects of the prion diseases is the intricate relationship between prion strains and interspecies transmissibility barriers. Previously we have shown that certain fundamental aspects of mammalian prion propagation, including the strain phenomenon and species barriers, can be reproduced in vitro in seeded fibrillization of the Y145Stop prion protein variant. Here, we use solid-state nuclear magnetic resonance spectroscopy to gain atomic level insight into the structural differences between Y145Stop prion protein amyloids from three species: human, mouse, and Syrian hamster. Remarkably, we find that these structural differences are largely controlled by only two amino acids at positions 112 and 139, and that the same residues appear to be key to the emergence of structurally distinct amyloid strains within the same protein sequence. The role of these residues as conformational switches can be rationalized based on a model for human Y145Stop prion protein amyloid, providing a foundation for understanding cross-seeding specificity. Prion diseases can be transmitted across species. Here the authors use solid-state NMR to study prion protein (PrP) amyloids from human, mouse and Syrian hamster and show that their structural differences are mainly governed by two residues, which helps to understand interspecies PrP propagation on a molecular level.
Collapse
|
21
|
Cieplak AS. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. PLoS One 2017; 12:e0180905. [PMID: 28922400 PMCID: PMC5603215 DOI: 10.1371/journal.pone.0180905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lim KH, Dasari AKR, Ma R, Hung I, Gan Z, Kelly JW, Fitzgerald MC. Pathogenic Mutations Induce Partial Structural Changes in the Native β-Sheet Structure of Transthyretin and Accelerate Aggregation. Biochemistry 2017; 56:4808-4818. [PMID: 28820582 DOI: 10.1021/acs.biochem.7b00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid formation of natively folded proteins involves global and/or local unfolding of the native state to form aggregation-prone intermediates. Here we report solid-state nuclear magnetic resonance (NMR) structural studies of amyloid derived from wild-type (WT) and more aggressive mutant forms of transthyretin (TTR) to investigate the structural changes associated with effective TTR aggregation. We employed selective 13C labeling schemes to investigate structural features of β-structured core regions in amyloid states of WT and two mutant forms (V30M and L55P) of TTR. Analyses of the 13C-13C correlation solid-state NMR spectra revealed that WT TTR aggregates contain an amyloid core consisting of nativelike CBEF and DAGH β-sheet structures, and the mutant TTR amyloids adopt a similar amyloid core structure with nativelike CBEF and AGH β-structures. However, the V30M mutant amyloid was shown to have a different DA β-structure. In addition, strand D is more disordered even in the native state of L55P TTR, indicating that the pathogenic mutations affect the DA β-structure, leading to more effective amyloid formation. The NMR results are consistent with our mass spectrometry-based thermodynamic analyses that showed the amyloidogenic precursor states of WT and mutant TTRs adopt folded structures but the mutant precursor states are less stable than that of WT TTR. Analyses of the oxidation rate of the methionine side chain also revealed that the side chain of residue Met-30 pointing between strands D and A is not protected from oxidation in the V30M mutant, while protected in the native state, supporting the possibility that the DA β-structure might be disrupted in the V30M mutant amyloid.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Renze Ma
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University , 124 Science Drive, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
23
|
Requena JR, Wille H. The Structure of the Infectious Prion Protein and Its Propagation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:341-359. [PMID: 28838667 DOI: 10.1016/bs.pmbts.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prion diseases, which include Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids (i.e., deer, elk, moose, and reindeer), bovine spongiform encephalopathy in cattle, as well as sheep and goat scrapie, are caused by the conversion of the cellular prion protein (PrPC) into a disease-causing conformer (PrPSc). PrPC is a regular, GPI-anchored protein that is expressed on the cell surface of neurons and many other cell types. The structure of PrPC is well studied, based on analyses of recombinant PrP, which is thought to mimic the structure of native PrPC. The mature protein contains an N-terminal, unfolded domain and a C-terminal, globular domain that consists of three α-helices and only a small, two-stranded β-sheet. In contrast, PrPSc was found to contain predominantly β-structure and to aggregate into a variety of quaternary structures, such as oligomers, amorphous aggregates, amyloid fibrils, and two-dimensional crystals. The tendency of PrPSc to aggregate into these diverse forms is also responsible for our incomplete knowledge about its molecular structure. Nevertheless, the repeating nature of the more regular PrPSc aggregates has provided informative insights into the structure of the infectious conformer, albeit at limited resolution. These data established a four-rung β-solenoid architecture as the main element of its structure. Moreover, the four-rung β-solenoid architecture provides a molecular framework for an autocatalytic propagation mechanism, which could explain the conversion of PrPC into PrPSc.
Collapse
Affiliation(s)
- Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Chiti F, Dobson CM. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu Rev Biochem 2017; 86:27-68. [DOI: 10.1146/annurev-biochem-061516-045115] [Citation(s) in RCA: 1767] [Impact Index Per Article: 220.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” Section of Biochemistry, Università di Firenze, 50134 Firenze, Italy
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. 13C and 15N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:75-80. [PMID: 28004358 PMCID: PMC5344711 DOI: 10.1007/s12104-016-9723-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/15/2016] [Indexed: 05/03/2023]
Abstract
The Y145Stop prion protein (PrP23-144), which has been linked to the development of a heritable prionopathy in humans, is a valuable in vitro model for elucidating the structural and molecular basis of amyloid seeding specificities. Here we report the sequential backbone and side-chain 13C and 15N assignments of mouse and Syrian hamster PrP23-144 amyloid fibrils determined by using 2D and 3D magic-angle spinning solid-state NMR. The assigned chemical shifts were used to predict the secondary structures for the core regions of the mouse and Syrian hamster PrP23-144 amyloids, and the results compared to those for human PrP23-144 amyloid, which has previously been analyzed by solid-state NMR techniques.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proc Natl Acad Sci U S A 2017; 114:3642-3647. [PMID: 28330994 DOI: 10.1073/pnas.1619051114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The yeast prion protein Sup35NM is a self-propagating amyloid. Despite intense study, there is no consensus on the organization of monomers within Sup35NM fibrils. Some studies point to a β-helical arrangement, whereas others suggest a parallel in-register organization. Intermolecular contacts are often determined by experiments that probe long-range heteronuclear contacts for fibrils templated from a 1:1 mixture of 13C- and 15N-labeled monomers. However, for Sup35NM, like many large proteins, chemical shift degeneracy limits the usefulness of this approach. Segmental and specific isotopic labeling reduce degeneracy, but experiments to measure long-range interactions are often too insensitive. To limit degeneracy and increase experimental sensitivity, we combined specific and segmental isotopic labeling schemes with dynamic nuclear polarization (DNP) NMR. Using this combination, we examined an amyloid form of Sup35NM that does not have a parallel in-register structure. The combination of a small number of specific labels with DNP NMR enables determination of architectural information about polymeric protein systems.
Collapse
|
27
|
Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proc Natl Acad Sci U S A 2016; 113:13851-13856. [PMID: 27849581 DOI: 10.1073/pnas.1610716113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant C-terminally truncated prion protein PrP23-144 (which corresponds to the Y145Stop PrP variant associated with a Gerstmann-Sträussler-Scheinker-like prion disease) spontaneously forms amyloid fibrils with a parallel in-register β-sheet architecture and β-sheet core mapping to residues ∼112-139. Here we report that mice (both tga20 and wild type) inoculated with a murine (moPrP23-144) version of these fibrils develop clinical prion disease with a 100% attack rate. Remarkably, even though fibrils in the inoculum lack the entire C-terminal domain of PrP, brains of clinically sick mice accumulate longer proteinase K-resistant (PrPres) fragments of ∼17-32 kDa, similar to those observed in classical scrapie strains. Shorter, Gerstmann-Sträussler-Scheinker-like PrPres fragments are also present. The evidence that moPrP23-144 amyloid fibrils generated in the absence of any cofactors are bona fide prions provides a strong support for the protein-only hypothesis of prion diseases in its pure form, arguing against the notion that nonproteinaceous cofactors are obligatory structural components of all infectious prions. Furthermore, our finding that a relatively short β-sheet core of PrP23-144 fibrils (residues ∼112-139) with a parallel in-register organization of β-strands is capable of seeding the conversion of full-length prion protein to the infectious form has important implications for the ongoing debate regarding structural aspects of prion protein conversion and molecular architecture of mammalian prions.
Collapse
|
28
|
Lim KH, Dasari AKR, Hung I, Gan Z, Kelly JW, Wright PE, Wemmer DE. Solid-State NMR Studies Reveal Native-like β-Sheet Structures in Transthyretin Amyloid. Biochemistry 2016; 55:5272-8. [PMID: 27589034 DOI: 10.1021/acs.biochem.6b00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Structural characterization of amyloid rich in cross-β structures is crucial for unraveling the molecular basis of protein misfolding and amyloid formation associated with a wide range of human disorders. Elucidation of the β-sheet structure in noncrystalline amyloid has, however, remained an enormous challenge. Here we report structural analyses of the β-sheet structure in a full-length transthyretin amyloid using solid-state NMR spectroscopy. Magic-angle-spinning (MAS) solid-state NMR was employed to investigate native-like β-sheet structures in the amyloid state using selective labeling schemes for more efficient solid-state NMR studies. Analyses of extensive long-range (13)C-(13)C correlation MAS spectra obtained with selectively (13)CO- and (13)Cα-labeled TTR reveal that the two main β-structures in the native state, the CBEF and DAGH β-sheets, remain intact after amyloid formation. The tertiary structural information would be of great use for examining the quaternary structure of TTR amyloid.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East, Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East, Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | | | | | - David E Wemmer
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
29
|
Wang Y, Shao Q, Hall CK. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways. J Biol Chem 2016; 291:22093-22105. [PMID: 27576687 DOI: 10.1074/jbc.m116.744573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 12/14/2022] Open
Abstract
The prion diseases are a family of fatal neurodegenerative diseases associated with the misfolding and accumulation of normal prion protein (PrPC) into its pathogenic scrapie form (PrPSc). Understanding the fundamentals of prion protein aggregation and the molecular architecture of PrPSc is key to unraveling the pathology of prion diseases. Our work investigates the early-stage aggregation of three prion protein peptides, corresponding to residues 120-144 of human (Hu), bank vole (BV), and Syrian hamster (SHa) prion protein, from disordered monomers to β-sheet-rich fibrillar structures. Using 12 μs discontinuous molecular dynamics simulations combined with the PRIME20 force field, we find that the Hu-, BV-, and SHaPrP(120-144) aggregate via multiple nucleation-dependent pathways to form U-shaped, S-shaped, and Ω-shaped protofilaments. The S-shaped HuPrP(120-144) protofilament is similar to the amyloid core structure of HuPrP(112-141) predicted by Zweckstetter. HuPrP(120-144) has a shorter aggregation lag phase than BVPrP(120-144) followed by SHaPrP(120-144), consistent with experimental findings. Two amino acid substitutions I138M and I139M retard the formation of parallel in-register β-sheet dimers during the nucleation stage by increasing side chain-side chain association and reducing side chain interaction specificity. On average, HuPrP(120-144) aggregates contain more parallel β-sheet content than those formed by BV- and SHaPrP(120-144). Deletion of the C-terminal residues 138-144 prevents formation of fibrillar structures in agreement with the experiment. This work sheds light on the amyloid core structures underlying prion strains and how I138M, I139M, and S143N affect prion protein aggregation kinetics.
Collapse
Affiliation(s)
- Yiming Wang
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Qing Shao
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| | - Carol K Hall
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905
| |
Collapse
|
30
|
Kisilevsky R, Raimondi S, Bellotti V. Historical and Current Concepts of Fibrillogenesis and In vivo Amyloidogenesis: Implications of Amyloid Tissue Targeting. Front Mol Biosci 2016; 3:17. [PMID: 27243018 PMCID: PMC4860540 DOI: 10.3389/fmolb.2016.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022] Open
Abstract
Historical and current concepts of in vitro fibrillogenesis are considered in the light of disorders in which amyloid is deposited at anatomic sites remote from the site of synthesis of the corresponding precursor protein. These clinical conditions set constraints on the interpretation of information derived from in vitro fibrillogenesis studies. They suggest that in addition to kinetic and thermodynamic factors identified in vitro, fibrillogenesis in vivo is determined by site specific factors most of which have yet to be identified.
Collapse
Affiliation(s)
- Robert Kisilevsky
- Department of Pathology and Molecular Medicine, Queen's University Kingston, ON, Canada
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia Pavia, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy; Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College LondonLondon, UK
| |
Collapse
|
31
|
Lim KH, Dasari AKR, Hung I, Gan Z, Kelly JW, Wemmer DE. Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry 2016; 55:1941-4. [PMID: 26998642 DOI: 10.1021/acs.biochem.6b00164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Elucidation of structural changes involved in protein misfolding and amyloid formation is crucial for unraveling the molecular basis of amyloid formation. Here we report structural analyses of the amyloidogenic intermediate and amyloid aggregates of transthyretin using solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. Our solution NMR results show that one of the two main β-sheet structures (CBEF β-sheet) is maintained in the aggregation-competent intermediate, while the other DAGH β-sheet is more flexible on millisecond time scales. Magic-angle-spinning solid-state NMR revealed that AB loop regions interacting with strand A in the DAGH β-sheet undergo conformational changes, leading to the destabilized DAGH β-sheet.
Collapse
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Anvesh K R Dasari
- Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance (CIMAR), National High Magnetic Field Laboratory (NHMFL) , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - David E Wemmer
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
32
|
Abstract
Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
33
|
Gao M, Paul S, Schwieters CD, You ZQ, Shao H, Herbert JM, Parquette JR, Jaroniec CP. A Structural Model for a Self-Assembled Nanotube Provides Insight into Its Exciton Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2015; 119:13948-13956. [PMID: 26120375 PMCID: PMC4476570 DOI: 10.1021/acs.jpcc.5b03398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The design and synthesis of functional self-assembled nanostructures is frequently an empirical process fraught with critical knowledge gaps about atomic-level structure in these noncovalent systems. Here, we report a structural model for a semiconductor nanotube formed via the self-assembly of naphthalenediimide-lysine (NDI-Lys) building blocks determined using experimental 13C-13C and 13C-15N distance restraints from solid-state nuclear magnetic resonance supplemented by electron microscopy and X-ray powder diffraction data. The structural model reveals a two-dimensional-crystal-like architecture of stacked monolayer rings each containing ∼50 NDI-Lys molecules, with significant π-stacking interactions occurring both within the confines of the ring and along the long axis of the tube. Excited-state delocalization and energy transfer are simulated for the nanotube based on time-dependent density functional theory and an incoherent hopping model. Remarkably, these calculations reveal efficient energy migration from the excitonic bright state, which is in agreement with the rapid energy transfer within NDI-Lys nanotubes observed previously using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Min Gao
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Subhradip Paul
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Charles D. Schwieters
- Division
of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhi-Qiang You
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Hui Shao
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Jon R. Parquette
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Christopher P. Jaroniec
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Colvin MT, Silvers R, Frohm B, Su Y, Linse S, Griffin RG. High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 2015; 137:7509-18. [PMID: 26001057 PMCID: PMC4623963 DOI: 10.1021/jacs.5b03997] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The presence of amyloid plaques composed
of amyloid beta (Aβ)
fibrils is a hallmark of Alzheimer’s disease (AD). The Aβ
peptide is present as several length variants with two common alloforms
consisting of 40 and 42 amino acids, denoted Aβ1–40 and Aβ1–42, respectively. While there have
been numerous reports that structurally characterize fibrils of Aβ1–40, very little is known about the structure of amyloid
fibrils of Aβ1–42, which are considered the
more toxic alloform involved in AD. We have prepared isotopically 13C/15N labeled AβM01–42 fibrils in vitro from recombinant protein and examined their 13C–13C and 13C–15N magic angle spinning (MAS) NMR spectra. In contrast to several
other studies of Aβ fibrils, we observe spectra with excellent
resolution and a single set of chemical shifts, suggesting the presence
of a single fibril morphology. We report the initial structural characterization
of AβM01–42 fibrils utilizing 13C and 15N shift assignments of 38 of the 43 residues,
including the backbone and side chains, obtained through a series
of cross-polarization based 2D and 3D 13C–13C, 13C–15N MAS NMR experiments for rigid
residues along with J-based 2D TOBSY experiments for dynamic residues.
We find that the first ∼5 residues are dynamic and most efficiently
detected in a J-based TOBSY spectrum. In contrast, residues 16–42
are easily observed in cross-polarization experiments and most likely
form the amyloid core. Calculation of ψ and φ dihedral
angles from the chemical shift assignments indicate that 4 β-strands
are present in the fibril’s secondary structure.
Collapse
Affiliation(s)
- Michael T Colvin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Birgitta Frohm
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Yongchao Su
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Robert G Griffin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Rouget R, Sharma G, LeBlanc AC. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure. J Biol Chem 2015; 290:5759-71. [PMID: 25572400 DOI: 10.1074/jbc.m114.630699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial prion protein (PrP) mutants undergo conversion from soluble and protease-sensitive to insoluble and partially protease-resistant proteins. Cyclin-dependent kinase 5 (Cdk5) phosphorylation of wild type PrP (pPrP) at serine 43 induces a conversion of PrP into aggregates and fibrils. Here, we investigated whether familial PrP mutants are predisposed to Cdk5 phosphorylation and whether phosphorylation of familial PrP mutants increases conversion. PrP mutants representing three major familial PrP diseases and different PrP structural domains were studied. We developed a novel in vitro kinase reaction coupled with Thioflavin T binding to amyloid structure assay to monitor phosphorylation-dependent amyloid conversion. Although non-phosphorylated full-length wild type or PrP mutants did not convert into amyloid, Cdk5 phosphorylation rapidly converted these into Thioflavin T-positive structures following first order kinetics. Dephosphorylation partially reversed conversion. Phosphorylation-dependent conversion of PrP from α-helical structures into β-sheet structures was confirmed by circular dichroism. Relative to wild type pPrP, most PrP mutants showed increased rate constants of conversion. In contrast, non-phosphorylated truncated PrP Y145X (where X represents a stop codon) and Q160X mutants converted spontaneously into Thioflavin T-positive fibrils after a lag phase of over 20 h, indicating nucleation-dependent polymerization. Phosphorylation reduced the lag phase by over 50% and thus accelerated the formation of the nucleating event. Consistently, phosphorylated Y145X and phosphorylated Q160X exacerbated conversion in a homologous seeding reaction, whereas WT pPrP could not seed WT PrP. These results demonstrate an influence of both the N terminus and the C terminus of PrP on conversion. We conclude that post-translational modifications of the flexible N terminus of PrP can cause or exacerbate PrP mutant conversion.
Collapse
Affiliation(s)
- Raphaël Rouget
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and
| | - Gyanesh Sharma
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
| | - Andréa C LeBlanc
- From the Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3T 1E2, Canada and Department of Neurology and Neurosurgery, McGill University, 3775 University Street, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
36
|
Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 2014; 23:1528-39. [PMID: 25179159 DOI: 10.1002/pro.2544] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022]
Abstract
As our understanding of the molecular structures of amyloid fibrils has matured over the past 15 years, it has become clear that, while amyloid fibrils do have well-defined molecular structures, their molecular structures are not uniquely determined by the amino acid sequences of their constituent peptides and proteins. Self-propagating molecular-level polymorphism is a common phenomenon. This article reviews current information about amyloid fibril structures, variations in molecular structures that underlie amyloid polymorphism, and physical considerations that explain the development and persistence of amyloid polymorphism. Much of this information has been obtained through solid state nuclear magnetic resonance measurements. The biological significance of amyloid polymorphism is also discussed briefly. Although this article focuses primarily on studies of fibrils formed by amyloid-β peptides, the same principles apply to many amyloid-forming peptides and proteins.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0520
| |
Collapse
|
37
|
Groveman BR, Dolan MA, Taubner LM, Kraus A, Wickner RB, Caughey B. Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids. J Biol Chem 2014; 289:24129-42. [PMID: 25028516 DOI: 10.1074/jbc.m114.578344] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures of the infectious form of prion protein (e.g. PrP(Sc) or PrP-Scrapie) remain poorly defined. The prevalent structural models of PrP(Sc) retain most of the native α-helices of the normal, noninfectious prion protein, cellular prion protein (PrP(C)), but evidence is accumulating that these helices are absent in PrP(Sc) amyloid. Moreover, recombinant PrP(C) can form amyloid fibrils in vitro that have parallel in-register intermolecular β-sheet architectures in the domains originally occupied by helices 2 and 3. Here, we provide solid-state NMR evidence that the latter is also true of initially prion-seeded recombinant PrP amyloids formed in the absence of denaturants. These results, in the context of a primarily β-sheet structure, led us to build detailed models of PrP amyloid based on parallel in-register architectures, fibrillar shapes and dimensions, and other available experimentally derived conformational constraints. Molecular dynamics simulations of PrP(90-231) octameric segments suggested that such linear fibrils, which are consistent with many features of PrP(Sc) fibrils, can have stable parallel in-register β-sheet cores. These simulations revealed that the C-terminal residues ∼124-227 more readily adopt stable tightly packed structures than the N-terminal residues ∼90-123 in the absence of cofactors. Variations in the placement of turns and loops that link the β-sheets could give rise to distinct prion strains capable of faithful template-driven propagation. Moreover, our modeling suggests that single PrP monomers can comprise the entire cross-section of fibrils that have previously been assumed to be pairs of laterally associated protofilaments. Together, these insights provide a new basis for deciphering mammalian prion structures.
Collapse
Affiliation(s)
- Bradley R Groveman
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Michael A Dolan
- the Computational Biology Section, Bioinformatics and Computational Biosciences Branch, NIAID, and
| | - Lara M Taubner
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Allison Kraus
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Byron Caughey
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| |
Collapse
|
38
|
Gill AC. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides. PLoS One 2014; 9:e87354. [PMID: 24498083 PMCID: PMC3909104 DOI: 10.1371/journal.pone.0087354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/19/2013] [Indexed: 01/09/2023] Open
Abstract
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109-122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109-122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109-122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106-126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies.
Collapse
Affiliation(s)
- Andrew C. Gill
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush Campus, University of Edinburgh, Roslin, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Debelouchina GT, Bayro MJ, Fitzpatrick AW, Ladizhansky V, Colvin MT, Caporini MA, Jaroniec CP, Bajaj VS, Rosay M, Macphee CE, Vendruscolo M, Maas WE, Dobson CM, Griffin RG. Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy. J Am Chem Soc 2013; 135:19237-47. [PMID: 24304221 DOI: 10.1021/ja409050a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils.
Collapse
Affiliation(s)
- Galia T Debelouchina
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Agarwal V, Sardo M, Scholz I, Böckmann A, Ernst M, Meier BH. PAIN with and without PAR: variants for third-spin assisted heteronuclear polarization transfer. JOURNAL OF BIOMOLECULAR NMR 2013; 56:365-377. [PMID: 23807391 DOI: 10.1007/s10858-013-9756-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
In this article, we describe third-spin assisted heteronuclear recoupling experiments, which play an increasingly important role in measuring long-range heteronuclear couplings, in particular (15)N-(13)C, in proteins. In the proton-assisted insensitive nuclei cross polarization (PAIN-CP) experiment (de Paëpe et al. in J Chem Phys 134:095101, 2011), heteronuclear polarization transfer is always accompanied by homonuclear transfer of the proton-assisted recoupling (PAR) type. We present a phase-alternating experiment that promotes heteronuclear (e.g. (15)N → (13)C) polarization transfer while simultaneously minimizing homonuclear (e.g.(13)C → (13)C) transfer (PAIN without PAR). This minimization of homonuclear polarization transfer is based on the principle of the resonant second-order transfer (RESORT) recoupling scheme where the passive proton spins are irradiated by a phase-alternating sequence and the modulation frequency is matched to an integer multiple of the spinning frequency. The similarities and differences between the PAIN-CP and this het-RESORT experiment are discussed here.
Collapse
Affiliation(s)
- Vipin Agarwal
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Goldbourt A. Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 2013; 24:705-15. [DOI: 10.1016/j.copbio.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/28/2022]
|
42
|
Cheng H, Huang WYC, Tsai TWT, Mou Y, Chao JCH, Chan JCC. Depletion of Water Molecules Near the End Stage of Steric Zipper Formation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hsin‐Mei Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - William Y. C. Huang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Tim W. T. Tsai
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yun Mou
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - John Chin Hao Chao
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Jerry C. C. Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
43
|
Comellas G, Rienstra CM. Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils. Annu Rev Biophys 2013; 42:515-36. [DOI: 10.1146/annurev-biophys-083012-130356] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Chad M. Rienstra
- Center for Biophysics and Computational Biology,
- Department of Chemistry, and
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; ,
| |
Collapse
|
44
|
Helmus JJ, Jaroniec CP. Nmrglue: an open source Python package for the analysis of multidimensional NMR data. JOURNAL OF BIOMOLECULAR NMR 2013; 55:355-67. [PMID: 23456039 PMCID: PMC3636164 DOI: 10.1007/s10858-013-9718-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/19/2013] [Indexed: 05/04/2023]
Abstract
Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.
Collapse
|
45
|
Ye S, Wei F, Li H, Tian K, Luo Y. Structure and Orientation of Interfacial Proteins Determined by Sum Frequency Generation Vibrational Spectroscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 93:213-55. [DOI: 10.1016/b978-0-12-416596-0.00007-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Li H, Ye S, Wei F, Ma S, Luo Y. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16979-16988. [PMID: 23116165 DOI: 10.1021/la302655p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein aggregation is associated with many "protein deposition diseases". A precise molecular detail of the conformational transitions of such a membrane-associated protein structure is critical to understand the disease mechanism and develop effective treatments. One potential model peptide for studying the mechanism of protein deposition diseases is prion protein fragment [118-135] (PrP118-135), which shares homology with the C-terminal domain of the Alzheimer's β-amyloid peptide. In this study, sum frequency generation vibrational spectroscopy (SFG-VS) has been applied to characterize interactions between PrP118-135 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayer in situ. The conformation change and orientation of PrP118-135 in lipid bilayers have been determined using SFG spectra with different polarization combinations. It is found that low-concentration PrP118-135 predominantly adopts α-helical structure but with tiny β-sheet structure. With the PrP118-135 concentration increasing, the molecular number ratio of parallel β-sheet structure increases and reaches about 44% at a concentration of 0.10 mg/mL, indicating the formation of abnormally folded scrapie isoforms. The α-helical structure inserts into the lipid bilayer with a tilt angle of ~32° versus the surface normal, while the β-sheet structure lies down on the lipid bilayer with the tilt and twist angle both of 90°. The 3300 cm(-1) N-H stretching signal in psp spectra arises from α-helical structure at low PrP concentration and from the β-sheet structure at high PrP concentration. Results from this study will provide an in-depth insight into the early events in the aggregation of PrP in cell membrane.
Collapse
Affiliation(s)
- Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
| | | | | | | | | |
Collapse
|
47
|
Skora L, Fonseca-Ornelas L, Hofele RV, Riedel D, Giller K, Watzlawik J, Schulz-Schaeffer WJ, Urlaub H, Becker S, Zweckstetter M. Burial of the polymorphic residue 129 in amyloid fibrils of prion stop mutants. J Biol Chem 2012; 288:2994-3002. [PMID: 23209282 DOI: 10.1074/jbc.m112.423715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, hydroxyl radical probing detected by mass spectrometry, and site-directed mutagenesis, we demonstrate that stop mutants of the human prion protein have a conserved amyloid core. The 129 residue is deeply buried in the amyloid core structure, and its mutation strongly impacts aggregation. Taken together the data support a critical role of the polymorphic residue 129 of the human prion protein in aggregation and disease.
Collapse
Affiliation(s)
- Lukasz Skora
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Skora L, Zweckstetter M. Determination of amyloid core structure using chemical shifts. Protein Sci 2012; 21:1948-53. [PMID: 23033250 DOI: 10.1002/pro.2170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 12/18/2022]
Abstract
Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS-Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid-state NMR chemical shifts and taking into account the polymeric nature of fibrils CS-Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left-handed β-helix.
Collapse
Affiliation(s)
- Lukasz Skora
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, Germany
| | | |
Collapse
|
49
|
Gopinath T, Veglia G. 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 220:79-84. [PMID: 22698806 PMCID: PMC3487463 DOI: 10.1016/j.jmr.2012.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/13/2012] [Indexed: 05/15/2023]
Abstract
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly (13)C, (15)N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from (1)H to (13)C and (15)N to acquire two 3D experiments simultaneously. This is made possible by bidirectional polarization transfer between (13)C and (15)N and the long living (15)N z-polarization in solid state NMR. To demonstrate the power of this approach, four 3D pulse sequences (NCACX, CANCO, NCOCX, CON(CA)CX) are combined into two pulse sequences (3D DUMAS-NCACX-CANCO, 3D DUMAS-NCOCX-CON(CA)CX) that allow simultaneous acquisition of these experiments, reducing the experimental time by approximately half. Importantly, the 3D DUMAS-NCACX-CANCO experiment alone makes it possible to obtain the majority of the backbone sequential resonance assignments for microcrystalline U-(13)C,(15)N ubiquitin. The DUMAS approach is general and applicable to many 3D experiments, nearly doubling the performance of NMR spectrometers.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
50
|
Paramasivam S, Suiter CL, Hou G, Sun S, Palmer M, Hoch JC, Rovnyak D, Polenova T. Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 2012; 116:7416-27. [PMID: 22667827 DOI: 10.1021/jp3032786] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report dramatic sensitivity enhancements in multidimensional MAS NMR spectra by the use of nonuniform sampling (NUS) and introduce maximum entropy interpolation (MINT) processing that assures the linearity between the time and frequency domains of the NUS acquired data sets. A systematic analysis of sensitivity and resolution in 2D and 3D NUS spectra reveals that with NUS, at least 1.5- to 2-fold sensitivity enhancement can be attained in each indirect dimension without compromising the spectral resolution. These enhancements are similar to or higher than those attained by the newest-generation commercial cryogenic probes. We explore the benefits of this NUS/MaxEnt approach in proteins and protein assemblies using 1-73-(U-(13)C,(15)N)/74-108-(U-(15)N) Escherichia coli thioredoxin reassembly. We demonstrate that in thioredoxin reassembly, NUS permits acquisition of high-quality 3D-NCACX spectra, which are inaccessible with conventional sampling due to prohibitively long experiment times. Of critical importance, issues that hinder NUS-based SNR enhancement in 3D-NMR of liquids are mitigated in the study of solid samples in which theoretical enhancements on the order of 3-4 fold are accessible by compounding the NUS-based SNR enhancement of each indirect dimension. NUS/MINT is anticipated to be widely applicable and advantageous for multidimensional heteronuclear MAS NMR spectroscopy of proteins, protein assemblies, and other biological systems.
Collapse
Affiliation(s)
- Sivakumar Paramasivam
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|