1
|
Morrison ZA, Eddenden A, Subramanian AS, Howell PL, Nitz M. Termination of Poly- N-acetylglucosamine (PNAG) Polymerization with N-Acetylglucosamine Analogues. ACS Chem Biol 2022; 17:3036-3046. [PMID: 35170962 DOI: 10.1021/acschembio.1c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacteria require polysaccharides for structure, survival, and virulence. Despite their central role in microbiology, few tools are available to manipulate their production. In E. coli, the glycosyltransferase complex PgaCD produces poly-N-acetylglucosamine (PNAG), an extracellular matrix polysaccharide required for biofilm formation. We report that C6-substituted (H, F, N3, SH, NH2) UDP-GlcNAc substrate analogues are inhibitors of PgaCD. In vitro, the inhibitors cause PNAG chain termination, consistent with the mechanism of PNAG polymerization from the nonreducing terminus. In vivo, expression of the GlcNAc-1-kinase NahK in E. coli provided a non-native GlcNAc salvage pathway that produced the UDP-GlcNAc analogue inhibitors in situ. The 6-fluoro and 6-deoxy derivatives were potent inhibitors of biofilm formation in the transformed strain, providing a tool to manipulate this key exopolysaccharide. Characterization of the UDP-GlcNAc pool and quantification of PNAG generation support PNAG termination as the primary in vivo mechanism of biofilm inhibition by 6-fluoro UDP-GlcNAc.
Collapse
Affiliation(s)
- Zachary A Morrison
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Alexander Eddenden
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| | - Adithya Shankara Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, OntarioM5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
2
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
3
|
Qiao M, Li B, Ji Y, Lin L, Linhardt R, Zhang X. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Crit Rev Biotechnol 2020; 41:47-62. [PMID: 33153306 DOI: 10.1080/07388551.2020.1844623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar nucleotides are the principal building blocks for the synthesis of most complex carbohydrates and are crucial intermediates in carbohydrate metabolism. Uridine diphosphate (UDP) monosaccharides are among the most common sugar nucleotide donors and are transferred to glycosyl acceptors by glycosyltransferases or synthases in glycan biosynthetic pathways. These natural nucleotide donors have great biological importance, however, the synthesis and application of unnatural sugar nucleotides that are not available from in vivo biosynthesis are not well explored. In this review, we summarize the progress in the preparation of unnatural sugar nucleotides, in particular, the widely studied UDP-GlcNAc/GalNAc analogs. We focus on the "two-block" synthetic pathway that is initiated from monosaccharides, in which the first block is the synthesis of sugar-1-phosphate and the second block is the diphosphate bond formation. The biotechnological applications of these unnatural sugar nucleotides showing their physiological and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Liu YL, Qing FL, Xu XH. 1,2-Bis(trifluoromethylthiolation) of Aromatic Epoxides with AgSCF 3. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Li Liu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
- Key Laboratory of Science and Technology of Eco-Textiles; Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu 201620 Shanghai China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| |
Collapse
|
5
|
Abstract
Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides composed of alternating hexosamine and uronic acid or galatose residue that include hyaluronan, chondroitin sulfate and dermatan sulfate, heparin and heparan sulfate, and keratan sulfate. GAGs display a range of critical biological functions, including regulating cell-cell interactions and cell proliferation, inhibiting enzymes, and activating growth factor receptors during various metabolic processes. Indeed, heparin is a widely used GAG-based anticoagulant drug. Unfortunately, naturally derived GAGs are highly heterogeneous, limiting studies of their structure-activity relationships and even resulting in safety concerns. For example, the heparin contamination crisis in 2007 reportedly killed more than a hundred people in the United States. Unfortunately, the chemical synthesis of GAGs, or their oligosaccharides, based on repetitive steps of protection, activation, coupling, and deprotection, is incredibly challenging. Recent advances in chemoenzymatic synthesis integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions, mimicking the biosynthetic pathway of GAGs, and represent a promising strategy to solve many of these synthetic challenges. In this critical Account, we examine the recent progress made, in our laboratory and by others, in the chemoenzymatic synthesis of GAGs, focusing on heparan sulfate and heparin, a class of GAGs with profound physiological and pharmacological importance. A major challenge for the penetration of the heparin market by homogeneous heparin products is their cost-effective large-scale synthesis. In the past decade, we and our collaborators have systematically explored the key factors that impact this process, including better enzyme expression, improved biocatalysts using protein engineering and immobilization, low cost production of enzyme cofactors, optimization of the order of enzymatic transformations, as well as development of efficient technologies, such as using ultraviolet absorbing or fluorous tags, to detect and purify synthetic intermediates. These improvements have successfully resulted in multigram-scale synthesis of low-molecular-weight heparins (LMWHs), with some showing excellent anticoagulant activity and even resulting in more effective protamine reversal than commercial, animal-sourced LMWH drugs. Sophisticated structural analysis is another challenge for marketing heparins, since impurities and contaminants can be present that are difficult to distinguish from heparin drug products. The availability of the diverse library of structurally defined heparin oligosaccharides has facilitated the systematic analytical studies undertaken by our group, resulting in important information for characterizing diverse heparin products, safeguarding their quality. Recently, a series of chemically modified nucleotide sugars have been investigated in our laboratory and have been accepted by synthases to obtain novel GAGs and GAG oligosaccharides. These include fluoride and azido regioselectively functionalized sugars and stable isotope-enriched GAGs and GAG oligosaccharides, critical for better understanding the biological roles of these important biopolymers. We speculate that the repertoire of unnatural acceptors and nucleotide sugar donors will soon be expanded to afford many new GAG analogues with new biological and pharmacological properties including improved specificity and metabolic stability.
Collapse
Affiliation(s)
- Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
7
|
Hu JP, Wu ZX, Xie T, Liu XY, Yan X, Sun X, Liu W, Liang L, He G, Gan Y, Gou XJ, Shi Z, Zou Q, Wan H, Shi HB, Chang S. Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review. Protein Pept Lett 2019; 26:648-663. [PMID: 31218945 DOI: 10.2174/0929866526666190620145919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
After decades of efforts, tuberculosis has been well controlled in most places. The existing drugs are no longer sufficient for the treatment of drug-resistant Mycobacterium tuberculosis due to significant toxicity and selective pressure, especially for XDR-TB. In order to accelerate the development of high-efficiency, low-toxic antituberculosis drugs, it is particularly important to use Computer Aided Drug Design (CADD) for rational drug design. Here, we systematically reviewed the specific role of molecular simulation in the discovery of new antituberculosis drugs. The purpose of this review is to overview current applications of molecular simulation methods in the discovery of antituberculosis drugs. Furthermore, the unique advantages of molecular simulation was discussed in revealing the mechanism of drug resistance. The comprehensive use of different molecular simulation methods will help reveal the mechanism of drug resistance and improve the efficiency of rational drug design. With the help of molecular simulation methods such as QM/MM method, the mechanisms of biochemical reactions catalyzed by enzymes at atomic level in Mycobacterium tuberculosis has been deeply analyzed. QSAR and virtual screening both accelerate the development of highefficiency, low-toxic potential antituberculosis drugs. Improving the accuracy of existing algorithms and developing more efficient new methods for CADD will always be a hot topic in the future. It is of great value to utilize molecular dynamics simulation to investigate complex systems that cannot be studied in experiments, especially for drug resistance of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jian-Ping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zhi-Xiang Wu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Tao Xie
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin-Yu Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Gang He
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Ya Gan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Xiao-Jun Gou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Zheng Shi
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Qiang Zou
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Hu-Bing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
8
|
Calabretta PJ, Hodges HL, Kraft MB, Marando VM, Kiessling LL. Bacterial Cell Wall Modification with a Glycolipid Substrate. J Am Chem Soc 2019; 141:9262-9272. [PMID: 31081628 DOI: 10.1021/jacs.9b02290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.
Collapse
Affiliation(s)
- Phillip J Calabretta
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | | | | | - Victoria M Marando
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Laura L Kiessling
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
9
|
Chen WJ, Han SB, Xie ZB, Huang HS, Jiang DH, Gong SS, Sun Q. Efficient Synthesis of UDP-Furanoses via 4,5-Dicyanoimidazole(DCI)-Promoted Coupling of Furanosyl-1-Phosphates with Uridine Phosphoropiperidate. Molecules 2019; 24:molecules24040655. [PMID: 30781738 PMCID: PMC6412210 DOI: 10.3390/molecules24040655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
A P(V)-N activation method based on nucleoside phosphoropiperidate/DCI system has been developed for improved synthesis of diverse UDP-furanoses. The reaction conditions including temperature, amount of activator, and reaction time were optimized to alleviate the degradation of UDP-furanoses to cyclic phosphates. In addition, an efficient and facile phosphoramidite route was employed for the preparation of furanosyl-1-phosphates.
Collapse
Affiliation(s)
- Wei-Jie Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Shuai-Bo Han
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Zhen-Biao Xie
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Hua-Shan Huang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Duo-Hua Jiang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Shan-Shan Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Avenue, Nanchang 330013, China.
| |
Collapse
|
10
|
Baumann A, Marchner S, Daum M, Hoffmann-Röder A. Synthesis of Fluorinated Leishmania
Cap Trisaccharides for Diagnostic Tool and Vaccine Development. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andreas Baumann
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Stefan Marchner
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Markus Daum
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center For Integrated Protein Science Munich (CIPSM) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
11
|
Janoš P, Kozmon S, Tvaroška I, Koča J. How Mycobacterium tuberculosis
Galactofuranosyl Transferase 2 (GlfT2) Generates Alternating β-(1-6) and β-(1-5) Linkages: A QM/MM Molecular Dynamics Study of the Chemical Steps. Chemistry 2018; 24:7051-7059. [DOI: 10.1002/chem.201800558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Pavel Janoš
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Stanislav Kozmon
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Igor Tvaroška
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Institute of Chemistry; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 38 Bratislava Slovakia
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Faculty of Science-National Centre for Biomolecular Research; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
12
|
Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JSM. Tsuji-Trost Reaction of Non-Derivatized Allylic Alcohols. Chemistry 2018; 24:3488-3498. [DOI: 10.1002/chem.201705164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Sunisa Akkarasamiyo
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Supaporn Sawadjoon
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories; Uppsala University, Box 523; 75120 Uppsala Sweden
| | - Joseph S. M. Samec
- Department of Organic Chemistry; Stockholm University; 106 91 Stockholm Sweden
| |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
14
|
Schultz VL, Zhang X, Linkens K, Rimel J, Green DE, DeAngelis PL, Linhardt RJ. Chemoenzymatic Synthesis of 4-Fluoro-N-Acetylhexosamine Uridine Diphosphate Donors: Chain Terminators in Glycosaminoglycan Synthesis. J Org Chem 2017; 82:2243-2248. [PMID: 28128958 DOI: 10.1021/acs.joc.6b02929] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unnatural uridine diphosphate (UDP)-sugar donors, UDP-4-deoxy-4-fluoro-N-acetylglucosamine (4FGlcNAc) and UDP-4-deoxy-4-fluoro-N-acetylgalactosamine (4FGalNAc), were prepared using both chemical and chemoenzymatic syntheses relying on N-acetylglucosamine-1-phosphate uridylyltransferase (GlmU). The resulting unnatural UDP-sugar donors were then tested as substrates in glycosaminoglycan synthesis catalyzed by various synthases. UDP-4FGlcNAc was transferred onto an acceptor by Pastuerella multocida heparosan synthase 1 and subsequently served as a chain terminator.
Collapse
Affiliation(s)
- Victor L Schultz
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Kathryn Linkens
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jenna Rimel
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology , 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma 73126, United States
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology , 940 Stanton L. Young Blvd., Oklahoma City, Oklahoma 73126, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
15
|
Ring opening of sugar-derived epoxides by TBAF/KHF 2 : An attractive alternative for the introduction of fluorine into the carbohydrate scaffold. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Wesener DA, Levengood MR, Kiessling LL. Comparing Galactan Biosynthesis in Mycobacterium tuberculosis and Corynebacterium diphtheriae. J Biol Chem 2016; 292:2944-2955. [PMID: 28039359 DOI: 10.1074/jbc.m116.759340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Indexed: 11/06/2022] Open
Abstract
The suborder Corynebacterineae encompasses species like Corynebacterium glutamicum, which has been harnessed for industrial production of amino acids, as well as Corynebacterium diphtheriae and Mycobacterium tuberculosis, which cause devastating human diseases. A distinctive component of the Corynebacterineae cell envelope is the mycolyl-arabinogalactan (mAG) complex. The mAG is composed of lipid mycolic acids, and arabinofuranose (Araf) and galactofuranose (Galf) carbohydrate residues. Elucidating microbe-specific differences in mAG composition could advance biotechnological applications and lead to new antimicrobial targets. To this end, we compare and contrast galactan biosynthesis in C. diphtheriae and M. tuberculosis In each species, the galactan is constructed from uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf), which is generated by the enzyme UDP-galactopyranose mutase (UGM or Glf). UGM and the galactan are essential in M. tuberculosis, but their importance in Corynebacterium species was not known. We show that small molecule inhibitors of UGM impede C. glutamicum growth, suggesting that the galactan is critical in corynebacteria. Previous cell wall analysis data suggest the galactan polymer is longer in mycobacterial species than corynebacterial species. To explore the source of galactan length variation, a C. diphtheriae ortholog of the M. tuberculosis carbohydrate polymerase responsible for the bulk of galactan polymerization, GlfT2, was produced, and its catalytic activity was evaluated. The C. diphtheriae GlfT2 gave rise to shorter polysaccharides than those obtained with the M. tuberculosis GlfT2. These data suggest that GlfT2 alone can influence galactan length. Our results provide tools, both small molecule and genetic, for probing and perturbing the assembly of the Corynebacterineae cell envelope.
Collapse
Affiliation(s)
| | - Matthew R Levengood
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Laura L Kiessling
- From the Department of Biochemistry and .,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
17
|
Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, San Miguel T, Sickmier EA, Osgood S, Swietlow A, Li V, Jordan JB, Kim KW, Rousseau AMC, Kim YJ, Caille S, Achmatowicz M, Thiel O, Fotsch CH, Reddy P, McCarter JD. Facile Modulation of Antibody Fucosylation with Small Molecule Fucostatin Inhibitors and Cocrystal Structure with GDP-Mannose 4,6-Dehydratase. ACS Chem Biol 2016; 11:2734-2743. [PMID: 27434622 DOI: 10.1021/acschembio.6b00460] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently, fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumors, arthritis, and sickle cell disease. Potent small molecule metabolic inhibitors of cellular protein fucosylation, 6,6,6-trifluorofucose per-O-acetate and 6,6,6-trifluorofucose (fucostatin I), were identified that reduces the fucosylation of recombinantly expressed antibodies in cell culture in a concentration-dependent fashion enabling the controlled modulation of protein fucosylation levels. 6,6,6-Trifluorofucose binds at an allosteric site of GDP-mannose 4,6-dehydratase (GMD) as revealed for the first time by the X-ray cocrystal structure of a bound allosteric GMD inhibitor. 6,6,6-Trifluorofucose was found to be incorporated in place of fucose at low levels (<1%) in the glycans of recombinantly expressed antibodies. A fucose-1-phosphonate analog, fucostatin II, was designed that inhibits fucosylation with no incorporation into antibody glycans, allowing the production of afucosylated antibodies in which the incorporation of non-native sugar is completely absent-a key advantage in the production of therapeutic antibodies, especially biosimilar antibodies. Inhibitor structure-activity relationships, identification of cellular and inhibitor metabolites in inhibitor-treated cells, fucose competition studies, and the production of recombinant antibodies with varying levels of fucosylation are described.
Collapse
Affiliation(s)
- John G. Allen
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Mirna Mujacic
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Michael J. Frohn
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Alex J. Pickrell
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Kodama
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Dhanashri Bagal
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Tisha San Miguel
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - E. Allen Sickmier
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Steve Osgood
- Process Development − Attribute
Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Aleksander Swietlow
- Process Development − Attribute
Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vivian Li
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - John B. Jordan
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Ki-Won Kim
- Cardiometabolic
Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Anne-Marie C. Rousseau
- Therapeutic
Innovations Unit, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Yong-Jae Kim
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Mike Achmatowicz
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Oliver Thiel
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Christopher H. Fotsch
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Pranhitha Reddy
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - John D. McCarter
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
18
|
Poulin MB, Lowary TL. Chemical Insight into the Mechanism and Specificity of GlfT2, a Bifunctional Galactofuranosyltransferase from Mycobacteria. J Org Chem 2016; 81:8123-30. [PMID: 27557056 DOI: 10.1021/acs.joc.6b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall structure that is essential to survival. A key component of this structure is a glycoconjugate, the mycolyl-arabinogalactan-peptidoglycan complex, which has at its core a galactan domain composed of galactofuranose (Galf) residues linked to peptidoglycan. Because galactan biosynthesis is essential for mycobacterial viability, compounds that interfere with this process are potential therapeutic agents for treating mycobacterial diseases, including tuberculosis. Galactan biosynthesis in mycobacteria involves two glycosyltransferases, GlfT1 and GlfT2, which have been the subject of increasing interest in recent years. This Synopsis summarizes efforts to characterize the mechanism and specificity of GlfT2, which is responsible for introducing the majority of the Galf residues into mycobacterial galactan.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
19
|
Yamatsugu K, Splain RA, Kiessling LL. Fidelity and Promiscuity of a Mycobacterial Glycosyltransferase. J Am Chem Soc 2016; 138:9205-11. [PMID: 27302377 DOI: 10.1021/jacs.6b04481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Members of the genus Mycobacterium cause devastating human diseases, including tuberculosis. Mycobacterium tuberculosis can resist some antibiotics because of its durable and impermeable cell envelope. This barrier is assembled from saccharide building blocks not found in mammals, including galactofuranose (Galf). Within the cell envelope, Galf residues are linked together to afford an essential polysaccharide, termed the galactan. The formation of this polymer is catalyzed by the glycosyltransferase GlfT2, a processive carbohydrate polymerase, which generates a sequence-specific polysaccharide with alternating regioisomeric β(1-5) and β(1-6) Galf linkages. GlfT2 exhibits high fidelity in linkage formation, as it will terminate polymerization rather than deviate from its linkage pattern. These findings suggest that GlfT2 would prefer an acceptor with a canonical alternating β(1-5) and β(1-6) Galf sequence. To test this hypothesis, we devised a synthetic route to assemble oligosaccharides with natural and non-natural sequences. GlfT2 could elongate each of these acceptors, even those with non-natural linkage patterns. These data indicate that the glycosyltransferase is surprisingly promiscuous in its substrate preferences. However, GlfT2 did favor some substrates: it preferentially acted on those in which the lipid-bearing Galf residue was connected to the sequence by a β(1-6) glycosidic linkage. The finding that the relative positioning of the lipid and the non-reducing end of the acceptor influences substrate selectivity is consistent with a role for the lipid in acceptor binding. The data also suggest that the fidelity of GlfT2 for generating an alternating β(1-5) and β(1-6) pattern of Galf residues arises not from preferential substrate binding but during processive elongation. These observations suggest that inhibiting the action of GlfT2 will afford changes in cell wall structure.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Rebecca A Splain
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Daum M, Broszeit F, Hoffmann-Röder A. Synthesis of a Fluorinated Sialophorin Hexasaccharide-Threonine Conjugate for Fmoc Solid-Phase Glycopeptide Synthesis. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Daum
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Broszeit
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
21
|
Dumont M, Lehner A, Bardor M, Burel C, Vauzeilles B, Lerouxel O, Anderson CT, Mollet JC, Lerouge P. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1137-51. [PMID: 26565655 DOI: 10.1111/tpj.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/21/2023]
Abstract
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Olivier Lerouxel
- Centre de Recherches sur les Macromolécules Végétales (CERMAV) - CNRS BP 53, 38041, Grenoble Cedex 9, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
22
|
Eppe G, El Bkassiny S, Vincent SP. Galactofuranose Biosynthesis: Discovery, Mechanisms and Therapeutic Relevance. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galactofuranose, the atypical and thermodynamically disfavored form of d-galactose, has in reality a very old history in chemistry and biochemistry. The purpose of this book chapter is to give an overview on the fundamental aspects of the galactofuranose biosynthesis, from the biological occurrence to the search of inhibitors.
Collapse
Affiliation(s)
- Guillaume Eppe
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Sandy El Bkassiny
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| |
Collapse
|
23
|
Chlubnová I, Králová B, Dvořáková H, Hošek P, Spiwok V, Filipp D, Nugier-Chauvin C, Daniellou R, Ferrières V. The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related β-d-galactofuranosyl-pyranoside disaccharides. Org Biomol Chem 2014; 12:3080-9. [DOI: 10.1039/c3ob42519c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Noble GT, Craven FL, Segarra-Maset MD, Martínez JER, Šardzík R, Flitsch SL, Webb SJ. Sialylation of lactosyl lipids in membrane microdomains byT. cruzi trans-sialidase. Org Biomol Chem 2014; 12:9272-8. [DOI: 10.1039/c4ob01852d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SolubleT. cruzi trans-sialidase transformed a synthetic lactosyl glycolipid in microdomains more slowly than the same substrate dispersed across the bilayer surface, producing phospholipid vesicles with a Neu5Ac(α2-3)Gal(β1-4)Glc “glycocalyx”.
Collapse
Affiliation(s)
- Gavin T. Noble
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Faye L. Craven
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | | | | | - Robert Šardzík
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| | - Simon J. Webb
- Manchester Institute of Biotechnology and School of Chemistry
- The University of Manchester
- Manchester, UK
| |
Collapse
|
25
|
Snitynsky RB, Lowary TL. Synthesis of nitrogen-containing furanose sugar nucleotides for use as enzymatic probes. Org Lett 2013; 16:212-5. [PMID: 24328953 DOI: 10.1021/ol4032073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sugar nucleotides UDP-2-acetamido-2-deoxy-α-D-galactofuranose (UDP-GalfNAc) and UDP-2-azido-2-deoxy-α-D-galactofuranose (UDP-GalfN3) have been synthesized in preparative scale for the first time. These compounds are useful probes for studying the biosynthesis of glycans containing galactofuranose and/or 2-acetamido-2-deoxy-α-D-galactofuranose residues.
Collapse
Affiliation(s)
- Ryan B Snitynsky
- Alberta Glycomics Centre and Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
26
|
Corr MJ, O’Hagan D. Fluorosugars: An improved synthesis of the 2,3,4-trideoxy-2,3,4-trifluoro hexose analogue of d-glucose. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Ladmiral V, Semsarilar M, Canton I, Armes SP. Polymerization-induced self-assembly of galactose-functionalized biocompatible diblock copolymers for intracellular delivery. J Am Chem Soc 2013; 135:13574-81. [PMID: 23941545 PMCID: PMC3798098 DOI: 10.1021/ja407033x] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Recent advances in polymer science are enabling substantial progress in nanobiotechnology, particularly in the design of new tools for enhanced understanding of cell biology and for smart drug delivery formulations. Herein, a range of novel galactosylated diblock copolymer nano-objects is prepared directly in concentrated aqueous solution via reversible addition-fragmentation chain transfer polymerization using polymerization-induced self-assembly. The resulting nanospheres, worm-like micelles, or vesicles interact in vitro with galectins as judged by a turbidity assay. In addition, galactosylated vesicles are highly biocompatible and allow intracellular delivery of an encapsulated molecular cargo.
Collapse
Affiliation(s)
| | | | - Irene Canton
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
| |
Collapse
|
28
|
Janeček ER, Rauwald U, del Barrio J, Cziferszky M, Scherman OA. A Facile Route to Viologen Functional Macromolecules through Azide-Alkyne [3+2] Cycloaddition. Macromol Rapid Commun 2013; 34:1547-53. [DOI: 10.1002/marc.201300453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/17/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Emma-Rose Janeček
- Melville Laboratory for Polymer Synthesis, Department of Chemistry; Cambridge University; Lensfield Road; Cambridge; CB2 1EW; UK
| | - Urs Rauwald
- Melville Laboratory for Polymer Synthesis, Department of Chemistry; Cambridge University; Lensfield Road; Cambridge; CB2 1EW; UK
| | - Jesús del Barrio
- Melville Laboratory for Polymer Synthesis, Department of Chemistry; Cambridge University; Lensfield Road; Cambridge; CB2 1EW; UK
| | - Monika Cziferszky
- Melville Laboratory for Polymer Synthesis, Department of Chemistry; Cambridge University; Lensfield Road; Cambridge; CB2 1EW; UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry; Cambridge University; Lensfield Road; Cambridge; CB2 1EW; UK
| |
Collapse
|
29
|
Caputi L, Rejzek M, Louveau T, O’Neill EC, Hill L, Osbourn A, Field RA. A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate. Bioorg Med Chem 2013; 21:4762-7. [PMID: 23806835 PMCID: PMC3898844 DOI: 10.1016/j.bmc.2013.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/23/2013] [Accepted: 05/28/2013] [Indexed: 11/25/2022]
Abstract
In connection with prospective (18)F-PET imaging studies, the potential for enzymatic synthesis of fluorine-labelled glycosides of small molecules was investigated. Approaches to the enzymatic synthesis of anomeric phosphates of d-gluco-configured fluorosugars proved ineffective. In contrast, starting in the d-galacto series and relying on the consecutive action of Escherichia coli galactokinase (GalK), galactose-1-phosphate uridylyltransferase (GalPUT), uridine-5'-diphosphogalactose 4-epimerase (GalE) and oat root glucosyltransferase (SAD10), a quick and effective synthesis of 6-deoxy-6-fluoro-d-glucosyl N-methylanthranilate ester was achieved.
Collapse
Affiliation(s)
- Lorenzo Caputi
- Laboratory of Bioorganic Chemistry and Crystallography, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thomas Louveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ellis C. O’Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
30
|
|
31
|
Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 2013; 21:4768-77. [PMID: 23566760 DOI: 10.1016/j.bmc.2013.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
A chemoenzymatic glycosylation remodeling method for the synthesis of selectively fluorinated glycoproteins is described. The method consists of chemical synthesis of a fluoroglycan oxazoline and its use as donor substrate for endoglycosidase (ENGase)-catalyzed transglycosylation to a GlcNAc-protein to form a homogeneous fluoroglycoprotein. The approach was exemplified by the synthesis of fluorinated glycoforms of ribonuclease B (RNase B). An interesting finding was that fluorination at the C-6 of the 6-branched mannose moiety in the Man3GlcNAc core resulted in significantly enhanced reactivity of the substrate in enzymatic transglycosylation. A structural analysis suggests that the enhancement in reactivity may come from favorable hydrophobic interactions between the fluorine and a tyrosine residue in the catalytic site of the enzyme (Endo-A). SPR analysis of the binding of the fluorinated glycoproteins with lectin concanavalin A (con A) revealed the importance of the 6-hydroxyl group on the α-1,6-branched mannose moiety in con A recognition. The present study establishes a facile method for preparation of selectively fluorinated glycoproteins that can serve as valuable probes for elucidating specific carbohydrate-protein interactions.
Collapse
|
32
|
Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci U S A 2013; 110:5404-9. [PMID: 23493549 DOI: 10.1073/pnas.1222263110] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.
Collapse
|
33
|
Kraft MB, Martinez Farias MA, Kiessling LL. Synthesis of lipid-linked arabinofuranose donors for glycosyltransferases. J Org Chem 2013; 78:2128-33. [PMID: 23373821 DOI: 10.1021/jo302507p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycobacteria and corynebacteria use decaprenylphosphoryl-β-D-arabinofuranose (DPA) as a critical cell wall building block. Arabinofuranosyltransferases that process this substrate to mediate cell wall assembly have served as drug targets, but little is known about the substrate specificity of any of these enzymes. To probe substrate recognition of DPA, we developed a general and efficient synthetic route to β-D-arabinofuranosyl phosphodiesters. In this approach, the key glycosyl phosphodiester bond-forming reaction proceeds with high β-selectivity. In addition to its stereoselectivity, our route provides the means to readily access a variety of different lipid analogues, including aliphatic and polyprenyl substrates.
Collapse
Affiliation(s)
- Matthew B Kraft
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
34
|
Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Curr Opin Chem Biol 2012; 16:479-87. [PMID: 23142486 DOI: 10.1016/j.cbpa.2012.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/21/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022]
Abstract
Enzymatic glycosylation of proteins, a post-transitional modification of great significance, is carried out by diverse glycosyltransferases (GTs) that harness activated sugar donors, typically nucleotide or lipid-phosphate linked species. Recent work has seen a major increase in the study of the 3D structure and reaction mechanism of these enzymes. Key advances include the dissection of the classical O-glycosylating and N-glycosylating apparatus, revealing unusual folds and hitherto unconsidered chemical mechanisms for acceptor activation. There has been considerable success in the application of kinetic isotope effects and quantum simulations to address the controversial issue of the reaction mechanism of retaining GTs. New roles for old modifications, exemplified by potential epigenetic roles for glycosylation, have been discovered and there has also been a plethora of studies into important mammalian glycosylations that play key roles in cellular biology, opening up new targets for chemical intervention approaches.
Collapse
|
35
|
Zou L, Zheng RB, Lowary TL. Studies on the substrate specificity of a GDP-mannose pyrophosphorylase from Salmonella enterica. Beilstein J Org Chem 2012; 8:1219-26. [PMID: 23019451 PMCID: PMC3458741 DOI: 10.3762/bjoc.8.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/29/2012] [Indexed: 12/30/2022] Open
Abstract
A series of methoxy and deoxy derivatives of mannopyranose-1-phosphate (Manp-1P) were chemically synthesized, and their ability to be converted into the corresponding guanosine diphosphate mannopyranose (GDP-Manp) analogues by a pyrophosphorylase (GDP-ManPP) from Salmonella enterica was studied. Evaluation of methoxy analogues demonstrated that GDP-ManPP is intolerant of bulky substituents at the C-2, C-3, and C-4 positions, in turn suggesting that these positions are buried inside the enzyme active site. Additionally, both the 6-methoxy and 6-deoxy Manp-1P derivatives are good or moderate substrates for GDP-ManPP, thus indicating that the C-6 hydroxy group of the Manp-1P substrate is not required for binding to the enzyme. When taken into consideration with other previously published work, it appears that this enzyme has potential utility for the chemoenzymatic synthesis of GDP-Manp analogues, which are useful probes for studying enzymes that employ this sugar nucleotide as a substrate.
Collapse
Affiliation(s)
- Lu Zou
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|