1
|
Flór M, Wilkins DM, de la Puente M, Laage D, Cassone G, Hassanali A, Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024:eads4369. [PMID: 39446897 DOI: 10.1126/science.ads4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The molecular structure of water is dynamic, with intermolecular (H)-bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic / basic conditions, but such details have not been measured. Here, we developed correlated vibrational spectroscopy, a symmetry-based method that distinctively separates interacting from non-interacting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that OH- donated ~8% more negative charge to the H-bond network of water and H3O+ accepted ~4% less negative charge from the H-bond network of water. D2O had ~9% more H-bonds compared to H2O, and acidic solutions displayed more dominant NQEs than basic ones.
Collapse
Affiliation(s)
- Mischa Flór
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK
| | - Miguel de la Puente
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Ali Hassanali
- The "Abdus Salam" International Centre for Theoretical Physics, Trieste, Italy
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Biswas B, Allen HC. Solution and Surface Solvation of Nitrate Anions with Iron(III) and Aluminum(III) in Aqueous Environments: A Raman and Vibrational Sum Frequency Generation Study. J Phys Chem A 2024; 128:8938-8953. [PMID: 39370705 DOI: 10.1021/acs.jpca.4c05142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Hydrated trivalent metal nitrate salts, Fe(NO3)3·9H2O and Al(NO3)3·9H2O, in both solid and aqueous phases are investigated. Raman and surface-selective vibrational sum frequency generation (SFG) spectroscopy, are used to shed light on ion-ion interactions and hydration in several spectral regions spanning low frequency (440-550 cm-1) to higher frequency modes of nitrate and water (720, 1050, 1250-1450, and 2800-3750 cm-1). These frequencies span the metal-water mode, nitrate in-plane deformation, nitrate symmetric and asymmetric modes, and the OH stretch of condensed phase water molecules. Comparison to NaNO3, and in some cases KNO3, is also shown, providing insight. Splitting and frequency shifts are observed and discussed for both the solid state and solution phase. The Lewis acidity of Fe3+ and Al3+ ions plays a significant role in the observed spectra, in particular for the nitrate asymmetric band splitting and frequency shift. The spectral response from water solvation for iron and aluminum nitrates is nonlinear as compared to linear for sodium nitrate, suggesting significantly different solvation environments that are limited by water hydration capacity at higher concentrations. Moreover, a non-hydrogen bonded OH, dangling OH, from hydrating water molecules is observed spectroscopically for Al and Fe nitrate solutions. Furthermore, aluminum nitrate perturbs the surface water structure more than iron nitrate despite aluminum being a weaker Lewis acid. The surface water structure is thus found to be unique for the Al(NO3)3 solutions as compared to both Fe(NO3)3 and NaNO3, such that surface solvation is more pronounced. This observation exemplifies the nature of the Fe(III) and Al(III) ions and their substantial influence on the surface water structure.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Markmann V, Pan J, Hansen BL, Haubro ML, Nimmrich A, Lenzen P, Levantino M, Katayama T, Adachi SI, Gorski-Bilke S, Temps F, Dohn AO, Møller KB, Nielsen MM, Haldrup K. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem Sci 2024; 15:11391-11401. [PMID: 39055005 PMCID: PMC11268492 DOI: 10.1039/d4sc01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
This work investigates and describes the structural dynamics taking place following charge-transfer-to-solvent photo-abstraction of electrons from I- and Br- ions in aqueous solution following single- and 2-photon excitation at 202 nm and 400 nm, respectively. A Time-Resolved X-ray Solution Scattering (TR-XSS) approach with direct sensitivity to the structure of the surrounding solvent as the water molecules adopt a new equilibrium configuration following the electron-abstraction process is utilized to investigate the structural dynamics of solvent shell expansion and restructuring in real-time. The structural sensitivity of the scattering data enables a quantitative evaluation of competing models for the interaction between the nascent neutral species and surrounding water molecules. Taking the I0-O distance as the reaction coordinate, we find that the structural reorganization is delayed by 0.1 ps with respect to the photoexcitation and completes on a time scale of 0.5-1 ps. On longer time scales we determine from the evolution of the TR-XSS difference signal that I0: e- recombination takes place on two distinct time scales of ∼20 ps and 100 s of picoseconds. These dynamics are well captured by a simple model of diffusive evolution of the initial photo-abstracted electron population where the charge-transfer-to-solvent process gives rise to a broad distribution of electron ejection distances, a significant fraction of which are in the close vicinity of the nascent halogen atoms and recombine on short time scales.
Collapse
Affiliation(s)
- Verena Markmann
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Jaysree Pan
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Bianca L Hansen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Morten L Haubro
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Amke Nimmrich
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg Sweden
| | - Philipp Lenzen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Matteo Levantino
- European Synchrotron Radiation Facility CS40220 Grenoble 38043 Cedex 9 France
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | | | - Friedrich Temps
- Christian-Albrechts-University Kiel Olshausenstr. 40 24098 Kiel Germany
| | - Asmus O Dohn
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
- Science Institute, University of Iceland 107 Reykjavík Iceland
| | - Klaus B Møller
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Martin M Nielsen
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| | - Kristoffer Haldrup
- Technical University of Denmark Anker Engelunds Vej 1 2800 Lyngby Denmark
| |
Collapse
|
4
|
Guo Q, Su H, Ji X, Gai L, Jiang H, Liu L. Anionic Hofmeister Effect Regulated Conductivity in Polyelectrolyte Hydrogels for High-Performance Supercapacitor. SMALL METHODS 2024:e2400532. [PMID: 38975652 DOI: 10.1002/smtd.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/29/2024] [Indexed: 07/09/2024]
Abstract
The Hofmeister effect not only affects the stability and solubility of protein colloids but also has specific effects on the polymer molecules. Here, the impact of the Hofmeister effect on the electrochemical properties of polyelectrolyte hydrogels at room temperature and subzero temperature studied for the first time. Polyelectrolyte hydrogels exhibit an anti-polyelectrolyte effect in low concentrations of ammonium salt, while they exhibit an obvious Hofmeister effect in high concentrations of ammonium salt. Kosmotropic ions demonstrate strong interaction with water molecules or polymer chains, resulting in the reduction of conductivity of polyelectrolyte hydrogels. However, chaotropic ions exhibit weak interactions with water molecules or molecular chains, leading to an increase in conductivity. The Hofmeister effect has a more significant effect on the polyzwitterion electrolyte. The conductivity of polyzwitterion hydrogel soaked in chaotropic ion is up to 6.2 mS cm-1 at -40 °C. The supercapacitor assembled by polyzwitterion electrolytes maintains a capacitance retention rate of 85% and ≈100% coulomb efficiency after 15 000 cycles at -40 °C. This study elucidates the influence of the Hofmeister effect on conductivity in polyelectrolytes and expands the regulatory approach for improving the performance of energy storage devices.
Collapse
Affiliation(s)
- Qingqing Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Huawei Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Xingxiang Ji
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Ligang Gai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Haihui Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| | - Libin Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, 250353, P. R. China
| |
Collapse
|
5
|
Novelli F. Terahertz spectroscopy of thick and diluted water solutions. OPTICS EXPRESS 2024; 32:11041-11056. [PMID: 38570962 DOI: 10.1364/oe.510393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
While bright terahertz sources are used to perform nonlinear experiments, they can be advantageous for high-precision linear measurements of opaque samples. By placing the sample away from the focus, nonlinearities can be suppressed, and sizeable amounts of transmitted radiation detected. Here, this approach is demonstrated for a 0.5 mm thick layer of liquid water in a static sample holder. Variations of the index of refraction as small as (7 ± 2) · 10-4 were detected at 0.58 THz for an aqueous salt solution containing ten millimoles of sodium chloride. To my knowledge, this precision is unprecedented in time-domain spectroscopy studies of diluted aqueous systems or other optically thick and opaque materials.
Collapse
|
6
|
Brunzell E, Sigfridsson K, Gedda L, Edwards K, Bergström LM. Investigation of supramolecular structures in various aqueous solutions of an amyloid forming peptide using small-angle X-ray scattering. SOFT MATTER 2024; 20:2272-2279. [PMID: 38353286 DOI: 10.1039/d3sm01172k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Aggregation of peptide molecules into amyloid fibrils is a characteristic feature of several degenerative diseases. However, the details behind amyloid-formation, and other self-assembled peptide aggregates, remain poorly understood. In this study, we have used small-angle X-ray scattering (SAXS), static and dynamic light scattering (SLS and DLS) as well as cryogenic transmission electron microscopy (cryo-TEM) to determine the structural geometry of self-assembled peptide aggregates in various dilute aqueous solutions. Pramlintide was used as a model peptide to assess the aggregation behaviour of an amyloid-forming peptide. The effects of adding sodium chloride (NaCl), sodium thiocyanate (NaSCN), and sodium fluoride (NaF) and the co-solvent dimethyl sulfoxide (DMSO) on the aggregation behaviour were studied. Our scattering data analysis demonstrates that small oligomeric fibrils aggregate to form networks of supramolecular assemblies with fractal dimensions. The choice of anion in small amounts of added salt has a significant impact on the size of the fibrils as well as on the fractal dimensions of supramolecular clusters. In DMSO the fractal dimension decreased with increasing DMSO concentration, indicating the formation of a less compact structure of the supramolecular assemblies.
Collapse
Affiliation(s)
- Ellen Brunzell
- Department of Medicinal Chemistry, Pharmaceutical Physical Chemistry, Uppsala University, Uppsala 751 23, Sweden.
| | - Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Lars Gedda
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 573, Uppsala 751 23, Sweden
| | - Katarina Edwards
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 573, Uppsala 751 23, Sweden
| | - L Magnus Bergström
- Department of Medicinal Chemistry, Pharmaceutical Physical Chemistry, Uppsala University, Uppsala 751 23, Sweden.
| |
Collapse
|
7
|
Jeon J, Cho M. Dielectric Response and Linear Absorption Spectroscopy of Ionic Systems. J Chem Theory Comput 2024. [PMID: 38242854 DOI: 10.1021/acs.jctc.3c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Time-dependent electric fields applied to ionic systems can induce both a dielectric and a conductive response, leading to the generation of macroscopic polarization and current, respectively. It has long been recognized that it is not possible to determine the two types of responses separately. However, this aspect is often not adequately accounted for in dielectric and absorption spectroscopies of ionic systems. To clarify this, we theoretically investigate the dielectric and conductive responses of ionic systems containing polyatomic ions based on linear response theory. We derive general expressions for the frequency-dependent dielectric functions, conductivity, and absorption coefficient, including those measured experimentally. Furthermore, we show that the dielectric and conductive responses cannot be uniquely distinguished even at the theoretical level and, therefore, cannot represent experimentally measured quantities. Instead, dielectric and absorption spectra of ionic systems should be expressed in terms of the generalized dielectric function that encompasses both dielectric and conductive responses. We propose a computational method to calculate this generalized dielectric function reliably. Model calculations on concentrated aqueous solutions of NaCl, a monatomic salt, and LiTFSI, a polyatomic salt, show that the dielectric and linear absorption spectra of the two systems based on the generalized dielectric function are significantly different from purely dielectric counterparts in the far-IR, terahertz, and lower-frequency regions. Moreover, the spectra are mainly determined by the autocorrelations of total dipole and total current, but dipole-current cross-correlation can also significantly contribute to the spectra of the LiTFSI solution. The present theoretical approach could be extended to nonlinear spectroscopy of ionic liquids and electrolyte solutions.
Collapse
Affiliation(s)
- Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Noh Y, Aluru NR. Scaling of ionic conductance in a fluctuating single-layer nanoporous membrane. Sci Rep 2023; 13:19813. [PMID: 37957224 PMCID: PMC10643653 DOI: 10.1038/s41598-023-46962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Single-layer membranes have emerged as promising candidates for applications requiring high transport rates due to their low resistance to molecular transport. Owing to their atomically thin structure, these membranes experience significant microscopic fluctuations, emphasizing the need to explore their impact on ion transport processes. In this study, we investigate the effects of membrane fluctuations on the elementary scaling behavior of ion conductance [Formula: see text] as a function of ion concentration [Formula: see text], represented as [Formula: see text], using molecular dynamics simulations. Our findings reveal that membrane fluctuations not only alter the conductance coefficient [Formula: see text] but also the power-law exponent [Formula: see text]. We identify two distinct frequency regimes of membrane fluctuations, GHz-scale and THz-scale fluctuations, and examine their roles in conductance scaling. Furthermore, we demonstrate that the alteration of conductance scaling arises from the non-linearity between ion conductance and membrane shape. This work provides a fundamental understanding of ion transport in fluctuating membranes.
Collapse
Affiliation(s)
- Yechan Noh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - N R Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712, USA.
| |
Collapse
|
9
|
Ge H, Wang M. Raman Spectrum of the Li 2SO 4-MgSO 4-H 2O System: Excess Spectrum and Hydration Shell Spectrum. Molecules 2023; 28:7356. [PMID: 37959775 PMCID: PMC10648143 DOI: 10.3390/molecules28217356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lithium, as a green energy metal used to promote world development, is an important raw material for lithium-ion, lithium-air, and lithium-sulfur batteries. It is challenging to directly extract lithium resources from brine with a high Mg/Li mass ratio. The microstructure study of salt solutions provides an important theoretical basis for the separation of lithium and magnesium. The changes in the hydrogen bond network structure and ion association of the Li2SO4 aqueous solution and Li2SO4-MgSO4-H2O mixed aqueous solution were studied by Raman spectroscopy. The SO42- fully symmetric stretching vibration peak at 940~1020 cm-1 and the O-H stretching vibration peak at 2800~3800 cm-1 of the Li2SO4 aqueous solution at room temperature were studied by Raman spectroscopy and excess spectroscopy. According to the peak of the O-H stretching vibration spectrum, with an increase in the mass fraction of the Li2SO4 solution, the proportion of DAA-type and DDAA-type hydrogen bonds at low wavenumbers decreases gradually, while the proportion of DA-type hydrogen bonds at 3300 cm-1 increases. When the mass fraction is greater than 6.00%, this proportion increases sharply. Although the spectra of hydrated water molecules and bulk water molecules are different, the spectra of the two water molecules seriously overlap. The spectrum of the anion hydration shell in a solution can be extracted via spectrum division. By analyzing the spectra of these hydration shells, the interaction between the solute and water molecules, the structure of the hydration shell and the number of water molecules are obtained. For the same ionic strength solution, different cationic salts have different hydration numbers of anions, indicating that there is a strong interaction between ions in a strong electrolytic solution, which will lead to ion aggregation and the formation of ion pairs. When the concentration of salt solution increases, the hydration number decreases rapidly, indicating that the degree of ion aggregation increases with increasing concentration.
Collapse
Affiliation(s)
- Haiwen Ge
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining 810008, China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining 810008, China
| |
Collapse
|
10
|
Azizi K, Gori M, Morzan U, Hassanali A, Kurian P. Examining the origins of observed terahertz modes from an optically pumped atomistic model protein in aqueous solution. PNAS NEXUS 2023; 2:pgad257. [PMID: 37575674 PMCID: PMC10416812 DOI: 10.1093/pnasnexus/pgad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
The microscopic origins of terahertz (THz) vibrational modes in biological systems are an active and open area of current research. Recent experiments [Phys Rev X. 8, 031061 (2018)] have revealed the presence of a pronounced mode at ∼0.3 THz in fluorophore-decorated bovine serum albumin (BSA) protein in aqueous solution under nonequilibrium conditions induced by optical pumping. This result was heuristically interpreted as a collective elastic fluctuation originating from the activation of a low-frequency phonon mode. In this work, we show that the sub-THz spectroscopic response emerges in a statistically significant manner (> 2 σ ) from such collective behavior, illustrating how photoexcitation can alter specific THz vibrational modes. We revisit the theoretical analysis with proof-of-concept molecular dynamics that introduce optical excitations into the simulations. Using information theory techniques, we show that these excitations can give rise to a multiscale response involving two optically excited chromophores (tryptophans), other amino acids in the protein, ions, and water. Our results motivate new experiments and fully nonequilibrium simulations to probe these phenomena, as well as the refinement of atomistic models of Fröhlich condensates that are fundamentally determined by nonlinear interactions in biology.
Collapse
Affiliation(s)
- Khatereh Azizi
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Matteo Gori
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| | - Uriel Morzan
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Philip Kurian
- Quantum Biology Laboratory, Howard University, Washington, DC 20060, USA
| |
Collapse
|
11
|
Ferguson CA, Santangelo C, Marramiero L, Farina M, Pietrangelo T, Cheng X. Broadband Electrical Spectroscopy to Distinguish Single-Cell Ca 2+ Changes Due to Ionomycin Treatment in a Skeletal Muscle Cell Line. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094358. [PMID: 37177559 PMCID: PMC10181519 DOI: 10.3390/s23094358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Many skeletal muscle diseases such as muscular dystrophy, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and sarcopenia share the dysregulation of calcium (Ca2+) as a key mechanism of disease at a cellular level. Cytosolic concentrations of Ca2+ can signal dysregulation in organelles including the mitochondria, nucleus, and sarcoplasmic reticulum in skeletal muscle. In this work, a treatment is applied to mimic the Ca2+ increase associated with these atrophy-related disease states, and broadband impedance measurements are taken for single cells with and without this treatment using a microfluidic device. The resulting impedance measurements are fitted using a single-shell circuit simulation to show calculated electrical dielectric property contributions based on these Ca2+ changes. From this, similar distributions were seen in the Ca2+ from fluorescence measurements and the distribution of the S-parameter at a single frequency, identifying Ca2+ as the main contributor to the electrical differences being identified. Extracted dielectric parameters also showed different distribution patterns between the untreated and ionomycin-treated groups; however, the overall electrical parameters suggest the impact of Ca2+-induced changes at a wider range of frequencies.
Collapse
Affiliation(s)
- Caroline A Ferguson
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Farina
- Department of Engineering of Information, University Politecnica delle Marche, 60131 Ancona, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
12
|
Saha R, Mitra RK. Thermo-Resistive Phase Behavior of Trivalent Ion-Induced Microscopic Protein-Rich Phases: Correlating with Ion-Specific Protein Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4601-4610. [PMID: 36952287 DOI: 10.1021/acs.langmuir.2c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteins, in the presence of trivalent cations, exhibit intriguing phase behavior which is contrasting compared to mono- and divalent cations. At room temperature (RT), trivalent cations induce microscopic liquid-liquid phase separation (LLPS) in which a protein-rich phase coexists with a dilute phase. The critical solution temperature related phenomena in these complex fluids are well studied; however, such studies have mostly been restricted below the denaturation temperature (TM) of the protein(s) involved. Here, we probe the phase behavior of bovine serum albumin (BSA) incubated at 70 °C (>TM) in the presence of Na+, Mg2+, La3+, Y3+, and Ho3+ ions. BSA in the presence of mono- and bivalent ions forms an intense gel phase at 70 °C; however, the trivalent salts offer remarkable thermal resistivity and retain the fluid LLPS phase. We determine the microscopic phase behavior using differential interference contrast optical microscopy, which shows that the LLPS droplet structures in the M3+ ion-containing protein solutions prevail upon heating, whereas Mg2+ forms composed cross-linking gelation upon thermal incubation. We probe the interior environment of the protein aggregates by ps-resolved fluorescence anisotropy measurements using 8-anilino-1-naphthalenesulfonic acid (ANS) as an extrinsic fluorophore. It reveals that while the LLPS phase retains the rotational time constants upon heating, in the case of gelation, the immediate environment of ANS gets significantly perturbed. We investigate the explicit protein hydration at RT as well as at T > TM using the ATR THz-FTIR (1.5-22.5 THz) spectroscopy technique and found that hydration shows strong ion specificity and correlates the phase transition behavior.
Collapse
Affiliation(s)
- Ria Saha
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
13
|
van der Linde C, Ončák M, Cunningham EM, Tang WK, Siu CK, Beyer MK. Surface or Internal Hydration - Does It Really Matter? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:337-354. [PMID: 36744598 PMCID: PMC9983018 DOI: 10.1021/jasms.2c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The precise location of an ion or electron, whether it is internally solvated or residing on the surface of a water cluster, remains an intriguing question. Subtle differences in the hydrogen bonding network may lead to a preference for one or the other. Here we discuss spectroscopic probes of the structure of gas-phase hydrated ions in combination with quantum chemistry, as well as H/D exchange as a means of structure elucidation. With the help of nanocalorimetry, we look for thermochemical signatures of surface vs internal solvation. Examples of strongly size-dependent reactivity are reviewed which illustrate the influence of surface vs internal solvation on unimolecular rearrangements of the cluster, as well as on the rate and product distribution of ion-molecule reactions.
Collapse
Affiliation(s)
- Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Ethan M. Cunningham
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| | - Wai Kit Tang
- Institute
of Research Management and Services (IPPP), Research and Innovation
Management Complex, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Chi-Kit Siu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, PR China
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020Innsbruck, Austria
| |
Collapse
|
14
|
Mazaheri Z, Papari GP, Andreone A. Probing the Molecular Dynamics of Aqueous Binary Solutions with THz Time-Domain Ellipsometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:2292. [PMID: 36850886 PMCID: PMC9966517 DOI: 10.3390/s23042292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Using a customized time-domain ellipsometer operating in the THz range, the molecular dynamics of a liquid binary solution based on water and isopropyl alcohol (2-propanol) is investigated. The setup is capable of detecting small changes in the optical properties of the mixture within a single measurement. The complex dielectric response of samples with different concentrations is studied through the direct measurement of the ellipsometric parameters. The results are described using an effective Debye model, from which the relaxation parameters associated with different activation energies can be consistently extracted. Significant deviations between experimental data and the theoretical expectations at an intermediate volume percentage of 2-propanol in water are observed and interpreted as produced by competing effects: the creation/destruction of hydrogen bonding on the one hand, and the presence of cluster/aggregation between water and alcohol molecules on the other.
Collapse
Affiliation(s)
- Zahra Mazaheri
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
| | - Gian Paolo Papari
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
- Naples Unit, National Institute for Nuclear Physics, 80126 Naples, Italy
| | - Antonello Andreone
- Department of Physics “E. Pancini”, University of Naples Federico II, 80126 Naples, Italy
- Naples Unit, National Institute for Nuclear Physics, 80126 Naples, Italy
| |
Collapse
|
15
|
Hao H, Adams EM, Funke S, Schwaab G, Havenith M, Head-Gordon T. Highly Altered State of Proton Transport in Acid Pools in Charged Reverse Micelles. J Am Chem Soc 2023; 145:1826-1834. [PMID: 36633459 PMCID: PMC9881006 DOI: 10.1021/jacs.2c11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 01/13/2023]
Abstract
Transport mechanisms of solvated protons of 1 M HCl acid pools, confined within reverse micelles (RMs) containing the negatively charged surfactant sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) or the positively charged cetyltrimethylammonium bromide (CTABr), are analyzed with reactive force field simulations to interpret dynamical signatures from TeraHertz absorption and dielectric relaxation spectroscopy. We find that the forward proton hopping events for NaAOT are further suppressed compared to a nonionic RM, while the Grotthuss mechanism ceases altogether for CTABr. We attribute the sluggish proton dynamics for both charged RMs as due to headgroup and counterion charges that expel hydronium and chloride ions from the interface and into the bulk interior, thereby increasing the pH of the acid pools relative to the nonionic RM. For charged NaAOT and CTABr RMs, the localization of hydronium near a counterion or conjugate base reduces the Eigen and Zundel configurations that enable forward hopping. Thus, localized oscillatory hopping dominates, an effect that is most extreme for CTABr in which the proton residence time increases dramatically such that even oscillatory hopping is slow.
Collapse
Affiliation(s)
- Hongxia Hao
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Ellen M. Adams
- Cluster
of Excellence Physics of Life, Technische
Universität Dresden, 01307Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Resource
Ecology, 01328Dresden, Germany
| | - Sarah Funke
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Martina Havenith
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801Bochum, Germany
| | - Teresa Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Department
of Bioengineering, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| |
Collapse
|
16
|
Qiao M, Wang M, Meng X, Zhu H, Zhang Y, Ji Z, Zhao Y, Liu J, Wang S, Guo X, Wang J, Bi J, Zhang P, Di Tommaso D, Li F, Yuan J. Fine Analysis of the Component Effect on the Microstructure of LiCl Solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Kundu A, Mamatkulov SI, Brünig FN, Bonthuis DJ, Netz RR, Elsaesser T, Fingerhut BP. Short-Range Cooperative Slow-down of Water Solvation Dynamics Around SO 4 2--Mg 2+ Ion Pairs. ACS PHYSICAL CHEMISTRY AU 2022; 2:506-514. [PMID: 36465835 PMCID: PMC9706802 DOI: 10.1021/acsphyschemau.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The presence of ions affects the structure and dynamics of water on a multitude of length and time scales. In this context, pairs of Mg2+ and SO4 2- ions in water constitute a prototypical system for which conflicting pictures of hydration geometries and dynamics have been reported. Key issues are the molecular pair and solvation shell geometries, the spatial range of electric interactions, and their impact on solvation dynamics. Here, we introduce asymmetric SO4 2- stretching vibrations as new and most specific local probes of solvation dynamics that allow to access ion hydration dynamics at the dilute concentration (0.2 M) of a native electrolyte environment. Highly sensitive heterodyne 2D-IR spectroscopy in the fingerprint region of the SO4 2- ions around 1100 cm-1 reveals a specific slow-down of solvation dynamics for hydrated MgSO4 and for Na2SO4 in the presence of Mg2+ ions, which manifests as a retardation of spectral diffusion compared to aqueous Na2SO4 solutions in the absence of Mg2+ ions. Extensive molecular dynamics and density functional theory QM/MM simulations provide a microscopic view of the observed ultrafast dephasing and hydration dynamics. They suggest a molecular picture where the slow-down of hydration dynamics arises from the structural peculiarities of solvent-shared SO4 2--Mg2+ ion pairs.
Collapse
Affiliation(s)
- Achintya Kundu
- Max-Born-Institut
Für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin12489, Germany
| | - Shavkat I. Mamatkulov
- Institute
of Material Sciences of Uzbekistan Academy of Sciences, Tashkent100084, Uzbekistan
| | | | - Douwe Jan Bonthuis
- Institute
of Theoretical and Computational Physics, Graz University of Technology, Graz8010, Austria
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, Berlin14195, Germany
| | - Thomas Elsaesser
- Max-Born-Institut
Für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin12489, Germany
| | - Benjamin P. Fingerhut
- Max-Born-Institut
Für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin12489, Germany
| |
Collapse
|
18
|
Caruso A, Zhu X, Fulton JL, Paesani F. Accurate Modeling of Bromide and Iodide Hydration with Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:8266-8278. [PMID: 36214512 DOI: 10.1021/acs.jpcb.2c04698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ion-water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB-nrg) potential energy functions (PEFs) representing bromide-water and iodide-water interactions. The MB-nrg PEFs use permutationally invariant polynomials to reproduce two-body and three-body energies calculated at the coupled cluster level of theory, and implicitly represent all higher-body energies using classical many-body polarization. A systematic analysis of the hydration structure of small Br-(H2O)n and I-(H2O)n clusters demonstrates that the MB-nrg PEFs predict interaction energies in quantitative agreement with "gold standard" coupled cluster reference values. Importantly, when used in molecular dynamics simulations carried out in the isothermal-isobaric ensemble for single bromide and iodide ions in liquid water, the MB-nrg PEFs predict extended X-ray absorption fine structure (EXAFS) spectra that accurately reproduce the experimental spectra, which thus allows for characterizing the hydration structure of the two ions with a high level of confidence.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - John L Fulton
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
19
|
Zhang MH, Xiao W, Wang WM, Zhang R, Zhang CL, Zhang XC, Zhang LL. Highly sensitive detection of broadband terahertz waves using aqueous salt solutions. OPTICS EXPRESS 2022; 30:39142-39151. [PMID: 36258461 DOI: 10.1364/oe.472753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Water-based coherent detection of broadband terahertz (THz) wave has been recently proposed with superior performances, which can alleviate the limited detection bandwidth and high probe laser energy requirement in the solid- and air-based detection schemes, respectively. Here, we demonstrate that the water-based detection method can be extended to the aqueous salt solutions and the sensitivity can be significantly enhanced. The THz coherent detection signal intensity scales linearly with the third-order nonlinear susceptibility χ(3) or quadratically with the linear refractive index η0 of the aqueous salt solutions, while the incoherent detection signal intensity scales quadratically with χ(3) or quartically with η0, proving the underlying mechanism is the four-wave mixing. Both the coherent and incoherent detection signal intensities appear positive correlation with the solution concentration. These results imply that the liquid-based THz detection scheme could provide a new technique to measure χ(3) and further investigate the physicochemical properties in the THz band for various liquids.
Collapse
|
20
|
Saha R, Mitra RK. Trivalent cation-induced phase separation in proteins: ion specific contribution in hydration also counts. Phys Chem Chem Phys 2022; 24:23661-23668. [PMID: 36148614 DOI: 10.1039/d2cp01061e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent (specifically trivalent) metal ions are known to induce microscopic phase separation (commonly termed as liquid-liquid phase separation (LLPS)) in negatively charged globular proteins even at ambient temperatures, the process being mostly driven by protein charge neutralization followed by aggregation. Recent simulation studies have revealed that such self-aggregation of proteins is entropy driven; however, it is associated with a solvation effect, which could as well be different from the usual notion of hydrophobic hydration. In this contribution we have experimentally probed the explicit change in hydration associated with ion-induced LLPS formation of a globular protein bovine serum albumin (BSA) at ambient temperature using FIR-THz FTIR spectroscopy (50-750 cm-1; 1.5-22.5 THz). We have used ions of different charges: Na+, K+, Ca2+, Mg2+, La3+, Y3+, Ho3+ and Al3+. We found that all the trivalent ions induce LLPS; the formation of large aggregates has been evidenced from dynamic light scattering (DLS) measurements, but without perturbing the protein structure as confirmed from circular dichroism (CD) measurements. From the frequency dependent absorption coefficient (α(ν)) measurements in the THz frequency domain we estimate the various stretching/vibrational modes of water and we found that ions, forming LLPS, produce definite perturbation in the overall hydration, the extent of which is ion specific, invoking the definite role of hydrophilic (electrostatic) hydration of ions in the observed LLPS process.
Collapse
Affiliation(s)
- Ria Saha
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| | - Rajib Kumar Mitra
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| |
Collapse
|
21
|
Yan Y, Zhang J, Ren G, Zhou L, Liu L, Zhang X, Chen L, Ouyang C, Han J. Monitoring MgCl 2 hydrate formation from aqueous solutions using terahertz time-domain spectroscopy. Phys Chem Chem Phys 2022; 24:23490-23496. [PMID: 36128999 DOI: 10.1039/d2cp03231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of MgCl2 with H2O is heavily involved in biological and chemical processes. In this work, freezing-induced hydrate formation from MgCl2 aqueous solution was monitored using terahertz time-domain spectroscopy. At low temperatures, two phase transitions from brine to hydrate formation could be clearly observed, and the formation of hydrate was accompanied by the emergence of new THz fingerprint peaks at 1.02, 1.56, and 1.84 THz, respectively. Integrating XRD and quantum chemical calculations, we attributed the absorption peaks to the vibrational modes of the formed MgCl2·12H2O. This demonstrates the potential of THz spectroscopy for application in the detection of biological processes in low-temperature environments, such as cell freezing.
Collapse
Affiliation(s)
- Yuyue Yan
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Jiaqi Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Guanhua Ren
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Lu Zhou
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Liyuan Liu
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Xueqian Zhang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Ligang Chen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, China.
| | - Chunmei Ouyang
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China.
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoeletronics Engineering, Tianjin University, Tinajin 300072, China. .,Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
22
|
Hashimoto K, Ben Ishai P, Bründermann E, Tripathi SR. Dielectric property measurement of human sweat using attenuated total reflection terahertz time domain spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4572-4582. [PMID: 36187269 PMCID: PMC9484438 DOI: 10.1364/boe.467450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Sweat is one of the essential biofluids produced by the human body, and it contains various physiological biomarkers. These biomarkers can indicate human health conditions such as disease and illness. In particular, imbalances in the concentration of electrolytes can indicate the onset of disease. These same imbalances affect the dielectric properties of sweat. In this study, we used attenuated total reflection terahertz time domain spectroscopy to obtain the frequency-dependent dielectric properties of human sweat in a frequency range from 200 GHz to 2.5 THz. We have investigated the variation of dielectric properties of sweat collected from different regions of the human body, and we have observed that the real and imaginary part of dielectric permittivity decreases with the increase in frequency. A combination of left-hand Jonscher and Havriliak-Negami processes is used to model the results and reveal the presence of relaxation processes related to sodium and calcium ions concentrations. This information may help design novel biosensors to understand the human health condition and provide a hydration assessment.
Collapse
Affiliation(s)
- Kazuma Hashimoto
- Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Paul Ben Ishai
- Department of Physics, Ariel University, P.O.B. 3, Ariel 40700, Israel
| | - Erik Bründermann
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Institute for Beam Physics and Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Saroj R. Tripathi
- Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
23
|
Intermolecular Interaction of Tetrabutylammonium and Tetrabutylphosphonium Salt Hydrates by Low-Frequency Raman Observation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154743. [PMID: 35897917 PMCID: PMC9332565 DOI: 10.3390/molecules27154743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Semi-clathrate hydrates are attractive heat storage materials because the equilibrium temperatures, located above 0 °C in most cases, can be changed by selecting guest cations and anions. The equilibrium temperatures are influenced by the size and hydrophilicity of guest ions, hydration number, crystal structure, and so on. This indicates that intermolecular and/or interionic interaction in the semi-clathrate hydrates may be related to the variation of the equilibrium temperatures. Therefore, intermolecular and/or interionic interaction in semi-clathrate hydrates with quaternary onium salts was directly observed using low-frequency Raman spectroscopy, a type of terahertz spectroscopy. The results show that Raman peak positions were mostly correlated with the equilibrium temperatures: in the semi-clathrate hydrates with higher equilibrium temperatures, Raman peaks around 65 cm−1 appeared at a higher wavenumber and the other Raman peaks at around 200 cm−1 appeared at a lower wavenumber. Low-frequency Raman observation is a valuable tool with which to study the equilibrium temperatures in semi-clathrate hydrates.
Collapse
|
24
|
Tang C, Wang Y, Cheng J, Chang C, Hu J, Lü J. Probing terahertz dynamics of multidomain protein in cell-like confinement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121173. [PMID: 35334430 DOI: 10.1016/j.saa.2022.121173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The development of meaningful descriptions of multidomain proteins exhibiting complex inter-domain dynamics modes is a key challenge for understanding their roles in molecular recognition and signalling processes. Here we developed a generally applicable approach for probing the low frequency collective hydration dynamics of multidomain proteins that uses terahertz spectroscopy of a protein molecule confined in a phospholipid reverse micelles environment (named Droplet THz). With the combination of normal mode analysis, we demonstrated the binding of calcium ions modulates the local inter-domain motion of the human coagulant factor VIII protein in a concentration-dependent manner. These findings highlight the Droplet THz as a valuable tool for dissecting the ultrafast dynamics of domain motion in the multidomain proteins and suggest a modulating mechanism of calcium ions on the structural flexibility and function of human coagulant proteins.
Collapse
Affiliation(s)
- Chao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yadi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jie Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chao Chang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China.
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
25
|
Sahle CJ, de Clermont Gallerande E, Niskanen J, Longo A, Elbers M, Schroer MA, Sternemann C, Jahn S. Hydration in aqueous NaCl. Phys Chem Chem Phys 2022; 24:16075-16084. [PMID: 35735165 DOI: 10.1039/d2cp00162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic details about the hydration of ions in aqueous solutions are still debated due to the disordered and statistical nature of the hydration process. However, many processes from biology, physical chemistry to materials sciences rely on the complex interplay between solute and solvent. Oxygen K-edge X-ray excitation spectra provide a sensitive probe of the local atomic and electronic surrounding of the excited sites. We used ab initio molecular dynamics simulations together with extensive spectrum calculations to relate the features found in experimental oxygen K-edge spectra of a concentration series of aqueous NaCl with the induced structural changes upon solvation of the salt and distill the spectral fingerprints of the first hydration shells around the Na+- and Cl--ions. By this combined experimental and theoretical approach, we find the strongest spectral changes to indeed result from the first hydration shells of both ions and relate the observed shift of spectral weight from the post- to the main-edge to the origin of the post-edge as a shape resonance.
Collapse
Affiliation(s)
- Christoph J Sahle
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, FR-38043 Grenoble Cedex 9, France.
| | | | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Alessandro Longo
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, FR-38043 Grenoble Cedex 9, France.
| | - Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Sandro Jahn
- Institute of Geology and Mineralogy, University of Cologne, D-50674 Köln, Germany
| |
Collapse
|
26
|
Jiang L, Zhang K, Yao Y, Li S, Li J, Tian Z, Zhang W. Terahertz optoacoustic detection of aqueous salt solutions. iScience 2022; 25:104668. [PMID: 35832895 PMCID: PMC9272373 DOI: 10.1016/j.isci.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Liwen Jiang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Center for Terahertz Waves, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), No.92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ke Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Center for Terahertz Waves, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), No.92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yixin Yao
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Center for Terahertz Waves, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), No.92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shuai Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiao Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Corresponding author
| | - Zhen Tian
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Center for Terahertz Waves, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), No.92 Weijin Road, Nankai District, Tianjin 300072, China
- Corresponding author
| | - Weili Zhang
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA
- Corresponding author
| |
Collapse
|
27
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
28
|
Bernhardt MP, Nagata Y, van der Vegt NFA. Where Lennard-Jones Potentials Fail: Iterative Optimization of Ion-Water Pair Potentials Based on Ab Initio Molecular Dynamics Data. J Phys Chem Lett 2022; 13:3712-3717. [PMID: 35439420 DOI: 10.1021/acs.jpclett.2c00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of the Lennard-Jones (LJ) potential in computer simulations of aqueous electrolyte solutions is widespread. The standard approach is to parametrize LJ potential parameters against thermodynamic solution properties, but problems in representing the local structural and dynamic properties of ion hydration shells remain. The r-12-term in the LJ potential is responsible for this as it leads to overly repulsive ion-water interactions at short range. As a result, the LJ potential predicts blue-shifted vibrational peaks of the cations' rattling mode and too large negative ion hydration entropies. We demonstrate that cation-water effective pair potentials derived from ab initio MD data have softer short-range repulsions and represent hydration shell properties significantly better. Our findings indicate that replacing the LJ potential with these effective pair potentials offers a promising route to represent thermodynamic solution properties and local interactions of specific ions with nonpolarizable force field models.
Collapse
Affiliation(s)
- Marvin P Bernhardt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
29
|
A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051654. [PMID: 35268757 PMCID: PMC8924895 DOI: 10.3390/molecules27051654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.
Collapse
|
30
|
Dissolving salt is not equivalent to applying a pressure on water. Nat Commun 2022; 13:822. [PMID: 35145131 PMCID: PMC8831556 DOI: 10.1038/s41467-022-28538-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Salt water is ubiquitous, playing crucial roles in geological and physiological processes. Despite centuries of investigations, whether or not water’s structure is drastically changed by dissolved ions is still debated. Based on density functional theory, we employ machine learning based molecular dynamics to model sodium chloride, potassium chloride, and sodium bromide solutions at different concentrations. The resulting reciprocal-space structure factors agree quantitatively with neutron diffraction data. Here we provide clear evidence that the ions in salt water do not distort the structure of water in the same way as neat water responds to elevated pressure. Rather, the computed structural changes are restricted to the ionic first solvation shells intruding into the hydrogen bond network, beyond which the oxygen radial-distribution function does not undergo major change relative to neat water. Our findings suggest that the widely cited pressure-like effect on the solvent in Hofmeister series ionic solutions should be carefully revisited. By advanced machine learning techniques, first-principles simulations find that dissolving salt in water does not change water structure drastically. It is contrary to the notion of “pressure effect” which has been widely applied over past 25 years.
Collapse
|
31
|
Adams EM, Hao H, Leven I, Rüttermann M, Wirtz H, Havenith M, Head‐Gordon T. Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen M. Adams
- Lehrstuhl für Physkalische Chemie II Ruhr Universität Bochum 44801 Bochum Germany
| | - Hongxia Hao
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kenneth S. Pitzer Center for Theoretical Chemistry University of California Berkeley California 94720 USA
- Department of Chemistry University of California Berkeley California 94720 USA
| | - Itai Leven
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kenneth S. Pitzer Center for Theoretical Chemistry University of California Berkeley California 94720 USA
- Department of Chemistry University of California Berkeley California 94720 USA
| | | | - Hanna Wirtz
- Lehrstuhl für Physkalische Chemie II Ruhr Universität Bochum 44801 Bochum Germany
| | - Martina Havenith
- Lehrstuhl für Physkalische Chemie II Ruhr Universität Bochum 44801 Bochum Germany
| | - Teresa Head‐Gordon
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kenneth S. Pitzer Center for Theoretical Chemistry University of California Berkeley California 94720 USA
- Department of Chemistry University of California Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering University of California Berkeley California 94720 USA
- Department of Bioengineering University of California Berkeley California 94720 USA
| |
Collapse
|
32
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
33
|
Ma CY, Pezzotti S, Schwaab G, Gebala M, Herschlag D, Havenith M. Cation enrichment in the ion atmosphere is promoted by local hydration of DNA. Phys Chem Chem Phys 2021; 23:23203-23213. [PMID: 34622888 PMCID: PMC8797164 DOI: 10.1039/d1cp01963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions are central to the structure and function of nucleic acids, including their folding, condensation, and interaction with proteins and other charged molecules. These interactions are profoundly affected by ions surrounding nucleic acids, the constituents of the so-called ion atmosphere. Here, we report precise Fourier Transform-Terahertz/Far-Infrared (FT-THz/FIR) measurements in the frequency range 30-500 cm-1 for a 24-bp DNA solvated in a series of alkali halide (NaCl, NaF, KCl, CsCl, and CsF) electrolyte solutions which are sensitive to changes in the ion atmosphere. Cation excess in the ion atmosphere is detected experimentally by observation of cation modes of Na+, K+, and Cs+ in the frequency range between 70-90 cm-1. Based on MD simulations, we propose that the magnitude of cation excess (which is salt specific) depends on the ability of the electrolyte to perturb the water network at the DNA interface: In the NaF atmosphere, the ions reduce the strength of interactions between water and the DNA more than in case of a NaCl electrolyte. Here, we explicitly take into account the solvent contribution to the chemical potential in the ion atmosphere: A decrease in the number of bound water molecules in the hydration layer of DNA is correlated with enhanced density fluctuations, which decrease the free energy cost of ion-hydration, thus promoting further ion accumulation within the DNA atmosphere. We propose that taking into account the local solvation is crucial for understanding the ion atmosphere.
Collapse
Affiliation(s)
- Chun Yu Ma
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
34
|
Cherkasova OP, Serdyukov DS, Nemova EF, Ratushnyak AS, Kucheryavenko AS, Dolganova IN, Xu G, Skorobogatiy M, Reshetov IV, Timashev PS, Spektor IE, Zaytsev KI, Tuchin VV. Cellular effects of terahertz waves. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210179VR. [PMID: 34595886 PMCID: PMC8483303 DOI: 10.1117/1.jbo.26.9.090902] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 05/15/2023]
Abstract
SIGNIFICANCE An increasing interest in the area of biological effects at exposure of tissues and cells to the terahertz (THz) radiation is driven by a rapid progress in THz biophotonics, observed during the past decades. Despite the attractiveness of THz technology for medical diagnosis and therapy, there is still quite limited knowledge about safe limits of THz exposure. Different modes of THz exposure of tissues and cells, including continuous-wave versus pulsed radiation, various powers, and number and duration of exposure cycles, ought to be systematically studied. AIM We provide an overview of recent research results in the area of biological effects at exposure of tissues and cells to THz waves. APPROACH We start with a brief overview of general features of the THz-wave-tissue interactions, as well as modern THz emitters, with an emphasis on those that are reliable for studying the biological effects of THz waves. Then, we consider three levels of biological system organization, at which the exposure effects are considered: (i) solutions of biological molecules; (ii) cultures of cells, individual cells, and cell structures; and (iii) entire organs or organisms; special attention is devoted to the cellular level. We distinguish thermal and nonthermal mechanisms of THz-wave-cell interactions and discuss a problem of adequate estimation of the THz biological effects' specificity. The problem of experimental data reproducibility, caused by rareness of the THz experimental setups and an absence of unitary protocols, is also considered. RESULTS The summarized data demonstrate the current stage of the research activity and knowledge about the THz exposure on living objects. CONCLUSIONS This review helps the biomedical optics community to summarize up-to-date knowledge in the area of cell exposure to THz radiation, and paves the ways for the development of THz safety standards and THz therapeutic applications.
Collapse
Affiliation(s)
- Olga P. Cherkasova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Novosibirsk State Technical University, Russian Federation
| | - Danil S. Serdyukov
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Eugenia F. Nemova
- Institute of Laser Physics of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Alexander S. Ratushnyak
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, Russian Federation
| | - Anna S. Kucheryavenko
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
| | - Guofu Xu
- Polytechnique Montreal, Department of Engineering Physics, Canada
| | | | - Igor V. Reshetov
- Sechenov University, Institute for Cluster Oncology, Russian Federation
- Academy of Postgraduate Education FSCC FMBA, Russian Federation
| | - Peter S. Timashev
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Sechenov University, World-Class Research Center “Digital Biodesign and Personalized Healthcare,” Russian Federation
- N.N. Semenov Institute of Chemical Physics, Department of Polymers and Composites, Russian Federation
- Lomonosov Moscow State University, Department of Chemistry, Russian Federation
| | - Igor E. Spektor
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
| | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Russian Federation
- Sechenov University, Institute for Regenerative Medicine, Russian Federation
- Bauman Moscow State Technical University, Russian Federation
| | - Valery V. Tuchin
- Saratov State University, Russian Federation
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Russian Federation
- National Research Tomsk State University, Russian Federation
| |
Collapse
|
35
|
Falkner S, Schwierz N. Kinetic pathways of water exchange in the first hydration shell of magnesium: Influence of water model and ionic force field. J Chem Phys 2021; 155:084503. [PMID: 34470357 DOI: 10.1063/5.0060896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Water exchange between the first and second hydration shell is essential for the role of Mg2+ in biochemical processes. In order to provide microscopic insights into the exchange mechanism, we resolve the exchange pathways by all-atom molecular dynamics simulations and transition path sampling. Since the exchange kinetics relies on the choice of the water model and the ionic force field, we systematically investigate the influence of seven different polarizable and non-polarizable water and three different Mg2+ models. In all cases, water exchange can occur either via an indirect or direct mechanism (exchanging molecules occupy different/same position on the water octahedron). In addition, the results reveal a crossover from an interchange dissociative (Id) to an associative (Ia) reaction mechanism dependent on the range of the Mg2+-water interaction potential of the respective force field. Standard non-polarizable force fields follow the Id mechanism in agreement with experimental results. By contrast, polarizable and long-ranged non-polarizable force fields follow the Ia mechanism. Our results provide a comprehensive view on the influence of the water model and the ionic force field on the exchange dynamics and the foundation to assess the choice of the force field in biomolecular simulations.
Collapse
Affiliation(s)
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Havenith-Newen M, Adams EM, Head-Gordon T, Hao H, Rüttermann M, Leven I, Wirtz H. Proton Traffic Jam: Effect of Nanoconfinement and Acid Concentration on Proton Hopping Mechanism. Angew Chem Int Ed Engl 2021; 60:25419-25427. [PMID: 34402145 PMCID: PMC9293324 DOI: 10.1002/anie.202108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/06/2022]
Abstract
The properties of the water network in concentrated HCl acid pools in nanometer-sized reverse non-ionic micelles were probed with TeraHertz absorption, dielectric relaxation spectroscopy, and reactive force field simulations capable of describing proton hopping mechanisms. We identify that only at a critical micelle size of W0=9 do solvated proton complexes form in the water pool, accompanied by a change in mechanism from Grotthuss forward shuttling to one that favors local oscillatory hopping. This is due to a preference for H+ and Cl- ions to adsorb to the micelle interface, together with an acid concentration effect that causes a "traffic jam" in which the short-circuiting of the hydrogen-bonding motif of the hydronium ion decreases the forward hopping rate throughout the water interior even as the micelle size increases. These findings have implications for atmospheric chemistry, biochemical and biophysical environments, and energy materials, as transport of protons vital to these processes can be suppressed due to confinement, aggregation, and/or concentration.
Collapse
Affiliation(s)
- Martina Havenith-Newen
- Ruhr-Universit�t Bochum, Physical Chemistry, Universit�tsstr. 150, 44780, Bochum, GERMANY
| | - Ellen M Adams
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Chemistry and Biochemistry, GERMANY
| | - Teresa Head-Gordon
- UC Berkeley: University of California Berkeley, Chemistry, UNITED STATES
| | - Hongxia Hao
- Berkeley Laboratory: E O Lawrence Berkeley National Laboratory, Chemistry, UNITED STATES
| | | | - Itai Leven
- Lawrence Livermore National Laboratory, chemistry, GERMANY
| | - Hanna Wirtz
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Chemistry, GERMANY
| |
Collapse
|
37
|
Caruso A, Paesani F. Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk. J Chem Phys 2021; 155:064502. [PMID: 34391363 DOI: 10.1063/5.0059445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Fang Y, Furó I. Weak Anion Binding to Poly( N-isopropylacrylamide) Detected by Electrophoretic NMR. J Phys Chem B 2021; 125:3710-3716. [PMID: 33821651 PMCID: PMC8154593 DOI: 10.1021/acs.jpcb.1c00642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Ion specific effects are ubiquitous in solutions and govern a large number of colloidal phenomena. To date, a substantial and sustained effort has been directed at understanding the underlying molecular interactions. As a new approach, we address this issue by sensitive 1H NMR methods that measure the electrophoretic mobility and the self-diffusion coefficient of poly(N-isopropylacrylamide) (PNIPAM) chains in bulk aqueous solution in the presence of salts with the anion component varied from kosmotropes to chaotropes along the Hofmeister series. The accuracy of the applied electrophoretic NMR experiments is exceptionally high, on the order of 10-10 m2/(V s), corresponding to roughly 10-4 elementary charges per monomer effectively associated with the neutral polymer. We find that chaotropic anions associate to PNIPAM with an apparent Langmuir-type saturation behavior. The polymer chains remain extended upon ion association, and momentum transfer from anion to polymer is only partial which indicates weak attractive short-range forces between anion and polymer and, thereby and in contrast to some other ion-polymer systems, the lack of well-defined binding sites.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Applied Physical
Chemistry, Department of Chemistry, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - István Furó
- Division of Applied Physical
Chemistry, Department of Chemistry, KTH
Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
39
|
Takahashi M, Kowada M, Matsui H, Kwon E, Ikemoto Y. Temperature-Dependent Low-Frequency Vibrations of Thiamine Crystal Containing Hydrated Ions. J Phys Chem A 2021; 125:1837-1844. [PMID: 33651615 DOI: 10.1021/acs.jpca.0c09756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-frequency vibrations of crystalline molecules are very sensitive to the local environment in which the molecules, for example, hydrated ions captured in crystals, find themselves. We present low-temperature X-ray crystallographic measurements on the harvested thiamine crystal containing hydrated ions and its temperature-dependent terahertz spectra and synchrotron infrared microspectra. It is found from the X-ray structure that the hydrated ions and hydration water are in a similar environment to liquid, although those are captured in crystals. The vibrationally resolved THz spectra of two states in the present organic crystals containing hydrated ions are well explained by the difference in the hydrogen-bonded pattern. Peak assignments were performed based on highly accurate first-principles calculations incorporating relativistic effects and dispersion corrections. The temperature dependences are observed for the vibrations around the chloride ions and hydration water due to the loose binding of chloride ions, the bond elongation with increasing temperature, and the cleavage of weak hydrogen bonds.
Collapse
Affiliation(s)
- Masae Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mitsuru Kowada
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroshi Matsui
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute JASRI SPring-8, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
40
|
Dedic J, Okur HI, Roke S. Hyaluronan orders water molecules in its nanoscale extended hydration shells. SCIENCE ADVANCES 2021; 7:eabf2558. [PMID: 33658208 PMCID: PMC7929505 DOI: 10.1126/sciadv.abf2558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 05/17/2023]
Abstract
Hyaluronan (HA) is an anionic, highly hydrated bio-polyelectrolyte found in the extracellular environment, like the synovial fluid between joints. We explore the extended hydration shell structure of HA in water using femtosecond elastic second-harmonic scattering (fs-ESHS). HA enhances orientational water-water correlations. Angle-resolved fs-ESHS measurements and nonlinear optical modeling show that HA behaves like a flexible chain surrounded by extended shells of orientationally correlated water. We describe several ways to determine the concentration-dependent size and shape of a polyelectrolyte in water, using the amount of water oriented by the polyelectrolyte charges as a contrast agent. The spatial extent of the hydration shell is determined via temperature-dependent measurements and can reach up to 475 nm, corresponding to a length of 1600 water molecules. A strong isotope effect, stemming from nuclear quantum effects, is observed when light water (H2O) is replaced by heavy water (D2O), amounting to a factor of 4.3 in the scattered SH intensity.
Collapse
Affiliation(s)
- J Dedic
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - S Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
41
|
Zhao H, Tan Y, Zhang R, Zhao Y, Zhang C, Zhang L. Anion-water hydrogen bond vibration revealed by the terahertz Kerr effect. OPTICS LETTERS 2021; 46:230-233. [PMID: 33448994 DOI: 10.1364/ol.409849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
The microscopic mechanism for ionic influence on the hydrogen bond network of water has not been fully understood. Here we employ the terahertz Kerr effect (TKE) technique to map the intermolecular hydrogen bond dynamics in a series of aqueous halide solutions at the sub-picosecond scale. Compared with pure water, the significantly enhanced bipolar TKE response associated with polarization anisotropy in an ionic aqueous solution is successfully captured. We decompose the measured TKE response into different molecular motion modes and demonstrate that the obviously increasing positive polarity response is mainly due to the anion-water hydrogen bond vibration mode with the resonant THz electric field excitation. Our measurement results provide an experimental basis for further insight into the effects of ions on the structure and dynamics of a hydrogen bond in water.
Collapse
|
42
|
Influence of salts in the Hofmeister series on the physical gelation behavior of gelatin in aqueous solutions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Shukla SK, Mikkola JP. Use of Ionic Liquids in Protein and DNA Chemistry. Front Chem 2020; 8:598662. [PMID: 33425856 PMCID: PMC7786294 DOI: 10.3389/fchem.2020.598662] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (ILs) have been receiving much attention as solvents in various areas of biochemistry because of their various beneficial properties over the volatile solvents and ILs availability in myriad variants (perhaps as many as 108) owing to the possibility of paring one cation with several anions and vice-versa as well as formulations as zwitterions. Their potential as solvents lies in their tendency to offer both directional and non-directional forces toward a solute molecule. Because of these forces, ionic liquids easily undergo intermolecular interactions with a range of polar/non-polar solutes, including biomolecules such as proteins and DNA. The interaction of genomic species in aqueous/non-aqueous states assists in unraveling their structure and functioning, which have implications in various biomedical applications. The charge density of ionic liquids renders them hydrophilic and hydrophobic, which retain intact over long-range of temperatures. Their ability in stabilizing or destabilizing the 3D-structure of a protein or the double-helical structure of DNA has been assessed superior to the water and volatile organic solvents. The aptitude of an ion in influencing the structure and stability of a native protein depends on their ranking in the Hofmeister series. However, at several instances, a reverse Hofmeister ordering of ions and specific ion-solute interaction has been observed. The capability of an ionic liquid in terms of the tendency to promote the coiling/uncoiling of DNA structure is noted to rely on the basicity, electrostatic interaction, and hydrophobicity of the ionic liquid in question. Any change in the DNA's double-helical structure reflects a change in its melting temperature (T m), compared to a standard buffer solution. These changes in DNA structure have implications in biosensor design and targeted drug-delivery in biomedical applications. In the current review, we have attempted to highlight various aspects of ionic liquids that influence the structure and properties of proteins and DNA. In short, the review will address the issues related to the origin and strength of intermolecular interactions, the effect of structural components, their nature, and the influence of temperature, pH, and additives on them.
Collapse
Affiliation(s)
- Shashi Kant Shukla
- Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, Umeå, Sweden
| | - Jyri-Pekka Mikkola
- Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, Umeå, Sweden
- Industrial Chemistry and Reaction Engineering, Department of Chemical Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, Finland
| |
Collapse
|
44
|
Panuganti V, Roy I. Oligomers, fibrils and aggregates formed by alpha-synuclein: role of solution conditions. J Biomol Struct Dyn 2020; 40:4389-4398. [PMID: 33292065 DOI: 10.1080/07391102.2020.1856721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The classical Hofmeister series orders ions into kosmotropes and chaotropes, based on their interaction with the solvent, water. The role of protein is mostly ignored probably because most of the proteins studied are natively folded and broadly follow this classification pattern. Recent reports suggest that the interaction of ions is different with solvent molecules of proximal layer and bulk. Intrinsically disordered proteins (IDPs) differ from globular proteins in the fraction of polar vis-à-vis hydrophobic amino acids and the absence of distinct secondary and tertiary structures. The kosmotrope, ammonium sulphate, increases the compactness of the polypeptide conformation, with differing effects for globular proteins and IDPs. For globular proteins, lowered flexibility corresponds to a more stable native structure. Using oligomer-specific and aggregation-specific antibodies and comparing with fibrillation results, we show for alpha-synuclein, an IDP, ammonium sulphate-induced compaction results in the formation of the aggregation-prone hydrophobic core, which combines with other similar moieties to form the fibrillar 'seed'. SEC-HPLC and SAXS analysis show the presence of the threshold oligomers. In the presence of the aggregation suppressor, arginine too, an oligomer is formed. This oligomer, however, is 'dead', and does not move further along the aggregation pathway. Thus, alpha-synuclein undergoes compaction in the presence of protein stabilisers, with differing consequences. In case of the chaotropes, KSCN and urea, aggregation of alpha-synuclein is partially inhibited. However, the amounts and types of aggregates formed are different in the two cases. Thus, the classical catalogue of molecules into protein stabilisers and destabilisers requires a relook for IDPs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Venkataharsha Panuganti
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
45
|
Ding Y. First principles molecular dynamics investigation on the water-ion interaction: A case of diluted CsI solution. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Riera M, Talbot JJ, Steele RP, Paesani F. Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions. J Chem Phys 2020; 153:044306. [DOI: 10.1063/5.0013101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Justin J. Talbot
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P. Steele
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
47
|
He H, Liu Z, Chen S, He X, Wang X, Wang X. Active Role of Water in the Hydration of Macromolecules with Ionic End Group for Hydrophobic Effect-Caused Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Xiaosong Wang
- Waterloo Institute for Nanotechnology and Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
48
|
Schwierz N. Kinetic pathways of water exchange in the first hydration shell of magnesium. J Chem Phys 2020; 152:224106. [PMID: 32534547 DOI: 10.1063/1.5144258] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water exchange between the coordination shells of metal cations in aqueous solutions is fundamental in understanding their role in biochemical processes. Despite the importance, the microscopic mechanism of water exchange in the first hydration shell of Mg2+ has not been resolved since the exchange dynamics is out of reach for conventional all-atom simulations. To overcome this challenge, transition path sampling is applied to resolve the kinetic pathways, to characterize the reaction mechanism and to provide an accurate estimate of the exchange rate. The results reveal that water exchange involves the concerted motion of two exchanging water molecules and the collective rearrangement of all water molecules in the first hydration shell. Using a recently developed atomistic model for Mg2+, water molecules remain in the first hydration shell for about 40 ms, a time considerably longer compared to the 0.1 ms predicted by transition state theory based on the coordinates of a single water molecule. The discrepancy between these timescales arises from the neglected degrees of freedom of the second exchanging water molecule that plays a decisive role in the reaction mechanism. The approach presented here contributes molecular insights into the dynamics of water around metal cations and provides the basis for developing accurate atomistic models or for understanding complex biological processes involving metal cations.
Collapse
Affiliation(s)
- Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt Am Main, Germany
| |
Collapse
|
49
|
Sharma B, Chandra A. Dynamics of Water in the Solvation Shell of an Iodate Ion: A Born-Oppenheimer Molecular Dynamics Study. J Phys Chem B 2020; 124:2618-2631. [PMID: 32150681 DOI: 10.1021/acs.jpcb.9b12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iodate ion has an anisotropic structure and charge distribution. It has a pyramidal shape with the iodine atom located at the peak of the pyramid. The water molecules interact differently with the positively charged iodine and the negatively charged oxygen atoms of this anion, giving rise to two distinct solvation shells. In the present study, we have performed ab initio Born-Oppenheimer molecular dynamics simulations to investigate the dynamics of water molecules in the iodine and oxygen solvation shells of the iodate ion and compared the behavior with those of the bulk. The dynamics of water is calculated for both the BLYP and the dispersion-corrected BLYP-D3 functionals at room temperature. The dynamics of water in the solvation shells at higher temperatures of 353 and 330 K has also been investigated for the BLYP and BLYP-D3 functionals, respectively. The hydrogen bond dynamics, vibrational spectral diffusion, orientational and translational diffusion, and residence dynamics of water molecules in the two solvation shells are looked at in the current study. The ion-water hydrogen bond dynamics is found to be somewhat faster than that for water-water hydrogen bonds in the bulk, which can be attributed to a ring-like electron distribution on the iodate oxygens. The dynamical trends are connected to the water structure making/breaking properties of the positively charged iodine and negatively charged oxygen sites of the anion. Furthermore, orientational jumps of the iodate ion and also those of surrounding water molecules which are hydrogen bonded to the oxygen atoms of the iodate ion are also investigated. It is found that the nature of these orientational jumps can be different from those reported earlier for planar polyoxyanions such as the nitrate ion.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| |
Collapse
|
50
|
Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nat Commun 2020; 11:1611. [PMID: 32235854 PMCID: PMC7109088 DOI: 10.1038/s41467-020-15450-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism of ionic conductivity at moderate to high electrolyte concentrations remains largely unresolved. Using a combination of dielectric spectroscopy and molecular dynamics simulations, we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local environment of ions. The magnitude of these high-frequency ionic motions scales linearly with conductivity for a wide range of ions and concentrations. This scaling is rationalized within a harmonic oscillator model based on the potential of mean force extracted from simulations. Our results thus suggest that long-ranged ionic transport is intimately related to the local energy landscape and to the friction for short-ranged ion dynamics: a high macroscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at a molecular scale.
Collapse
|