1
|
Mustafa NF, Cheng KK, Nadri MH, Razali SA, Zakaria II, Salin NH, Amran SI. Discovery of azaleatin as a potential allosteric inhibitor for dengue NS2B-NS3 protease using in vitro and in silico studies. J Biomol Struct Dyn 2024:1-12. [PMID: 38881303 DOI: 10.1080/07391102.2024.2335296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 06/18/2024]
Abstract
The rise in dengue cases in tropical and sub-tropical areas has become a significant health concern. At present, there is no definitive cure for dengue fever, which underscores the importance of identifying potent inhibitors. Dengue NS2B-NS3 protease is the prime drug target due to its vital function for replication. Quercetin, a flavone, has anti-dengue virus properties but is limited by low bioavailability. Previous studies have shown that methoxy substitution in flavones improves bioavailability and metabolic stability. Azaleatin is a derivative of quercetin with a methoxy substitution at the C5 position, however its ability to inhibit dengue is unknown. In this study, azaleatin was investigated for its inhibition against dengue NS2B-NS3 protease using in vitro and in silico techniques. The fluorescence assay was used to determine the IC50 value and inhibition kinetics. The molecular interaction between azaleatin and NS2B-NS3 was studied using CB-Dock2 and AutoDock Vina. The complex's stability was then analysed using GROMACS. Besides, the ADMETlab 2.0 was utilized to predict pharmacokinetic of the azaleatin. Results showed that azaleatin inhibits dengue NS2B-NS3 protease non-competitively with a Ki of 26.82 µg/ml and an IC50 of 38 µg/ml. Molecular docking indicated binding of the azaleatin to the allosteric pocket of NS2B-NS3 with a docking score of -8.2 kcal/mol. Azaleatin was found stable in the pocket along 100 ns, supporting its inhibitory mode. The compound has favourable pharmacokinetic profiles and conformed to Lipinski's Rule of Five. Taken together, azaleatin inhibits NS2B-NS3 protease in a non-competitive mode, suggesting its potential as safer anti-dengue compound.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nur Farhana Mustafa
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Kian-Kai Cheng
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Muhammad Helmi Nadri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Nerus, Kuala, Terengganu, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang Selangor, Malaysia
| | - Nurul Hanim Salin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor, Pulau Pinang, Malaysia
| | - Syazwani Itri Amran
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
2
|
Voss S, Rademann J, Nitsche C. Characterisation of ten NS2B-NS3 proteases: Paving the way for pan-flavivirus drugs. Antiviral Res 2024; 226:105878. [PMID: 38582134 DOI: 10.1016/j.antiviral.2024.105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
3
|
Ledwitch KV, Künze G, McKinney JR, Okwei E, Larochelle K, Pankewitz L, Ganguly S, Darling HL, Coin I, Meiler J. Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction. JOURNAL OF BIOMOLECULAR NMR 2023; 77:69-82. [PMID: 37016190 PMCID: PMC10443207 DOI: 10.1007/s10858-023-00412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
A single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction. We demonstrate this approach using the disulfide bond formation protein B (DsbB), an α-helical IMP. Here, we attached a cyclen-based paramagnetic lanthanide tag to an engineered non-canonical amino acid (ncAA) using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction. Using this tagging strategy, we collected 203 backbone HN pseudocontact shifts (PCSs) for three different labeling sites and used these as input to guide de novo membrane protein structure prediction protocols in Rosetta. We find that this sparse PCS dataset combined with 44 long-range NOEs as restraints in our calculations improves structure prediction of DsbB by enhancements in model accuracy, sampling, and scoring. The inclusion of this PCS dataset improved the Cα-RMSD transmembrane segment values of the best-scoring and best-RMSD models from 9.57 Å and 3.06 Å (no NMR data) to 5.73 Å and 2.18 Å, respectively.
Collapse
Affiliation(s)
- Kaitlyn V Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, MRBIII 5154E, Vanderbilt University, Nashville, TN, 37212, USA.
| | - Georg Künze
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Jacob R McKinney
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Elleansar Okwei
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Katherine Larochelle
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Lisa Pankewitz
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Soumya Ganguly
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Heather L Darling
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Science, University of Leipzig, 04103, Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Maus H, Hinze G, Hammerschmidt SJ, Basché T, Schirmeister T. A competition smFRET assay to study ligand-induced conformational changes of the dengue virus protease. Protein Sci 2023; 32:e4526. [PMID: 36461913 PMCID: PMC9793963 DOI: 10.1002/pro.4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.
Collapse
Affiliation(s)
- Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg‐UniversityMainzGermany
| | - Gerald Hinze
- Department of ChemistryJohannes Gutenberg‐UniversityMainzGermany
| | | | - Thomas Basché
- Department of ChemistryJohannes Gutenberg‐UniversityMainzGermany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg‐UniversityMainzGermany
| |
Collapse
|
5
|
Dynamic Interactions of Post Cleaved NS2B Cofactor and NS3 Protease Identified by Integrative Structural Approaches. Viruses 2022; 14:v14071440. [PMID: 35891424 PMCID: PMC9323329 DOI: 10.3390/v14071440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B.
Collapse
|
6
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
7
|
Orton H, Abdelkader E, Topping L, Butler S, Otting G. Localising nuclear spins by pseudocontact shifts from a single tagging site. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:65-76. [PMID: 37905181 PMCID: PMC10539793 DOI: 10.5194/mr-3-65-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 11/01/2023]
Abstract
Ligating a protein at a specific site with a tag molecule containing a paramagnetic metal ion provides a versatile way of generating pseudocontact shifts (PCSs) in nuclear magnetic resonance (NMR) spectra. PCSs can be observed for nuclear spins far from the tagging site, and PCSs generated from multiple tagging sites have been shown to enable highly accurate structure determinations at specific sites of interest, even when using flexible tags, provided the fitted effective magnetic susceptibility anisotropy (Δ χ ) tensors accurately back-calculate the experimental PCSs measured in the immediate vicinity of the site of interest. The present work investigates the situation where only the local structure of a protein region or bound ligand is to be determined rather than the structure of the entire molecular system. In this case, the need for gathering structural information from tags deployed at multiple sites may be queried. Our study presents a computational simulation of the structural information available from samples produced with single tags attached at up to six different sites, up to six different tags attached to a single site, and in-between scenarios. The results indicate that the number of tags is more important than the number of tagging sites. This has important practical implications, as it is much easier to identify a single site that is suitable for tagging than multiple ones. In an initial experimental demonstration with the ubiquitin mutant S57C, PCSs generated with four different tags at a single site are shown to accurately pinpoint the location of amide protons in different segments of the protein.
Collapse
Affiliation(s)
- Henry W. Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Selvaraj C, Rudhra O, Alothaim AS, Alkhanani M, Singh SK. Structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:59-83. [PMID: 35534116 DOI: 10.1016/bs.apcsb.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enzymes, which are biological molecules, are constructed from polypeptide chains, and these molecules are activated through reaction mechanisms. It is the role of enzymes to speed up chemical reactions that are used to build or break down cell structures. Activation energy is reduced by the enzymes' selective binding of substrates in a protected environment. In enzyme tertiary structures, the active sites are commonly situated in a "cleft," which necessitates the diffusion of substrates and products. The amino acid residues of the active site may be far apart in the primary structure owing to the folding required for tertiary structure. Due to their critical role in substrate binding and attraction, changes in amino acid structure at or near the enzyme's active site usually alter enzyme activity. At the enzyme's active site, or where the chemical reactions occur, the substrate is bound. Enzyme substrates are the primary targets of the enzyme's active site, which is designed to assist in the chemical reaction. This chapter elucidates the summary of structure and chemistry of enzymes, their active site features, charges and role of water in the structures to clarify the biochemistry of the enzymes in the depth of atomic features.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Ondipilliraja Rudhra
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| | - Mustfa Alkhanani
- Emergency Service Department, College of Applied Sciences, Al Maarefa University, Riyadh, Saudi Arabia
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
9
|
Li Q, Kang C. Structures and Dynamics of Dengue Virus Nonstructural Membrane Proteins. MEMBRANES 2022; 12:231. [PMID: 35207152 PMCID: PMC8880049 DOI: 10.3390/membranes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023]
Abstract
Dengue virus is an important human pathogen threating people, especially in tropical and sub-tropical regions. The viral genome has one open reading frame and encodes one polyprotein which can be processed into structural and nonstructural (NS) proteins. Four of the seven nonstructural proteins, NS2A, NS2B, NS4A and NS4B, are membrane proteins. Unlike NS3 or NS5, these proteins do not harbor any enzymatic activities, but they play important roles in viral replication through interactions with viral or host proteins to regulate important pathways and enzymatic activities. The location of these proteins on the cell membrane and the functional roles in viral replication make them important targets for antiviral development. Indeed, NS4B inhibitors exhibit antiviral activities in different assays. Structural studies of these proteins are hindered due to challenges in crystallization and the dynamic nature of these proteins. In this review, the function and membrane topologies of dengue nonstructural membrane proteins are presented. The roles of solution NMR spectroscopy in elucidating the structure and dynamics of these proteins are introduced. The success in the development of NS4B inhibitors proves that this class of proteins is an attractive target for antiviral development.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, 10 Biopolis Road, #5-01, Singapore 138670, Singapore
| |
Collapse
|
10
|
Dang M, Lim L, Roy A, Song J. Myricetin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting the Active and Locking the Inactive Conformations. ACS OMEGA 2022; 7:2798-2808. [PMID: 35097276 PMCID: PMC8793048 DOI: 10.1021/acsomega.1c05569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 05/22/2023]
Abstract
The dengue NS2B-NS3 protease existing in equilibrium between the active and inactive forms is essential for virus replication, thus representing a key drug target. Here, myricetin, a plant flavonoid, was characterized to noncompetitively inhibit the dengue protease. Further NMR study identified the protease residues perturbed by binding to myricetin, which were utilized to construct the myricetin-protease complexes. Strikingly, in the active form, myricetin binds to a new allosteric site (AS2) far away from the active site pocket and the allosteric site (AS1) for binding curcumin, while in the inactive form, it binds to both AS1 and AS2. To decipher the mechanism for the allosteric inhibition by myricetin, we conducted molecular dynamics simulations on different forms of dengue NS2B-NS3 proteases. Unexpectedly, the binding of myricetin to AS2 is sufficient to disrupt the active conformation by displacing the characteristic NS2B C-terminal β-hairpin from the active site pocket. By contrast, the binding of myricetin to AS1 and AS2 results in locking the inactive conformation. Therefore, myricetin represents the first small molecule, which allosterically inhibits the dengue protease by both disrupting the active conformation and locking the inactive conformation. The results enforce the notion that a global allosteric network exists in the dengue NS2B-NS3 protease, which is susceptible to allosteric inhibition by small molecules such as myricetin and curcumin. As myricetin has been extensively used as a food additive, it might be directly utilized to fight the dengue infections and as a promising starting material for further design of potent allosteric inhibitors.
Collapse
|
11
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Orton H, Herath I, Maleckis A, Jabar S, Szabo M, Graham B, Breen C, Topping L, Butler S, Otting G. Localising individual atoms of tryptophan side chains in the metallo- β-lactamase IMP-1 by pseudocontact shifts from paramagnetic lanthanoid tags at multiple sites. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:1-13. [PMID: 37905175 PMCID: PMC10583275 DOI: 10.5194/mr-3-1-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/21/2021] [Indexed: 11/01/2023]
Abstract
The metallo-β -lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13 C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δ χ ) tensors were determined by measuring pseudocontact shifts (PCSs) of backbone amide protons. The Δ χ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.
Collapse
Affiliation(s)
- Henry W. Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| | - Iresha D. Herath
- Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga,
Latvia
| | - Shereen Jabar
- Research School of Chemistry, The Australian National University,
Sullivans Creek Road, Canberra ACT 2601, Australia
| | - Monika Szabo
- Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University,
Parkville, VIC 3052, Australia
| | - Colum Breen
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein
Science, Research School of Chemistry, Australian National University,
Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
Murtuja S, Shilkar D, Sarkar B, Sinha BN, Jayaprakash V. A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Bioorg Med Chem 2021; 49:116415. [PMID: 34601454 PMCID: PMC8450225 DOI: 10.1016/j.bmc.2021.116415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.
Collapse
Affiliation(s)
- Sheikh Murtuja
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
| |
Collapse
|
14
|
Herath ID, Breen C, Hewitt SH, Berki TR, Kassir AF, Dodson C, Judd M, Jabar S, Cox N, Otting G, Butler SJ. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time-Resolved Luminescence Studies. Chemistry 2021; 27:13009-13023. [PMID: 34152643 PMCID: PMC8518945 DOI: 10.1002/chem.202101143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/12/2022]
Abstract
A lanthanide-binding tag site-specifically attached to a protein presents a tool to probe the protein by multiple spectroscopic techniques, including nuclear magnetic resonance, electron paramagnetic resonance and time-resolved luminescence spectroscopy. Here a new stable chiral LnIII tag, referred to as C12, is presented for spontaneous and quantitative reaction with a cysteine residue to generate a stable thioether bond. The synthetic protocol of the tag is relatively straightforward, and the tag is stable for storage and shipping. It displays greatly enhanced reactivity towards selenocysteine, opening a route towards selective tagging of selenocysteine in proteins containing cysteine residues. Loaded with TbIII or TmIII ions, the C12 tag readily generates pseudocontact shifts (PCS) in protein NMR spectra. It produces a relatively rigid tether between lanthanide and protein, which is beneficial for interpretation of the PCSs by single magnetic susceptibility anisotropy tensors, and it is suitable for measuring distance distributions in double electron-electron resonance experiments. Upon reaction with cysteine or other thiol compounds, the TbIII complex exhibits a 100-fold enhancement in luminescence quantum yield, affording a highly sensitive turn-on luminescence probe for time-resolved FRET assays and enzyme reaction monitoring.
Collapse
Affiliation(s)
- Iresha D. Herath
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Colum Breen
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Sarah H. Hewitt
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Thomas R. Berki
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Ahmad F. Kassir
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Charlotte Dodson
- Department of Pharmacy & PharmacologyUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Martyna Judd
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Shereen Jabar
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Nicholas Cox
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Gottfried Otting
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Stephen J. Butler
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| |
Collapse
|
15
|
Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021; 9:biomedicines9081044. [PMID: 34440248 PMCID: PMC8394600 DOI: 10.3390/biomedicines9081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)—a member of the Flaviviridae family—is an important human pathogen. Its genome encodes a polyprotein that can be further processed into structural and non-structural proteins. ZIKV protease is an important target for antiviral development due to its role in cleaving the polyprotein to release functional viral proteins. The viral protease is a two-component protein complex formed by NS2B and NS3. Structural studies using different approaches demonstrate that conformational changes exist in the protease. The structures and dynamics of this protease in the absence and presence of inhibitors were explored to provide insights into the inhibitor design. The dynamic nature of residues binding to the enzyme cleavage site might be important for the function of the protease. Due to the charges at the protease cleavage site, it is challenging to develop small-molecule compounds acting as substrate competitors. Developing small-molecule compounds to inhibit protease activity through an allosteric mechanism is a feasible strategy because conformational changes are observed in the protease. Herein, structures and dynamics of ZIKV protease are summarized. The conformational changes of ZIKV protease and other proteases in the same family are discussed. The progress in developing allosteric inhibitors is also described. Understanding the structures and dynamics of the proteases are important for designing potent inhibitors.
Collapse
|
16
|
Götz C, Hinze G, Gellert A, Maus H, von Hammerstein F, Hammerschmidt SJ, Lauth LM, Hellmich UA, Schirmeister T, Basché T. Conformational Dynamics of the Dengue Virus Protease Revealed by Fluorescence Correlation and Single-Molecule FRET Studies. J Phys Chem B 2021; 125:6837-6846. [PMID: 34137269 DOI: 10.1021/acs.jpcb.1c01797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dengue virus protease (DENV-PR) represents an attractive target for counteracting DENV infections. It is generally assumed that DENV-PR can exist in an open and a closed conformation and that active site directed ligands stabilize the closed state. While crystal structures of both the open and the closed conformation were successfully resolved, information about the prevalence of these conformations in solution remains elusive. Herein, we address the question of whether there is an equilibrium between different conformations in solution which can be influenced by addition of a competitive inhibitor. To this end, DENV-PR was statistically labeled by two dye molecules constituting a FRET (fluorescence resonance energy transfer) couple. Fluorescence correlation spectroscopy and photon-burst detection were employed to examine FRET pair labeled DENV-PRs freely diffusing in solution. The measurements were performed with two double mutants and with two dye couples. The data provide strong evidence that an equilibrium of at least two conformations of DENV-PR exists in solution. The competitive inhibitor stabilizes the closed state. Because the open and closed conformations appear to coexist in solution, our results support the picture of a conformational selection rather than that of an induced fit mechanism with respect to the inhibitor-induced formation of the closed state.
Collapse
Affiliation(s)
- Christian Götz
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gerald Hinze
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea Gellert
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hannah Maus
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franziska von Hammerstein
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca M Lauth
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Frankfurt, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Lee WHK, Liu W, Fan JS, Yang D. Dengue virus protease activity modulated by dynamics of protease cofactor. Biophys J 2021; 120:2444-2453. [PMID: 33894215 DOI: 10.1016/j.bpj.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022] Open
Abstract
The viral protease domain (NS3pro) of dengue virus is essential for virus replication, and its cofactor NS2B is indispensable for the proteolytic function. Although several NS3pro-NS2B complex structures have been obtained, the dynamic property of the complex remains poorly understood. Using NMR relaxation techniques, here we found that NS3pro-NS2B exists in both closed and open conformations that are in dynamic equilibrium on a submillisecond timescale in aqueous solution. Our structural information indicates that the C-terminal region of NS2B is disordered in the minor open conformation but folded in the major closed conformation. Using mutagenesis, we showed that the closed-open conformational equilibrium can be shifted by changing NS2B stability. Moreover, we revealed that the proteolytic activity of NS3pro-NS2B correlates well with the population of the closed conformation. Our results suggest that the closed-open conformational equilibrium can be used by both nature and humanity to control the replication of dengue virus.
Collapse
Affiliation(s)
- Wen Hao Kenneth Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Wei Liu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Lim L, Dang M, Roy A, Kang J, Song J. Curcumin Allosterically Inhibits the Dengue NS2B-NS3 Protease by Disrupting Its Active Conformation. ACS OMEGA 2020; 5:25677-25686. [PMID: 33073093 PMCID: PMC7557217 DOI: 10.1021/acsomega.0c00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 05/19/2023]
Abstract
Flaviviruses including dengue virus and Zika virus encode a unique two-component NS2B-NS3 protease essential for maturation/infectivity, thus representing a key target for designing antiflavivirus drugs. Here, for the first time, by NMR and molecular docking, we reveal that curcumin allosterically inhibits the dengue protease by binding to a cavity with no overlap with the active site. Further molecular dynamics simulations decode that the binding of curcumin leads to unfolding/displacing the characteristic β-hairpin of the C-terminal NS2B and consequently disrupting the closed (active) conformation of the protease. Our study identified a cavity most likely conserved in all flaviviral NS2B-NS3 proteases, which could thus serve as a therapeutic target for the discovery/design of small-molecule allosteric inhibitors. Moreover, as curcumin has been used as a food additive for thousands of years in many counties, it can be directly utilized to fight the flaviviral infections and as a promising starting for further design of potent allosteric inhibitors.
Collapse
|
19
|
Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res 2020; 182:104900. [PMID: 32763315 DOI: 10.1016/j.antiviral.2020.104900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Flavivirus is a genus of the Flaviviridae family which includes significant emerging and re-emerging human disease-causing arboviruses such as dengue and Zika viruses. Flaviviral non-structural protein 3 (NS3) protease-helicase plays essential roles in viral replication and is an attractive antiviral target. A construct which connects the cytoplasmic cofactor region of NS2B and NS3 protease with an artificial glycine-rich flexible linker has been widely used for structural, biochemical and drug-screening studies. The effect of this linker on the dynamics and enzymatic activity of the protease has been studied by several biochemical and NMR methods but the findings remained inconclusive. Here, we designed and carried out a comparative study of constructs of NS2B cofactor joined to the full length DENV4 NS3 in three different ways, namely bNS2B47NS3 (bivalent), eNS2B47NS3(enzymatically cleavable) and gNS2B47NS3 (glycine-rich linker). We report the crystal structures of linked and unlinked NS2B47-NS3 constructs in their free state and in complex with bovine pancreatic trypsin inhibitor (BPTI). These structures demonstrate that the NS2B cofactor predominantly adopts a closed conformation in complex with full-length NS3. The glycine-rich linker between NS2B and NS3 may promote the open conformation which interferes with protease activity. This negative impact on the enzyme structure and function is restricted to the protease activity as the ATPase activity is not affected in vitro.
Collapse
|
20
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
21
|
Agback P, Woestenenk E, Agback T. Probing contacts of inhibitor locked in transition states in the catalytic triad of DENV2 type serine protease and its mutants by 1H, 19F and 15 N NMR spectroscopy. BMC Mol Cell Biol 2020; 21:38. [PMID: 32450796 PMCID: PMC7249419 DOI: 10.1186/s12860-020-00283-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Background Detailed structural knowledge of enzyme-inhibitor complexes trapped in intermediate state is the key for a fundamental understanding of reaction mechanisms taking place in enzymes and is indispensable as a structure-guided drug design tool. Solution state NMR uniquely allows the study of active sites of enzymes in equilibrium between different tautomeric forms. In this study 1H, 19F and 15 N NMR spectroscopy has been used to probe the interaction contacts of inhibitors locked in transition states of the catalytic triad of a serine protease. It was demonstrated on the serotype II Dengue virus NS2B:NS3pro serine protease and its mutants, H51N and S135A, in complex with high-affinity ligands containing trifluoromethyl ketone (tfk) and boronic groups in the C-terminal of tetra-peptides. Results Monitoring 19F resonances, shows that only one of the two isomers of the tfk tetra-peptide binds with NS2B:NS3pro and that access to the bulk of the active site is limited. Moreover, there were no bound water found in proximity of the active site for any of the ligands manifesting in a favorable condition for formation of low barrier hydrogen bonds (LBHB) in the catalytic triad. Based on this data we were able to identify a locked conformation of the protein active site. The data also indicates that the different parts of the binding site most likely act independently of each other. Conclusions Our reported findings increases the knowledge of the detailed function of the catalytic triad in serine proteases and could facilitate the development of rational structure based inhibitors that can selectively target the NS3 protease of Dengue type II (DENV2) virus. In addition the results shows the usefulness of probing active sites using 19F NMR spectroscopy.
Collapse
Affiliation(s)
- Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| | - Esmeralda Woestenenk
- Protein Expression and Characterization Drug Discovery and Development Platform, Science for Life Laboratory, Solna, Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| |
Collapse
|
22
|
Denis M, Softley C, Giuntini S, Gentili M, Ravera E, Parigi G, Fragai M, Popowicz G, Sattler M, Luchinat C, Cerofolini L, Nativi C. The Photocatalyzed Thiol-ene reaction: A New Tag to Yield Fast, Selective and reversible Paramagnetic Tagging of Proteins. Chemphyschem 2020; 21:863-869. [PMID: 32092218 PMCID: PMC7384118 DOI: 10.1002/cphc.202000071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Paramagnetic restraints have been used in biomolecular NMR for the last three decades to elucidate and refine biomolecular structures, but also to characterize protein-ligand interactions. A common technique to generate such restraints in proteins, which do not naturally contain a (paramagnetic) metal, consists in the attachment to the protein of a lanthanide-binding-tag (LBT). In order to design such LBTs, it is important to consider the efficiency and stability of the conjugation, the geometry of the complex (conformational exchanges and coordination) and the chemical inertness of the ligand. Here we describe a photo-catalyzed thiol-ene reaction for the cysteine-selective paramagnetic tagging of proteins. As a model, we designed an LBT with a vinyl-pyridine moiety which was used to attach our tag to the protein GB1 in fast and irreversible fashion. Our tag T1 yields magnetic susceptibility tensors of significant size with different lanthanides and has been characterized using NMR and relaxometry measurements.
Collapse
Affiliation(s)
- Maxime Denis
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| | - Charlotte Softley
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Stefano Giuntini
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Matteo Gentili
- Giotto Biotech, S.R.LVia Madonna del piano 650019Sesto Fiorentino (FI)Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Giacomo Parigi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Grzegorz Popowicz
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Michael Sattler
- Biomolecular NMR, Department ChemieTechnical University of MunichLichtenbergstrasse 485747GarchingGermany
- Institute of Structural BiologyHelmholtz Center MunichNeuherbergGermany
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (C.I.R.M.M.P)Via L. Sacconi 650019Sesto FIorentino (FI)Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI), Italy
| |
Collapse
|
23
|
Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies. Int J Mol Sci 2020; 21:ijms21072527. [PMID: 32260545 PMCID: PMC7177695 DOI: 10.3390/ijms21072527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.
Collapse
|
24
|
Accelerating structural life science by paramagnetic lanthanide probe methods. Biochim Biophys Acta Gen Subj 2020; 1864:129332. [DOI: 10.1016/j.bbagen.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 02/08/2023]
|
25
|
Wang L, Liang R, Gao Y, Li Y, Deng X, Xiang R, Zhang Y, Ying T, Jiang S, Yu F. Development of Small-Molecule Inhibitors Against Zika Virus Infection. Front Microbiol 2019; 10:2725. [PMID: 31866959 PMCID: PMC6909824 DOI: 10.3389/fmicb.2019.02725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Here, we have described the different stages of the ZIKV life cycle and summarized the latest progress in the development of small-molecule inhibitors against ZIKV infection. We have also discussed some general strategies for the discovery of small-molecule ZIKV inhibitors.
Collapse
Affiliation(s)
- Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanbai Li
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Rong Xiang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yina Zhang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
26
|
Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. J Med Chem 2019; 63:140-156. [DOI: 10.1021/acs.jmedchem.9b00759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tonko Dražić
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sara Kopf
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - James Corridan
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mila M. Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Christian D. Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
28
|
Majerová T, Novotný P, Krýsová E, Konvalinka J. Exploiting the unique features of Zika and Dengue proteases for inhibitor design. Biochimie 2019; 166:132-141. [PMID: 31077760 DOI: 10.1016/j.biochi.2019.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Zika and Dengue viruses have attracted substantial attention from researchers in light of recent outbreaks of Dengue fever and increases in cases of congenital microcephaly in areas with Zika incidence. This review summarizes the current state of knowledge about Zika and Dengue proteases. These enzymes have several interesting features: 1) NS3 serine protease requires the activating co-factor NS2B, which is anchored in the membrane of the endoplasmic reticulum; 2) NS2B displays extensive conformational dynamics; 3) NS3 is a multidomain protein with proteolytic, NTPase, RNA 5' triphosphatase and helicase activity and has many protein-protein interaction partners; 4) NS3 is autoproteolytically released from its precursor. Attempts to design tight-binding and specific active-site inhibitors are complicated by the facts that the substrate pocket of the NS2B-NS3 protease is flat and the active-site ligands are charged. The ionic character of potential active-site inhibitors negatively influences their cell permeability. Possibilities to block cis-autoprocessing of the protease precursor have recently been considered. Additionally, potential allosteric sites on NS2B-NS3 proteases have been identified and allosteric compounds have been designed to impair substrate binding and/or block the NS2B-NS3 interaction. Such compounds could be specific to viral proteases, without off-target effects on host serine proteases, and could have favorable pharmacokinetic profiles. This review discusses various groups of inhibitors of these proteases according to their mechanisms of action and chemical structures.
Collapse
Affiliation(s)
- Taťána Majerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic
| | - Pavel Novotný
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Eliška Krýsová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843, Prague, Czech Republic.
| |
Collapse
|
29
|
Yao Y, Huo T, Lin YL, Nie S, Wu F, Hua Y, Wu J, Kneubehl AR, Vogt MB, Rico-Hesse R, Song Y. Discovery, X-ray Crystallography and Antiviral Activity of Allosteric Inhibitors of Flavivirus NS2B-NS3 Protease. J Am Chem Soc 2019; 141:6832-6836. [PMID: 31017399 DOI: 10.1021/jacs.9b02505] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.
Collapse
|
30
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
31
|
Abstract
The DEER (double electron-electron resonance, also called PELDOR) experiment, which probes the dipolar interaction between two spins and thus reveals distance information, is an important tool for structural studies. In recent years, shaped pump pulses have become a valuable addition to the DEER experiment. Shaped pulses offer an increased excitation bandwidth and the possibility to precisely adjust pulse parameters, which is beneficial especially for demanding biological samples. We have noticed that on our home built W-band spectrometer, the dead-time free 4-pulse DEER sequence with chirped pump pulses suffers from distortions at the end of the DEER trace. Although minor, these are crucial for Gd(III)-Gd(III) DEER where the modulation depth is on the order of a few percent. Here we present a modified DEER sequence—referred to as reversed DEER (rDEER)—that circumvents the coherence pathway which gives rise to the distortion. We compare the rDEER (with two chirped pump pulses) performance values to regular 4-pulse DEER with one monochromatic as well as two chirped pulses and investigate the source of the distortion. We demonstrate the applicability and effectivity of rDEER on three systems, ubiquitin labeled with Gd(III)-DOTA-maleimide (DOTA, 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid) or with Gd(III)-DO3A (DO3A, 1,4,7,10-Tetraazacyclododecane-1,4,7-triyl) triacetic acid) and the multidrug transporter MdfA, labeled with a Gd(III)-C2 tag, and report an increase in the signal-to-noise ratio in the range of 3 to 7 when comparing the rDEER with two chirped pump pulses to standard 4-pulse DEER.
Collapse
|
32
|
Nitsche C. Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019; 11:157-165. [PMID: 30806881 DOI: 10.1007/s12551-019-00508-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead compounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way forward for successful identification of future lead compounds.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
33
|
Swain SP, Mohanty S. Imidazolidinones and Imidazolidine‐2,4‐diones as Antiviral Agents. ChemMedChem 2019; 14:291-302. [DOI: 10.1002/cmdc.201800686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sharada Prasanna Swain
- Department of Process ChemistryDr. Reddy's Lab Ltd. CTO-III, IDA, Bollaram Hyderabad 502325 India
| | - Sandeep Mohanty
- Department of Process ChemistryDr. Reddy's Lab Ltd. CTO-III, IDA, Bollaram Hyderabad 502325 India
| |
Collapse
|
34
|
Hill ME, Yildiz M, Hardy JA. Cysteine Disulfide Traps Reveal Distinct Conformational Ensembles in Dengue Virus NS2B-NS3 Protease. Biochemistry 2018; 58:776-787. [PMID: 30472839 DOI: 10.1021/acs.biochem.8b00978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dengue virus protease (NS2B-NS3pro) plays a critical role in the dengue viral life cycle, making it an attractive drug target for dengue-related pathologies, including dengue hemorrhagic fever. A number of studies indicate that NS2B-NS3pro undergoes a transition between two widely different conformational states: an "open" (inactive) conformation and a "closed" (active) conformation. For the past several years, the equilibrium between these states and the resting conformation of NS2B-NS3pro have been debated, although a strong consensus is emerging. To investigate the importance of such conformational states, we developed versions of NS2B-NS3pro that allow us to trap the enzyme in various distinct conformations. Our data from these variants suggest that the enzymatic activity appears to be dependent on the movement of NS2B and may rely on the flexibility of the protease core. Locking the enzyme into the "closed" conformation dramatically increased activity, strongly suggesting that the "closed" conformation is the active conformation. The observed resting state of the enzyme depends largely on the construct used to express the NS2B-NS3pro complex. In an "unlinked" construct, in which the NS2B and NS3 regions exist as independent, co-expressed polypeptides, the enzyme rests predominantly in a "closed", active conformation. In contrast, in a "linked" construct, in which NS2B and NS3 are attached by a nine-amino acid linker, NS2B-NS3pro adopts a more relaxed, alternative conformation. Nevertheless, even the unlinked construct samples both the "closed" and other alternative conformations. Given our findings, and the more realistic resemblance of NS2B-NS3pro to the native enzyme, these data strongly suggest that studies should focus on the "unlinked" constructs moving forward. Additionally, the results from these studies provide a more detailed understanding of the various poses of the dengue virus NS2B-NS3 protease and should help guide future drug discovery efforts aimed at this enzyme.
Collapse
Affiliation(s)
- Maureen E Hill
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Muslum Yildiz
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Jeanne A Hardy
- Department of Chemistry , University of Massachusetts , 374 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
35
|
Phoo WW, Zhang Z, Wirawan M, Chew EJC, Chew ABL, Kouretova J, Steinmetzer T, Luo D. Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res 2018; 160:17-24. [PMID: 30315877 DOI: 10.1016/j.antiviral.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023]
Abstract
Zika virus NS2B-NS3 protease plays an essential role in viral replication by processing the viral polyprotein into individual proteins. The viral protease is therefore considered as an ideal antiviral drug target. To facilitate the development of protease inhibitors, we report three high-resolution co-crystal structures of bZiPro with peptidomimetic inhibitors composed of a P1-P4 segment and different P1' residues. Compounds 1 and 2 possess small P1' groups that are split off by bZiPro, which could be detected by mass spectrometry. On the other hand, the more potent compound 3 contains a bulky P1' benzylamide structure that is resistant to cleavage by bZiPro, demonstrating that presence of an uncleavable C-terminal cap contributes to a slightly improved inhibitory potency. The N-terminal phenylacetyl residue occupies a position above the P1 side chain and therefore stabilizes a horseshoe-like backbone conformation of the bound inhibitors. The P4 moieties show unique intra- and intermolecular interactions. Our work reports the detailed binding mode interactions of substrate-analogue inhibitors within the S4-S1' pockets and explains the preference of bZiPro for basic P1-P3 residues. These new structures of protease-inhibitor complexes will guide the design of more effective NS2B-NS3 protease inhibitors with improved potency and bioavailability.
Collapse
Affiliation(s)
- Wint Wint Phoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhenzhen Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Melissa Wirawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Edwin Jun Chen Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Alvin Bing Liang Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, RTP 02-07, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jenny Kouretova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, Marburg 35032, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, Marburg 35032, Germany.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
36
|
Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:52-66. [PMID: 30217495 PMCID: PMC7111307 DOI: 10.1016/j.pbiomolbio.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 01/19/2023]
Abstract
Coronavirus 3C-like and Flavivirus NS2B-NS3 proteases utilize the chymotrypsin fold to harbor their catalytic machineries but also contain additional domains/co-factors. Over the past decade, we aimed to decipher how the extra domains/co-factors mediate the catalytic machineries of SARS 3C-like, Dengue and Zika NS2B-NS3 proteases by characterizing their folding, structures, dynamics and inhibition with NMR, X-ray crystallography and MD simulations, and the results revealed: 1) the chymotrypsin fold of the SARS 3C-like protease can independently fold, while, by contrast, those of Dengue and Zika proteases lack the intrinsic capacity to fold without co-factors. 2) Mutations on the extra domain of SARS 3C-like protease can transform the active catalytic machinery into the inactive collapsed state by structurally-driven allostery. 3) Amazingly, even without detectable structural changes, mutations on the extra domain are sufficient to either inactivate or enhance the catalytic machinery of SARS 3C-like protease by dynamically-driven allostery. 4) Global networks of correlated motions have been identified: for SARS 3C-like protease, N214A inactivates the catalytic machinery by decoupling the network, while STI/A and STIF/A enhance by altering the patterns of the network. The global networks of Dengue and Zika proteases are coordinated by their NS2B-cofactors. 5) Natural products were identified to allosterically inhibit Zika and Dengue proteases through binding a pocket on the back of the active site. Therefore, by introducing extra domains/cofactors, nature develops diverse strategies to regulate the catalytic machinery embedded on the chymotrypsin fold through folding, structurally- and dynamically-driven allostery, all of which might be exploited to develop antiviral drugs.
Collapse
|
37
|
Li Y, Loh YR, Hung AW, Kang C. Characterization of molecular interactions between Zika virus protease and peptides derived from the C-terminus of NS2B. Biochem Biophys Res Commun 2018; 503:691-696. [DOI: 10.1016/j.bbrc.2018.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
|
38
|
Joubert J, Foxen EB, Malan SF. Microwave Optimized Synthesis of N-(adamantan-1-yl)-4-[(adamantan-1-yl)-sulfamoyl]benzamide and Its Derivatives for Anti-Dengue Virus Activity. Molecules 2018; 23:molecules23071678. [PMID: 29996497 PMCID: PMC6099921 DOI: 10.3390/molecules23071678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022] Open
Abstract
Dengue fever is a major public health concern in many tropical and sub-tropical regions. The development of agents that are able to inhibit the dengue virus (DENV) is therefore of utmost importance. This study focused on the synthesis of dual acting hybrids comprising structural features of known DENV inhibitors, amantadine (1) and benzsulfonamide derivatives. Hybrid compound 3, N-(adamantan-1-yl)-4-[(adamantan-1-yl)sulfamoyl]benzamide, was synthesized by reacting amantadine (1) with 4-(chlorosulfonyl)benzoic acid (2), after optimization, in a 2:1 ratio under microwave irradiation conditions in a one-pot reaction. Mono-adamantane derivatives 6 and 7 were synthesised via acyl halide formation of benzoic acid (4) and 4-sulfamoyl benzoic acid (5), respectively, followed by conjugation with amantadine (1) through a conventional or microwave irradiation assisted nucleophilic addition/substitution reaction. The use of microwave irradiation lead to significant increases in yields and a reduction in reaction times. Nuclear magnetic resonance, infra-red and mass spectral data confirmed the structures. Compound 3 and 7 showed significant anti-DENV serotype 2 activity (IC50 = 22.2 µM and 42.8 µM) and low cytotoxicity (CC50 < 100 µM). Possible mechanisms of action are also proposed, which are based on the biological results and molecular docking studies.
Collapse
Affiliation(s)
- Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville 7530, South Africa.
| | - Eugene B Foxen
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville 7530, South Africa.
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Bellville 7530, South Africa.
| |
Collapse
|
39
|
Becker W, Adams LA, Graham B, Wagner GE, Zangger K, Otting G, Nitsche C. Trimethylsilyl tag for probing protein-ligand interactions by NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:211-218. [PMID: 29564580 DOI: 10.1007/s10858-018-0173-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Protein-ligand titrations can readily be monitored with a trimethylsilyl (TMS) tag. Owing to the intensity, narrow line shape and unique chemical shift of a TMS group, dissociation constants can be determined from straightforward 1D 1H-NMR spectra not only in the fast but also in the slow exchange limit. The tag is easily attached to cysteine residues and a sensitive reporter of ligand binding also at sites where it does not interfere with ligand binding or catalytic efficiency of the target protein. Its utility is demonstrated for the Zika virus NS2B-NS3 protease and the human prolyl isomerase FK506 binding protein.
Collapse
Affiliation(s)
- Walter Becker
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Luke A Adams
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Gabriel E Wagner
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010, Graz, Austria
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
40
|
Gibbs AC, Steele R, Liu G, Tounge BA, Montelione GT. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes. Biochemistry 2018; 57:1591-1602. [PMID: 29447443 DOI: 10.1021/acs.biochem.7b01127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19F and 1H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.
Collapse
Affiliation(s)
- Alan C Gibbs
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Ruth Steele
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Gaohua Liu
- Nexomics Biosciences, Inc. , 1200 Florence Columbus Road , Bordentown , New Jersey 08505 , United States
| | - Brett A Tounge
- Janssen Research and Development LLC , Welsh & McKean Roads , Spring House , Pennsylvania 19477 , United States
| | - Gaetano T Montelione
- Nexomics Biosciences, Inc. , 1200 Florence Columbus Road , Bordentown , New Jersey 08505 , United States
| |
Collapse
|
41
|
Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G. Small neutral Gd(iii) tags for distance measurements in proteins by double electron–electron resonance experiments. Phys Chem Chem Phys 2018; 20:23535-23545. [DOI: 10.1039/c8cp03532f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small Gd(iii) tags based on DO3A deliver narrow and readily predictable distances by double electron–electron resonance (DEER) measurements.
Collapse
Affiliation(s)
| | - Michael D. Lee
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Angeliki Giannoulis
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Luke A. Adams
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville
- Australia
| | - Christoph Nitsche
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Gottfried Otting
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
42
|
NMR in structure-based drug design. Essays Biochem 2017; 61:485-493. [PMID: 29118095 DOI: 10.1042/ebc20170037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed.
Collapse
|
43
|
Gao J, Liang E, Ma R, Li F, Liu Y, Liu J, Jiang L, Li C, Dai H, Wu J, Su X, He W, Ruan K. Fluorine Pseudocontact Shifts Used for Characterizing the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia Gao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
- Center of Medical Physics and Technology; Hefei Institute of Physical Science, Cancer Hospital; Chinese Academy of Science; Hefei Anhui 230031 P. R. China
| | - E Liang
- Department of pharmacology and Pharmaceutical Sciences; School of Medicine, Tsinghua-Peking Joint centers for Lifer Sciences; Tsinghua University; Beijing 100084 P. R. China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Yixiang Liu
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Jiuyang Liu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Ling Jiang
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Haiming Dai
- Center of Medical Physics and Technology; Hefei Institute of Physical Science, Cancer Hospital; Chinese Academy of Science; Hefei Anhui 230031 P. R. China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collatorative Innovation Center of Chemical Science and Engineering(Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Wei He
- Department of pharmacology and Pharmaceutical Sciences; School of Medicine, Tsinghua-Peking Joint centers for Lifer Sciences; Tsinghua University; Beijing 100084 P. R. China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| |
Collapse
|
44
|
Nitsche C, Otting G. NMR studies of ligand binding. Curr Opin Struct Biol 2017; 48:16-22. [PMID: 29017071 DOI: 10.1016/j.sbi.2017.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
NMR spectroscopy is an established tool in drug discovery, but its strength is commonly regarded to be largely confined to the early stages of hit discovery and fragment based drug design, where NMR offers unique capabilities of characterizing the binding modes of ligand molecules that bind sufficiently weakly to be in rapid exchange between bound and free state. Here we, first, provide a meta-review of recent reviews on NMR studies of ligand binding and, second, review recent progress towards NMR characterization of the ligand binding mode in stable protein-ligand complexes, with particular emphasis on the global positioning system (GPS) approach enabled by paramagnetic lanthanide tags.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
45
|
Gao J, Liang E, Ma R, Li F, Liu Y, Liu J, Jiang L, Li C, Dai H, Wu J, Su X, He W, Ruan K. Fluorine Pseudocontact Shifts Used for Characterizing the Protein-Ligand Interaction Mode in the Limit of NMR Intermediate Exchange. Angew Chem Int Ed Engl 2017; 56:12982-12986. [DOI: 10.1002/anie.201707114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Gao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
- Center of Medical Physics and Technology; Hefei Institute of Physical Science, Cancer Hospital; Chinese Academy of Science; Hefei Anhui 230031 P. R. China
| | - E Liang
- Department of pharmacology and Pharmaceutical Sciences; School of Medicine, Tsinghua-Peking Joint centers for Lifer Sciences; Tsinghua University; Beijing 100084 P. R. China
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Yixiang Liu
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Jiuyang Liu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Ling Jiang
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Conggang Li
- Key Laboratory of Magnet Resonance in Biological Systems; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics; Wuhan Center for Magnet Resonance Department; Wuhan Institute of Physics and Mathematics; Chinese Academy of Science; Wuhan Hubei 430071 P. R. China
| | - Haiming Dai
- Center of Medical Physics and Technology; Hefei Institute of Physical Science, Cancer Hospital; Chinese Academy of Science; Hefei Anhui 230031 P. R. China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry; Collatorative Innovation Center of Chemical Science and Engineering(Tianjin); Nankai University; Tianjin 300071 P. R. China
| | - Wei He
- Department of pharmacology and Pharmaceutical Sciences; School of Medicine, Tsinghua-Peking Joint centers for Lifer Sciences; Tsinghua University; Beijing 100084 P. R. China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Science; University of Science and Technology of China; Huangshan Road Hefei Anhui 230027 P. R. China
| |
Collapse
|
46
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
47
|
Kang C, Keller TH, Luo D. Zika Virus Protease: An Antiviral Drug Target. Trends Microbiol 2017; 25:797-808. [PMID: 28789826 DOI: 10.1016/j.tim.2017.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 11/28/2022]
Abstract
The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Thomas H Keller
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis way, Nanos, #03-01, 138669, Singapore.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, 636921, Singapore.
| |
Collapse
|
48
|
Luo PH, Zhang XR, Huang L, Yuan L, Zhou XZ, Gao X, Li LS. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B–NS3 protease inhibitors. J Recept Signal Transduct Res 2017; 37:481-492. [DOI: 10.1080/10799893.2017.1358283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pei H. Luo
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xuan R. Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Lan Huang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Lun Yuan
- Department of Pharmaceutical Engineering, Sichuan University, Chengdu, China
| | - Xang Z. Zhou
- Department of Pharmaceutical Engineering, Sichuan University, Chengdu, China
| | - X. Gao
- Department of Pharmaceutical Engineering, Sichuan University, Chengdu, China
| | - Ling S. Li
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Woestenenk E, Agback P, Unnerståle S, Henderson I, Agback T. Co-refolding of a functional complex of Dengue NS3 protease and NS2B co-factor domain and backbone resonance assignment by solution NMR. Protein Expr Purif 2017; 140:16-27. [PMID: 28751017 DOI: 10.1016/j.pep.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
A novel approach for separate expression of dengue virus NS3 protease and its NS2B cofactor domain is described in this paper. The two proteins are expressed in E.coli and purified separately and subsequently efficiently co-refolded to form a stable complex. This straightforward and robust method allows for separate isotope labeling of the two proteins, facilitating analysis by nuclear magnetic resonance (NMR) spectroscopy. Unlinked NS2B-NS3pro behaves better in NMR spectroscopy than linked NS2B-NS3pro, which has resulted in the backbone resonance assignment of the unlinked NS2B-NS3 complex bound to a peptidic boronic acid inhibitor.
Collapse
Affiliation(s)
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | | | - Ian Henderson
- Medivir AB, PO Box 1086, SE-141 22, Huddinge, Sweden
| | | |
Collapse
|
50
|
Li Y, Phoo WW, Loh YR, Zhang Z, Ng EY, Wang W, Keller TH, Luo D, Kang C. Structural characterization of the linked NS2B-NS3 protease of Zika virus. FEBS Lett 2017; 591:2338-2347. [PMID: 28675775 DOI: 10.1002/1873-3468.12741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023]
Abstract
The Zika virus (ZIKV) NS2B-NS3 protease is an important drug target. The conventional flaviviral protease constructs used for structural studies contain the NS2B cofactor region linked to the NS3 protease domain via a glycine-rich flexible linker. Here, we examined the structural dynamics of this conventional Zika protease (gZiPro) using NMR spectroscopy. Although the glycine-rich linker in gZiPro does not alter the overall folding of the protease in solution, gZiPro is not homogenous in ion exchange chromatography. Compared to the unlinked protease construct, the artificial linker affects the chemical environment of many residues including H51 in the catalytic triad. Our study provides a direct comparison of ZIKV protease constructs with and without an artificial linker.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Wint Wint Phoo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ying Ru Loh
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Zhenzhen Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Elizabeth Yihui Ng
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Weiling Wang
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Thomas H Keller
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|