1
|
Junge F, Haag R. Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3305-3314. [PMID: 39869393 PMCID: PMC11823634 DOI: 10.1021/acs.langmuir.4c04220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces. Coatings with a longer hydrophilic PG block resulted in surface coatings with water contact angles (WCAs) around 60° independently of the modification and substrate, while coatings with a longer hydrophobic anchoring block possessed more diverse WCAs up to (129 ± 10)°. Despite the generally small impact of the fluorophilic modification for most substrate/coating combinations, some fluorophilic modified coatings reduce the WCA of PTFE below Berg's limit of 65°, indicating a shielding of fluorous segments from the surface.
Collapse
Affiliation(s)
- Florian Junge
- Institut für Chemie
und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie
und Biochemie, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
2
|
Wu J, Hua Z, Liu G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. SOFT MATTER 2025; 21:324-341. [PMID: 39688920 DOI: 10.1039/d4sm01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired supramolecular adhesives have been recently emerging as novel functional materials, which have shown a wide range of applications in wearable sensors and tissue engineering such as tissue adhesives and wound dressings. In this review, we summarize and discuss two main types of biologically inspired supramolecular adhesives from adhesive proteins and nucleic acids. The widely studied catechol-based adhesives, that originated from adhesive proteins of marine organisms such as mussels, and recently emerging nucleobase-containing supramolecular adhesives are both introduced and discussed. Both bioinspired adhesives from nucleic acids and adhesive proteins involve multiple supramolecular interactions such as hydrogen bonding, hydrophobic interactions, π-π stacking, and so on. Several major types of these bioinspired adhesives are summarized, respectively, including polymer-based, hydrogel-based, and other types of adhesives. The novel molecular design and adhesion properties are focused on and highlighted for each type of bioinspired adhesive. In addition, the potential applications of these bioinspired supramolecular adhesives in different realms including tissue engineering and biomedical devices are discussed. This review concludes with issues and challenges in the area of the bioinspired adhesives, hopefully promoting further developments and broader applications of novel supramolecular adhesives.
Collapse
Affiliation(s)
- Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
3
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024; 12:11302-11335. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
4
|
Paez-Amieva Y, Mateo-Oliveras N, Martín-Martínez JM. Polyurethanes Made with Blends of Polycarbonates with Different Molecular Weights Showing Adequate Mechanical and Adhesion Properties and Fast Self-Healing at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5532. [PMID: 39597357 PMCID: PMC11595875 DOI: 10.3390/ma17225532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Dynamic non-covalent interactions between polycarbonate soft segments have been proposed for explaining the intrinsic self-healing of polyurethanes synthesized with polycarbonate polyols (PUs) at 20 °C. However, these self-healing PUs showed insufficient mechanical properties, and their adhesion properties have not been explored yet. Different PUs with self-healing at 20 °C, acceptable mechanical properties, and high shear strengths (similar to the highest ones reported in the literature) were synthesized by using blends of polycarbonate polyols of molecular weights 1000 and 2000 Da (CD1000 + CD2000). Their structural, thermal, rheological, mechanical, and adhesion (single lap-shear tests) properties were assessed. PUs with higher CD1000 polyol contents exhibited shorter self-healing times and dominant viscous properties due to the higher amount of free carbonate groups, significant carbonate-carbonate interactions, and low micro-phase separation. As the CD2000 polyol content in the PUs increased, slower kinetics and longer self-healing times and higher mechanical and adhesion properties were obtained due to a dominant rheological elastic behavior, soft segments with higher crystallinities, and greater micro-phase separation. All PUs synthesized with CD1000 + CD2000 blends exhibited a mixed phase due to interactions between polycarbonate soft segments of different lengths which favored the self-healing and mobility of the polymer chains, resulting in increased mechanical properties.
Collapse
|
5
|
Song W, Choi YH, Moon YG, Lee C, Sundaram MN, Hwang NS. Mussel-inspired sulfated hyaluronan cryogel patch with antioxidant, anti-inflammatory, and drug-loading properties for multifunctional wound adhesives. Bioact Mater 2024; 40:582-596. [PMID: 39239260 PMCID: PMC11375143 DOI: 10.1016/j.bioactmat.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Wounds, characterized by the disruption of the continuity of body tissues resulting from external trauma, manifest in diverse types and locations. Although numerous wound dressings are available for various wound scenarios, it remains challenging to find an integrative wound dressing capable of addressing diverse wound situations. We focused on utilizing sulfated hyaluronan (sHA), known for its anti-inflammatory properties and capacity to load cationic drugs. By conjugating catechol groups to sHA (sHA-CA), we achieved several advantages in wound healing: 1) Fabrication of patches through crosslinking with catechol-modified high-molecular-weight hyaluronan (HA(HMW)-CA), 2) Adhesiveness that enabled stable localization, 3) Radical scavenging that could synergize with the immunomodulation of sHA. The sHA-CA patches demonstrated therapeutic efficacy in three distinct murine wound models: diabetic wound, hepatic hemorrhage, and post-surgical adhesion. Collectively, these findings underscore the potential of the sHA-CA patch as a promising candidate for the next-generation wound dressing.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Mercadal PA, Montesinos MDM, Macchione MA, Dalosto SD, Bierbrauer KL, Calderón M, González A, Picchio ML. Freezing-Tolerant Supramolecular Adhesives from Tannic Acid-Based Low-Transition-Temperature Mixtures. ACS MATERIALS LETTERS 2024; 6:3726-3735. [PMID: 39119359 PMCID: PMC11307168 DOI: 10.1021/acsmaterialslett.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Natural polyphenols like tannic acid (TA) have recently emerged as multifunctional building blocks for designing advanced materials. Herein, we show the benefits of having TA in a dynamic liquid state using low-transition-temperature mixtures (LTTMs) for developing freezing-tolerant glues. TA was combined with betaine or choline chloride to create LTTMs, which direct the self-assembly of guanosine into supramolecular viscoelastic materials with high adhesion. Molecular dynamics simulations showed that the structural properties of the material are linked to strong hydrogen bonding in TA-betaine and TA-choline chloride mixtures. Notably, long-term and repeatable adhesion was achieved even at -196 °C due to the binding ability of TA's catechol and gallol units and the mixtures' glass transition temperature. Additionally, the adhesives demonstrated injectability and low toxicity against fibroblasts in vitro. These traits reveal the potential of these systems as bioadhesives for tissue repair, opening new avenues for creating multifunctional soft materials with bioactive properties.
Collapse
Affiliation(s)
- Pablo A. Mercadal
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Departamento
de Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Maria del Mar Montesinos
- Centro
de Investigaciones en Bioquímica Clínica e Inmunología
(CIBICI-CONICET), Departamento de Bioquímica Clínica,
Facultad de Ciencias Químicas, Universidad
Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Micaela A. Macchione
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
- Centro
de Investigaciones y Transferencia de Villa María (CIT Villa
María-CONICET-UNVM), X5900LQC Villa María, Córdoba, Argentina
| | - Sergio D. Dalosto
- Instituto
de Física del Litoral (IFIS-Litoral, CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina
| | - Karina L. Bierbrauer
- Centro
de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón
CEPROCOR, Santa Maria de Punilla, 5164 Córdoba, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CCT
Córdoba), 5000 Córdoba, Argentina
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Agustín González
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- Instituto
de Investigación y Desarrollo en Ingeniería de Procesos
y Química Aplicada (IPQA-CONICET), 5000 Córdoba, Argentina
| | - Matias L. Picchio
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Lim J, Zhang S, Heo JM, Dickwella Widanage MC, Ramamoorthy A, Kim J. Polydopamine Adhesion: Catechol, Amine, Dihydroxyindole, and Aggregation Dynamics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31864-31872. [PMID: 38836337 DOI: 10.1021/acsami.4c08603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
While polydopamine (PDA) possesses the surface-independent adhesion property of mussel-binding proteins, significant differences exist between them. Particularly, PDA's short and rigid backbone differs from the long and flexible protein sequence of mussel-binding proteins. Given that adhesion relies on achieving a conformal contact with large surface coverage, PDA has drawbacks as an adhesive. In our study, we investigated the roles of each building block of PDA to build a better understanding of their binding mechanisms. Initially, we anticipated that catecholamine oligomers form specific binding with substrates. However, our study showed that the universal adhesion of PDA is initiated by the solubility limit of growing oligomers by forming agglomerates, complemented by multiple binding modes of catechol. Notably, in the absence of amines, poly(catechol) either remained in solution or formed minor suspensions without any surface coating, underscoring the essential role of amines in the adhesion process by facilitating insoluble aggregate formation. To substantiate our findings, we induced poly(catechol) aggregation using quaternized poly(4-vinylpyridine) (qPVP), leading to subsequent surface adhesion upon agglomerate formation.
Collapse
Affiliation(s)
- Jiwon Lim
- Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shuo Zhang
- Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Jung-Moo Heo
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Malitha C Dickwella Widanage
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Jinsang Kim
- Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zhang J, Zhou X, Hu Q, Zhou K, Zhang Y, Dong S, Zhao G, Zhang S. Concentration-induced spontaneous polymerization of protic ionic liquids for efficient in situ adhesion. Nat Commun 2024; 15:4265. [PMID: 38769305 PMCID: PMC11106314 DOI: 10.1038/s41467-024-48561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
The advancement of contemporary adhesives is often limited by the balancing act between cohesion and interfacial adhesion strength. This study explores an approach to overcome this trade-off by utilizing the spontaneous polymerization of a protic ionic liquid-based monomer obtained through the neutralization of 2-acrylamide-2-methyl propane sulfonic acid and hydroxylamine. The initiator-free polymerization process is carried out through a gradual increase in monomer concentration in aqueous solutions caused by solvent evaporation upon heating, which results in the in-situ formation of a tough and thin adhesive layer with a highly entangled polymeric network and an intimate interface contact between the adhesive and substrate. The abundance of internal and external non-covalent interactions also contributes to both cohesion and interfacial adhesion. Consequently, the produced protic poly(ionic liquid)s exhibit considerable adhesion strength on a variety of substrates. This method also allows for the creation of advanced adhesive composites with electrical conductivity or visualized sensing functionality by incorporating commercially available fillers into the ionic liquid adhesive. This study provides a strategy for creating high-performance ionic liquid-based adhesives and highlights the importance of in-situ polymerization for constructing adhesive composites.
Collapse
Affiliation(s)
- Jun Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Xuan Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Qinyu Hu
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Kaijian Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gai Zhao
- State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410004, China.
| |
Collapse
|
9
|
Juan CY, Zhang YS, Cheng JK, Chen YH, Lin HC, Yeh MY. Lysine-Triggered Polymeric Hydrogels with Self-Adhesion, Stretchability, and Supportive Properties. Polymers (Basel) 2024; 16:1388. [PMID: 38794581 PMCID: PMC11125877 DOI: 10.3390/polym16101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hydrogels, recognized for their flexibility and diverse characteristics, are extensively used in medical fields such as wearable sensors and soft robotics. However, many hydrogel sensors derived from biomaterials lack mechanical strength and fatigue resistance, emphasizing the necessity for enhanced formulations. In this work, we utilized acrylamide and polyacrylamide as the primary polymer network, incorporated chemically modified poly(ethylene glycol) (DF-PEG) as a physical crosslinker, and introduced varying amounts of methacrylated lysine (LysMA) to prepare a series of hydrogels. This formulation was labeled as poly(acrylamide)-DF-PEG-LysMA, abbreviated as pADLx, with x denoting the weight/volume percentage of LysMA. We observed that when the hydrogel contained 2.5% w/v LysMA (pADL2.5), compared to hydrogels without LysMA (pADL0), its stress increased by 642 ± 76%, strain increased by 1790 ± 95%, and toughness increased by 2037 ± 320%. Our speculation regarding the enhanced mechanical performance of the pADL2.5 hydrogel revolves around the synergistic effects arising from the co-polymerization of LysMA with acrylamide and the formation of multiple intermolecular hydrogen bonds within the network structures. Moreover, the acid, amine, and amide groups present in the LysMA molecules have proven to be instrumental contributors to the self-adhesion capability of the hydrogel. The validation of the pADL2.5 hydrogel's exceptional mechanical properties through rigorous tensile tests further underscores its suitability for use in strain sensors. The outstanding stretchability, adhesive strength, and fatigue resistance demonstrated by this hydrogel affirm its potential as a key component in the development of robust and reliable strain sensors that fulfill practical requirements.
Collapse
Affiliation(s)
- Chieh-Yun Juan
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| | - You-Sheng Zhang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| | - Jen-Kun Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Anesthesiology, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Yu-Hsu Chen
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330215, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-Y.J.); (Y.-S.Z.)
| |
Collapse
|
10
|
Schröter C, Bangert LD, Börner HG. Enhancing Adhesion Properties of Commodity Polymers through Thiol-Catechol Connectivities: A Case Study on Polymerizing Polystyrene-Telechelics via Thiol-Quinone Michael-Polyaddition. ACS Macro Lett 2024; 13:440-445. [PMID: 38547376 PMCID: PMC11025132 DOI: 10.1021/acsmacrolett.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Segmented block copolymers with adhesive functionality bridges in between are synthesized through the combination of controlled radical polymerization (CRP) and thiol-quinone Michael-polyaddition. CRP provides a set of α,ω-dithiol polystyrenes (PS), which react as telechelics with a low molecular weight bisquinone, resulting in thiol-catechol connectivities (TCCs). By introducing as little as 3 mol % of TCC functionalities, the bonding of the polymer on dry and wet aluminum surfaces is significantly improved while keeping the integrity of the PS segments undisturbed to constitute favorable bulk properties. This improvement is evidenced by reaching up to 3.8 MPa adhesive strength, representing a 600% increase compared to nonfunctional PS.
Collapse
Affiliation(s)
- Carolin
M. Schröter
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Lukas D. Bangert
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Hans G. Börner
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
11
|
Garcia-Rodriguez JM, Wilker JJ. Positive Charge Influences on the Surface Interactions and Cohesive Bonding of a Catechol-Containing Polymer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470565 DOI: 10.1021/acsami.3c16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Achieving robust underwater adhesion remains challenging. Through generations of evolution, marine mussels have developed an adhesive system that allows them to anchor onto wet surfaces. Scientists have taken varied approaches to developing mussel-inspired adhesives. Mussel foot proteins are rich in lysine residues, which may play a role in the removal of salts from surfaces. Displacement of water and ions on substrates could then enable molecular contact with surfaces. The necessity of cations for underwater adhesion is still in debate. Here, we examined the performance of a methacrylate polymer containing quaternary ammonium and catechol groups. Varying amounts of charge in the polymers were studied. As opposed to protonated amines such as lysine, quaternary ammonium groups offer a nonreactive cation for isolating effects from only charge. Results shown for dry bonding demonstrated that cations tended to decrease bulk cohesion while increasing surface interactions. Stronger interactions at surfaces, along with weaker bulk bonding, indicate that cations decreased the cohesive forces. When under salt water, overall bulk adhesion also dropped with higher cation loadings. Surface attachment under salt water also dropped, indicating that the polymer cations could not displace surface waters or sodium ions. Salt did, however, appear to shield bulk cation-cation repulsions. These studies help to distinguish influences upon bulk cohesion from attachment at surfaces. The roles of cations in adhesion are complex, with both cohesive and surface bonding being relevant in different ways, sometimes even working in opposite directions.
Collapse
Affiliation(s)
- Jennifer M Garcia-Rodriguez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
12
|
de Barros NR, Gangrade A, Elsebahy A, Chen R, Zehtabi F, Ermis M, Falcone N, Haghniaz R, Khosravi S, Gomez A, Huang S, Mecwan M, Khorsandi D, Lee J, Zhu Y, Li B, Kim H, Thankam FG, Khademhosseini A. Injectable Nanoengineered Adhesive Hydrogel for Treating Enterocutaneous Fistulas. Acta Biomater 2024; 173:231-246. [PMID: 38465268 PMCID: PMC10919932 DOI: 10.1016/j.actbio.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 03/12/2024]
Abstract
Enterocutaneous fistula (ECF) is a severe medical condition where an abnormal connection forms between the gastrointestinal tract and skin. ECFs are, in most cases, a result of surgical complications such as missed enterotomies or anastomotic leaks. The constant leakage of enteric and fecal contents from the fistula site leads to skin breakdown and increases the risk of infection. Despite advances in surgical techniques and postoperative management, ECF accounts for significant mortality rates, estimated between 15-20%, and causes debilitating morbidity. Therefore, there is a critical need for a simple and effective method to seal and heal ECF. Injectable hydrogels with combined properties of robust mechanical properties and cell infiltration/proliferation have the potential to block and heal ECF. Herein, we report the development of an injectable nanoengineered adhesive hydrogel (INAH) composed of a synthetic nanosilicate (Laponite®) and a gelatin-dopamine conjugate for treating ECF. The hydrogel undergoes fast cross-linking using a co-injection method, resulting in a matrix with improved mechanical and adhesive properties. INAH demonstrates appreciable blood clotting abilities and is cytocompatible with fibroblasts. The adhesive properties of the hydrogel are demonstrated in ex vivo adhesion models with skin and arteries, where the volume stability in the hydrated internal environment facilitates maintaining strong adhesion. In vivo assessments reveal that the INAH is biocompatible, supporting cell infiltration and extracellular matrix deposition while not forming fibrotic tissue. These findings suggest that this INAH holds promising translational potential for sealing and healing ECF.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Ahmad Elsebahy
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - HanJun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- College of Pharmacy, Korea University, Sejong, Republic of Korea, 30019
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
13
|
Peplau S, Neubert TJ, Balasubramanian K, Polleux J, Börner HG. Statistical Copolymers that Mimic Aspects of Mussel Adhesive Proteins: Access to Robust Adhesive-Domains for Non-Covalent Surface PEGylation. Macromol Rapid Commun 2023; 44:e2300300. [PMID: 37657944 DOI: 10.1002/marc.202300300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Reconstructing functional sequence motifs of proteins, using statistical copolymers greatly reduces the information content, but simplifies synthesis significantly. Key amino acid residues involved in the adhesion of mussel foot proteins are identified. The side-chain functionalities of Dopa, lysine, and arginine are abstracted and incorporated into acrylate monomers to allow controlled radical polymerization. The resulting Dopa-acrylate (Y*-acr), arginine-acrylate (R-acr), and lysine-acrylate (K-acr) monomers are polymerized in different monomer ratios and compositions by reversible addition fragmentation transfer polymerization with a poly(ethylene glycol) (PEG) macrochain transfer agent. This results in two sets of PEG-block-copolymers with statistical mixtures and different monomer ratios of catechol/primary amine and catechol/guanidine side-chain functionalities, both important pairs for mimicking π-cation interactions. The coating behavior of these PEG-block-copolymers is evaluated using quartz crystal microbalance with dissipation energy monitoring (QCM-D), leading to non-covalent PEGylation of the substrates with clear compositional optima in the coating stability and antifouling properties. The coatings prevent non-reversible albumin or serum adsorption, as well as reduce cellular adhesion and fungal spore attachment.
Collapse
Affiliation(s)
- Stefan Peplau
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Tilmann J Neubert
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Kannan Balasubramanian
- Department of Chemistry, Micro & Nano Analytical Sciences, School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489, Berlin, Germany
| | - Julien Polleux
- Research & Innovation Unit, Department of Ophthalmic Optics, Health University of Applied Sciences Tyrol, Innrain 98, Innsbruck, 6020, Austria
| | - Hans G Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
14
|
Chen J, Shi W, Ren Y, Zhao K, Liu Y, Jia B, Zhao L, Li M, Liu Y, Su J, Ma C, Wang F, Sun J, Tian Y, Li J, Zhang H, Liu K. Strong Protein Adhesives through Lanthanide-enhanced Structure Folding and Stack Density. Angew Chem Int Ed Engl 2023; 62:e202304483. [PMID: 37670725 DOI: 10.1002/anie.202304483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (-196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Shi
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yangyi Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| |
Collapse
|
15
|
Schmidt G, Christ PE, Kertes PE, Fisher RV, Miles LJ, Wilker JJ. Underwater Bonding with a Biobased Adhesive from Tannic Acid and Zein Protein. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378615 DOI: 10.1021/acsami.3c04009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Herein are presented several adhesive formulations made from zein protein and tannic acid that can bind to a wide range of surfaces underwater. Higher performance comes from more tannic acid than zein, whereas dry bonding required the opposite case of more zein than tannic acid. Each adhesive works best in the environment that it was designed and optimized for. We show underwater adhesion experiments done on different substrates and in different waters (sea water, saline solution, tap water, deionized water). Surprisingly, the water type does not influence the performance to a great deal but the substrate type does. An additional unexpected result was bond strength increasing over time when exposed to water, contradicting general experiments of working with glues. Initial adhesion underwater was stronger compared to benchtop adhesion, suggesting that water helps to make the glue stick. Temperature effects were determined, indicating maximum bonding at about 30 °C and then another increase at higher temperatures. Once the adhesive was placed underwater, a protective skin formed on the surface, keeping water from entering the rest of the material immediately. The shape of the adhesive could be manipulated easily and, once in place, the skin could be broken to induce faster bond formation. Data indicated that underwater adhesion was predominantly induced by tannic acid, cross-linking within the bulk for adhesion and to the substrate surfaces. The zein protein provided a less polar matrix that helped to keep the tannic acid molecules in place. These studies provide new plant-based adhesives for working underwater and for creating a more sustainable environment.
Collapse
Affiliation(s)
- Gudrun Schmidt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peter E Christ
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paige E Kertes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Racheal V Fisher
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Logan J Miles
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Correia C, Reis RL, Pashkuleva I, Alves NM. Adhesive and self-healing materials for central nervous system repair. BIOMATERIALS ADVANCES 2023; 151:213439. [PMID: 37146528 DOI: 10.1016/j.bioadv.2023.213439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
The central nervous system (CNS) has a limited ability to regenerate after a traumatic injury or a disease due to the low capacity of the neurons to re-grow and the inhibitory environment formed in situ. Current therapies include the use of drugs and rehabilitation, which do not fully restore the CNS functions and only delay the pathology progression. Tissue engineering offers a simple and versatile solution for this problem through the use of bioconstructs that promote nerve tissue repair by bridging cavity spaces. In this approach, the choice of biomaterial is crucial. Herein, we present recent advances in the design and development of adhesive and self-healing materials that support CNS healing. The adhesive materials have the advantage of promoting recovery without the use of needles or sewing, while the self-healing materials have the capacity to restore the tissue integrity without the need for external intervention. These materials can be used alone or in combination with cells and/or bioactive agents to control the inflammation, formation of free radicals, and proteases activity. We discuss the advantages and drawbacks of different systems. The remaining challenges that can bring these materials to clinical reality are also briefly presented.
Collapse
Affiliation(s)
- Cátia Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Chang H, Adibnia V, Qi W, Su R, Banquy X. Ternary Synergy of Lys, Dopa, and Phe Results in Strong Cohesion of Peptide Films. ACS APPLIED BIO MATERIALS 2023; 6:865-873. [PMID: 36625035 DOI: 10.1021/acsabm.2c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, i.e., (KY*)3, (KF)3, and (KY*F)2, respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F)2 sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m-2 from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F)2 compared to the other two peptides. In addition, peptide (KY*F)2 still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m-2 in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.
Collapse
Affiliation(s)
- Heng Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.,Department of Chemistry, Faculty of Art and Science, Université de Montréal, Montreal, Québec H3C 3J7, Canada.,Institute of Biomedical Engineering Faculty of Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
18
|
Lancelot A, Putnam-Neeb AA, Huntington SL, Garcia-Rodriguez JM, Naren N, Atencio-Martinez CL, Wilker JJ. Increasing the Scale and Decreasing the Cost of Making a Catechol-Containing Adhesive Polymer. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexandre Lancelot
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Amelia A. Putnam-Neeb
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - S. Lee Huntington
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | | | - Nevin Naren
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Cindy L. Atencio-Martinez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
| | - Jonathan J. Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana47907-2045, United States
| |
Collapse
|
19
|
Kang J, Li X, Zhou Y, Zhang L. Supramolecular interaction enabled preparation of high-strength water-based adhesives from polymethylmethacrylate wastes. iScience 2023; 26:106022. [PMID: 36818300 PMCID: PMC9932134 DOI: 10.1016/j.isci.2023.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The preparation of water-based adhesives with high bonding strength for various substrates is challenging. Moreover, to construct a sustainable society, it is highly desirable to develop a cost-effective way to achieve the reuse of plastic wastes. Herein, using polymethylmethacrylate (PMMA) chemicals or wastes as raw materials, water-based adhesives with high bonding strength for various substrates are prepared through a simple one-step hydrolysis strategy. The adhesives possess the maximum bonding strength of 7.1 MPa to iron, 4.2 MPa to wood, and ∼1.5 MPa to plastics. The adhesives have a world-record bonding strength to metal when compared with that of current reported water-based adhesives. Our method is low cost, simple, environmentally friendly, and suitable for large-scale industrial production. More importantly, using plastic wastes as raw materials opens up a new and low-cost way to turn wastes into valuables, which will greatly contribute to construct a sustainable society.
Collapse
Affiliation(s)
- Jing Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunlu Zhou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China,Corresponding author
| |
Collapse
|
20
|
Godoy-Gallardo M, Merino-Gómez M, Matiz LC, Mateos-Timoneda MA, Gil FJ, Perez RA. Nucleoside-Based Supramolecular Hydrogels: From Synthesis and Structural Properties to Biomedical and Tissue Engineering Applications. ACS Biomater Sci Eng 2023; 9:40-61. [PMID: 36524860 DOI: 10.1021/acsbiomaterials.2c01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supramolecular hydrogels are of great interest in tissue scaffolding, diagnostics, and drug delivery due to their biocompatibility and stimuli-responsive properties. In particular, nucleosides are promising candidates as building blocks due to their manifold noncovalent interactions and ease of chemical modification. Significant progress in the field has been made over recent years to allow the use of nucleoside-based supramolecular hydrogels in the biomedical field, namely drug delivery and 3D bioprinting. For example, their long-term stability, printability, functionality, and bioactivity have been greatly improved by employing more than one gelator, incorporating different cations, including silver for antibacterial activity, or using additives such as boric acid or even biomolecules. This now permits their use as bioinks for 3D printing to produce cell-laden scaffolds with specified geometries and pore sizes as well as a homogeneous distribution of living cells and bioactive molecules. We have summarized the latest advances in nucleoside-based supramolecular hydrogels. Additionally, we discuss their synthesis, structural properties, and potential applications in tissue engineering and provide an outlook and future perspective on ongoing developments in the field.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Luisamaria C Matiz
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - F Javier Gil
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain.,Department of Dentistry, Faculty of Dentistry, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology (BIT), Department of Basic Science, International University of Catalonia (UIC), Carrer de Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| |
Collapse
|
21
|
Lee G, Seo H, Kim D, Shin S, Kwon K. All polymeric conductive strain sensors with excellent skin adhesion, recovery, and long-term stability prepared from an anion-zwitterion based hydrogel. RSC Adv 2023; 13:1672-1683. [PMID: 36688068 PMCID: PMC9827471 DOI: 10.1039/d2ra07990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Developing a high-performing hydrogel with long-lasting skin adhesion, high ionic conductivity, mechanical stability, and fatigue resistance is a crucial issue in the field of wearable electronic devices. Because of their weak mechanical properties, zwitterion-based hydrogels are not suitable for application in wearable strain sensors despite their excellent adhesion to the skin. In this study, a hydrogel of polymer without additive was prepared by using polymerizable monomers consisting of zwitterionic 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS), anionic 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPSs), and acrylamide (AAm); the hydrogel is abbreviated as P(AMPSs/VIPS-co-AAm). The P(AMPSs/VIPS-co-AAm) hydrogel shows exceptional adhesive strength, reaching up to 26.29 kPa (lap shear to porcine skin) and high stretchability (with a fracture strain of 1282% and stress of 40 kPa). The high polarity of the AMPSs/VIPS pair improves the interfacial adhesion to the skin, the internal cohesion and recovery tendency. Unique structural characteristics of the hydrogel impart excellent fatigue resistance, network toughening, and electrical stability after multiple deformations. Thus, the prepared hydrogel has an ionic conductivity (0.51 S m-1), strain sensitivity, and long-term skin adhesion, and it demonstrates potential to be applied for wearable strain sensors.
Collapse
Affiliation(s)
- Goeun Lee
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Hyunsu Seo
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| | - Daewoo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University (YU)Seodaemun-guSeoul03722Republic of Korea
| | - Seunghan Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea,Department of Green Process and System Engineering, Korea University of Science & Technology (UST)CheonanChungnam 31056Republic of Korea
| | - Kiok Kwon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH)Republic of Korea
| |
Collapse
|
22
|
Liang H, Zhang S, Liu Y, Yang Y, Zhang Y, Wu Y, Xu H, Wei Y, Ji Y. Merging the Interfaces of Different Shape-Shifting Polymers Using Hybrid Exchange Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2202462. [PMID: 36325655 DOI: 10.1002/adma.202202462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sophisticated shape-shifting structures and integration of advanced functions often call for different-chemistry-based polymers (such as epoxy and polyurethane) in a unified system. However, permanent cross-links pose crucial obstacles to be seamless. Here, merging interfaces via hybrid exchange reactions among different dynamic covalent bonds (including ester, urethane, thiourethane, boronic-ester, and oxime-ester linkages) is proposed, breaking the long-lasting restriction that these widely used bonds only undergo self-exchange reactions. Model compound studies are conducted to verify that hybrid exchange reactions occur. As demonstrations, different liquid crystal elastomers are tenaciously joined into coherent assemblies, with the desired biomimetic structures (e.g., flying fish containing stiff and flexible parts) and rare deformation modes (e.g., flower blooming upon both heating and cooling). Besides connecting polymers, hybrid exchange reactions also facilitate the creation of new materials through cross-fusion of different polymers. In addition to the polymers used in this work, hybrid exchange reactions can be adapted to other polymers based on similar mechanisms and beyond. Besides shape-shifting-related areas (e.g., soft robots, flexible electronics, and biomedical devices), it may also foster innovation in other fields involving general polymers, as well as promote deeper understanding of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
23
|
Fujita T, Shuta M, Mano M, Matsumoto S, Nagasawa A, Yamada A, Naito M. Forced Gradient Copolymer for Rational Design of Mussel-Inspired Adhesives and Dispersants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:266. [PMID: 36614607 PMCID: PMC9822366 DOI: 10.3390/ma16010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In recent years, there has been considerable research into functional materials inspired by living things. Much attention has been paid to the development of adhesive materials that mimic the adhesive proteins secreted by a mussel's foot. These mussel-inspired materials have superior adhesiveness to various adherents owing to the non-covalent interactions of their polyphenolic moieties, e.g., hydrogen bonding, electrostatic interactions, and even hydrophobic interactions. Various factors significantly affect the adhesiveness of mussel-inspired polymers, such as the molecular weight, cross-linking density, and composition ratio of the components, as well as the chemical structure of the polyphenolic adhesive moieties, such as l-3,4-dihydroxyphenylalanine (l-Dopa). However, the contributions of the position and distribution of the adhesive moiety in mussel-inspired polymers are often underestimated. In the present study, we prepared a series of mussel-inspired alkyl methacrylate copolymers by controlling the position and distribution of the adhesive moiety, which are known as "forced gradient copolymers". We used a newly designed gallic-acid-bearing methacrylate (GMA) as the polyphenolic adhesive moiety and copolymerized it with 2-ethylhexyl methacrylate (EHMA). The resulting forced gradient adhesive copolymer of GMA and EHMA (poly(GMA-co-EHMA), Poly1) was subjected to adhesion and dispersion tests with an aluminum substrate and a BaTiO3 nanoparticle in organic solvents, respectively. In particular, this study aims to clarify how the monomer position and distribution of the adhesive moiety in the mussel-inspired polymer affect its adhesion and dispersion behavior on a flat metal oxide surface and spherical inorganic oxide surfaces of several tens of nanometers in diameter, respectively. Here, forced gradient copolymer Poly1 consisted of a homopolymer moiety of EHMA (Poly3) and a random copolymer moiety of EHMA and GMA (Poly4). The composition ratio of GMA and the molecular weight were kept constant among the Poly1 series. Simultaneous control of the molecular lengths of Poly3 and Poly4 allowed us to discuss the effects on the distribution of GMA in Poly1. Poly1 exhibited apparent distribution dependency with regard to the adhesiveness and the dispersibility of BaTiO3. Poly1 showed the highest adhesion strength when the composition ratio of GMA was approximately 9 mol% in the portion of the Poly4 segment. In contrast, the block copolymer consisting of the Poly3 segment and Poly4 segment with only adhesive moiety 1 showed the lowest viscosity for dispersion of BaTiO3 nanoparticles. These results indicate that copolymers with mussel-inspired adhesive motifs require the proper design of the monomer position and distribution in Poly1 according to the shape and characteristics of the adherend to maximize their functionality. This research will facilitate the rational design of bio-inspired adhesive materials derived from plants that outperform natural materials, and it will eventually contribute to a sustainable circular economy.
Collapse
Affiliation(s)
- Takehiro Fujita
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Masami Shuta
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Mika Mano
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
| | - Shinnosuke Matsumoto
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Atsushi Nagasawa
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Akihiro Yamada
- Oleo & Speciality Chemicals Research Lab., NOF Corporation, Hyogo 660-0095, Japan
| | - Masanobu Naito
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
24
|
Chandra Joshi D, Ashokan A, Jayakannan M. l-Amino Acid Based Phenol- and Catechol-Functionalized Poly(ester-urethane)s for Aromatic π-Interaction Driven Drug Stabilization and Their Enzyme-Responsive Delivery in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5432-5444. [PMID: 36318654 DOI: 10.1021/acsabm.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Akash Ashokan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
25
|
Li S, Ma C, Hou B, Liu H. Rational design of adhesives for effective underwater bonding. Front Chem 2022; 10:1007212. [DOI: 10.3389/fchem.2022.1007212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Collapse
|
26
|
Wu C, Hou D, Yin B, Li S, Wang X. Investigation of Composite Protective Coatings Coregulated by Core-Shell Structures and Graphene Oxide Interfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40297-40312. [PMID: 36002909 DOI: 10.1021/acsami.2c08981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The construction of multiple microstructures is a significant measure in improving the protective performance of composite polymer coatings. In this paper, a novel polystyrene acrylate-highly hydrophobic polysiloxane composite emulsion was fabricated by innovatively integrating the core-shell emulsion method and Pickering emulsion method through the interfacial stabilization and molecular polymerization regulation of graphene oxide, achieving a significant improvement in the compatibility of the thermoplastic core with a thermoset shell. The bonding degree between the polystyrene acrylate (PSA) component and the siloxane component is significantly improved in the synthesized composite emulsions, achieving the dual protection of the cementitious substrate with surface shielding and internal crystalline hydrophobicity. The capillary water absorption of the concrete treated with Pickering emulsions is reduced by over 98.3% with high hydrophobicity and low permeability. Meanwhile, the absolute ζ-potential and impedance of composite membranes reach over 45 mV and 109 ohms, respectively, giving the cementitious substrate excellent resistance to ionic attack and acid/alkaline corrosion. In addition, the composite membranes have excellent resistance to tensile cracking and physical erosion, maintaining a favorable adhesion level and plastic deformation under acid/alkaline attack and thermal aging, respectively.
Collapse
Affiliation(s)
- Cong Wu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Dongshuai Hou
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Bing Yin
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shaochun Li
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Xinpeng Wang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
27
|
Bashir Z, Yu W, Xu Z, Li Y, Lai J, Li Y, Cao Y, Xue B. Engineering Bio-Adhesives Based on Protein-Polysaccharide Phase Separation. Int J Mol Sci 2022; 23:9987. [PMID: 36077375 PMCID: PMC9456018 DOI: 10.3390/ijms23179987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Glue-type bio-adhesives are in high demand for many applications, including hemostasis, wound closure, and integration of bioelectronic devices, due to their injectable ability and in situ adhesion. However, most glue-type bio-adhesives cannot be used for short-term tissue adhesion due to their weak instant cohesion. Here, we show a novel glue-type bio-adhesive based on the phase separation of proteins and polysaccharides by functionalizing polysaccharides with dopa. The bio-adhesive exhibits increased adhesion performance and enhanced phase separation behaviors. Because of the cohesion from phase separation and adhesion from dopa, the bio-adhesive shows excellent instant and long-term adhesion performance for both organic and inorganic substrates. The long-term adhesion strength of the bio-glue on wet tissues reached 1.48 MPa (shear strength), while the interfacial toughness reached ~880 J m-2. Due to the unique phase separation behaviors, the bio-glue can even work normally in aqueous environments. At last, the feasibility of this glue-type bio-adhesive in the adhesion of various visceral tissues in vitro was demonstrated to have excellent biocompatibility. Given the convenience of application, biocompatibility, and robust bio-adhesion, we anticipate the bio-glue may find broad biomedical and clinical applications.
Collapse
Affiliation(s)
- Zoobia Bashir
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenting Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jiancheng Lai
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
28
|
Role of dipyridyl disulfide cross-linking moieties in an acrylate photo-adhesive material. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Park H, Park J, Lee G, Kim W, Park J. Detection of Chlorpyrifos Using Bio-Inspired Silver Nanograss. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3454. [PMID: 35629481 PMCID: PMC9146306 DOI: 10.3390/ma15103454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
Chlorpyrifos (CPF) is widely used as an organophosphorus insecticide; however, owing to developmental neurotoxicity, genotoxicity, and other adverse effects, it is harmful not only to livestock but also to humans. Therefore, the use of CPF was recently regulated, and its sensitive detection is crucial, as it causes serious toxicity, even in the case of residual pesticides. Because it is hard to detect the chlorpyrifos directly using spectroscopy (especially in SERS) without chemical reagents, we aimed to develop a SERS platform that could detect the chlorpyrifos directly in the water. In this study, we utilized the intrinsic properties of natural lawns that grow randomly and intertwine with each other to have a large surface area to promote photosynthesis. To detect CPF sensitively, we facilitated the rapid fabrication of biomimetic Ag nanograss (Ag-NG) as a surface-enhanced Raman spectroscopy (SERS) substrate using the electrochemical over-deposition method. The efficiency of the SERS method was confirmed through experiments and finite element method (FEM)-based electromagnetic simulations. In addition, the sensitive detection of CPF was enhanced by pretreatment optimization of the application of the SERS technique (limit of detection: 500 nM). The Ag-NG has potential as a SERS platform that could precisely detect organic compounds, as well as various toxic substances.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea; (H.P.); (J.P.)
| | - Joohyung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea; (H.P.); (J.P.)
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Woong Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University, Suwon 16419, Korea; (H.P.); (J.P.)
| |
Collapse
|
30
|
Yang S, Yi S, Yun J, Li N, Jiang Y, Huang Z, Xu C, He C, Pan X. Carbene-Mediated Polymer Cross-Linking with Diazo Compounds by C–H Activation and Insertion. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Siyu Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Yun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
31
|
Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, Park TE, Yang SY, Han DW, Hong SW, Kim KS. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. SCIENCE ADVANCES 2022; 8:eabn1646. [PMID: 35427152 PMCID: PMC9012471 DOI: 10.1126/sciadv.abn1646] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
Wound healing is the dynamic tissue regeneration process replacing devitalized and missing tissue layers. With the development of photomedicine techniques in wound healing, safe and noninvasive photobiomodulation therapy is receiving attention. Effective wound management in photobiomodulation is challenged, however, by limited control of the geometrical mismatches on the injured skin surface. Here, adhesive hyaluronic acid-based gelatin nanofibrous membranes integrated with multiple light-emitting diode (LED) arrays are developed as a skin-attachable patch. The nanofibrous wound dressing is expected to mimic the three-dimensional structure of the extracellular matrix, and its adhesiveness allows tight coupling between the wound sites and the flexible LED patch. Experimental results demonstrate that our medical device accelerates the initial wound healing process by the synergetic effects of the wound dressing and LED irradiation. Our proposed technology promises progress for wound healing management and other biomedical applications.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Eon Park
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
32
|
Li X, Zhang Y, Li G, Zhao X, Wu Y. Mussel-inspired epoxy-dopamine polymer as surface primer: The effect of thermal annealing treatment for enhanced adhesion performance both at dry and hot/wet conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Gao L, Ma S, Bao L, Zhao X, Xiang Y, Zhang Z, Ma Y, Ma Z, Liang YM, Zhou F. Molecular Engineering Super-Robust Dry/Wet Adhesive with Strong Interface Bonding and Excellent Mechanical Tolerance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12684-12692. [PMID: 35230813 DOI: 10.1021/acsami.2c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.
Collapse
Affiliation(s)
- Luyao Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhizhi Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
34
|
Shen J, Zhang H, Zhu J, Ma Y, He H, Zhu F, Jia L, Zheng Q. Simple Preparation of a Waterborne Polyurethane Crosslinked Hydrogel Adhesive With Satisfactory Mechanical Properties and Adhesion Properties. Front Chem 2022; 10:855352. [PMID: 35308786 PMCID: PMC8924036 DOI: 10.3389/fchem.2022.855352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Waterborne polyurethane has been proven to be an ideal additive for the preparation of hydrogels with excellent mechanical properties. This work reports that a satisfactory adhesion of acrylamide hydrogels can be obtained by introducing a large amount of waterborne polyurethane into system. A series of polyurethane hydrogels was prepared by using one-pot method with acrylamide monomer and 2-hydroxymethyl methacrylate end-modified waterborne polyurethane emulsion. The hydrogels exhibit good strength (greater than 30 KPa), wide range of adjustable strain (200%-800%), and excellent compression fatigue resistance. The performance improvement is attributed to the fact that the polyurethane emulsion containing double bonds provides chemical crosslinking and forms polyurethane microregions due to hydrophilic and hydrophobic interactions. The hydrogel shows extensive and repeatable adhesion on diverse substrates. This simple preparation method through polyurethane crosslinked hydrogels is expected to become a low-cost and efficient preparation strategy for hydrogel adhesives.
Collapse
Affiliation(s)
- Jiahao Shen
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Heng Zhang
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jingxin Zhu
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanlong Ma
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hongwei He
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fengbo Zhu
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Lan Jia
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Qiang Zheng
- College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan, China
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Li W, Jiang L, Wu S, Yang S, Ren L, Cheng B, Xia J. A Shape-Programmable Hierarchical Fibrous Membrane Composite System to Promote Wound Healing in Diabetic Patients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107544. [PMID: 35038225 DOI: 10.1002/smll.202107544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 05/24/2023]
Abstract
Chronic wound infection is one of the critical complications of diabetes and is difficult to cure. Although great efforts have been made, the development of special dressings that serve as therapeutic strategies to effectively promote wound healing in diabetic individuals remains a major challenge. In this study, a shape-programmable hierarchical fibrous membrane composite system is developed for synergistic modulation of the inflammatory microenvironment to treat chronically infected wounds. The system comprises a functional layer and a shape-programmable backing layer. A temperature-responsive shape-memory mechanism achieves biaxial mechanically active contractions of diabetic wounds in a programmable manner. To summarize, the membrane system combines antimicrobial activity, controlled drug release according to the need of wound healing, mechanical modulation with shape-programmable, robust adhesion, and on-demand debonding to biological tissue to rationally guide chronic wound management. A synergistic combination of antibacterial fiber network and released drugs shows broad-spectrum antibacterial activity. In vitro and in vivo evaluations indicate the dressing efficiency in promoting and supporting wound healing. The insights from this study demonstrate the effectiveness of a hierarchical composite membrane system with shape-programmability as a potential treatment in the care of diabetic wounds.
Collapse
Affiliation(s)
- Weichang Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Laibo Jiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Shujie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Shiwen Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, P. R. China
| |
Collapse
|
36
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
37
|
Abstract
Although the synthesis of thiophenol-pendant polymers was reported in the 1950s, the polymers generally suffered from oxidation and became insoluble in organic solvents, hampering detailed characterization and further applications. Dithiocatechol-pendant polymers, which have one additional ortho-thiol group than thiophenol-pendant polymers, have never been synthesized, despite their promise in various applications due to their analogous molecular structure with catechol-pendant polymers. Herein, we report the first synthesis of dithiocatechol-pendant polymers using a novel protection-deprotection strategy. We carefully examined the synthetic routes and identified the deprotection conditions that do not cause cross-linking of the dithiocatechol moieties. Because the resulting dithiocatechol-pendant polymers were soluble in common organic solvents (e.g., tetrahydrofuran and N,N-dimethylformamide), the polymers can be fully characterized by standard spectroscopic methods, providing valuable data for future researchers. We also showed that besides free-radical polymerization, reversible addition-fragmentation chain-transfer polymerization can also be adopted to synthesize dithiocatechol-pendant polymers. This work paves the way for the exploitation of dithiocatechol-containing polymers for the fabrication of novel functional materials.
Collapse
Affiliation(s)
- Jincai Li
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joseph J Richardson
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
38
|
Adhesive hydrogels with toughness, stretchability, and conductivity performances for motion monitoring. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Liu H, Geng H, Zhang X, Wang X, Hao J, Cui J. Hot Melt Super Glue: Multi-Recyclable Polyphenol-Based Supramolecular Adhesives. Macromol Rapid Commun 2022; 43:e2100830. [PMID: 35106862 DOI: 10.1002/marc.202100830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
We report the rapid and facile synthesis of hot melt super glue (HMSG) via the formation of adhesive supramolecular networks between catechol or pyrogallol hydroxyl groups (-OH) of polyphenols and repeat units (-CH2 CH2 O-) of poly(ethylene glycol) (PEG) based on hydrogen bonds. The adhesion strength of HMSG, processed by heating-cooling of polyphenols and PEG without additional solvents, can be tuned up to 8.8 MPa via changing the molecular weight of PEG and the ratio of hydrogen bonding donors and receptors. The advantages of the reported HMSG lie in the ease and scalability of the assembly process, rapid adhesion on various substrates with excellent processability, resistance of low temperature and organic solvents, and recyclable adhesion strength. The solvent-free HMSG represents a promising adhesive supramolecular network to expand the versatility and application of polyphenol-based materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
41
|
Li L, Peng H, Du Y, Zheng H, Yang A, Lv G, Li H. An antibacterial biomimetic adhesive with strong adhesion in both dry and underwater situations. J Mater Chem B 2022; 10:1063-1076. [PMID: 35076052 DOI: 10.1039/d1tb02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adhesives have attracted extensive attention in biomedical applications in recent years. However, the development of adhesives with strong adhesion in both dry and underwater conditions and antibacterial properties is still a challenge. Herein, a biomimetic adhesive (DP@TA/Gel) was developed based on the adhesion mechanism of mussel in water, from adhesion and solidification to avoiding excessive oxidization processes. DP@TA/Gel exhibited rapid strong nonspecific adhesiveness to diverse materials including wood (485 kPa) metal (507 kPa), plastic (74 kPa), and even fresh biological tissue (39 kPa) in dry conditions. Specially, owing to its biomimetic design, DP@TA/Gel could imitate the mussel adhesion mechanism underwater, endowing it with robust (38 kPa), highly repeatable (at least 15 times) and long-term (at least 120 h) stable adhesion even in underwater conditions. Remarkably, DP@TA/Gel also exhibited high adhesiveness in various water environments, including seawater, and a wide range of pH (3-11) and NaCl concentration (0.9-10%) solutions without any stimulus. In addition, DP@TA/Gel showed excellent biocompatibility and antibacterial properties. Thus, the DP@TA/Gel adhesive has appealing potential biomedical applications such as sutureless wound closure and as a tissue adhesive.
Collapse
Affiliation(s)
- Lin Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Haitao Peng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Du
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Aiping Yang
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Hong Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
42
|
Wang D, Wang Y, He C, Li J, Omoniyi AO, Lu S, Li X, Zhang J, Sun J, Su Z. Demonstration of temperature-sensitive paints with rigorously controlled thickness applied to variously shaped metal substrates with a highly stable connection based on a demulsification-induced fast solidification strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj06054f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature-sensitive paints with rigorously controlled thickness are in situ fabricated on metal surfaces based on the demulsification-induced fast solidification method.
Collapse
Affiliation(s)
- Dan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Yaokai Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Caicai He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jiangyan Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Siyu Lu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Xiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Zhongmin Su
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
43
|
Xue B, Gu J, Li L, Yu W, Yin S, Qin M, Jiang Q, Wang W, Cao Y. Hydrogel tapes for fault-tolerant strong wet adhesion. Nat Commun 2021; 12:7156. [PMID: 34887418 PMCID: PMC8660897 DOI: 10.1038/s41467-021-27529-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
Fast and strong bio-adhesives are in high demand for many biomedical applications, including closing wounds in surgeries, fixing implantable devices, and haemostasis. However, most strong bio-adhesives rely on the instant formation of irreversible covalent crosslinks to provide strong surface binding. Repositioning misplaced adhesives during surgical operations may cause severe secondary damage to tissues. Here, we report hydrogel tapes that can form strong physical interactions with tissues in seconds and gradually form covalent bonds in hours. This timescale-dependent adhesion mechanism allows instant and robust wet adhesion to be combined with fault-tolerant convenient surgical operations. Specifically, inspired by the catechol chemistry discovered in mussel foot proteins, we develop an electrical oxidation approach to controllably oxidize catechol to catecholquinone, which reacts slowly with amino groups on the tissue surface. We demonstrate that the tapes show fast and reversible adhesion at the initial stage and ultrastrong adhesion after the formation of covalent linkages over hours for various tissues and electronic devices. Given that the hydrogel tapes are biocompatible, easy to use, and robust for bio-adhesion, we anticipate that they may find broad biomedical and clinical applications.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, 210008, Nanjing, China
| | - Wenting Yu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, 210008, Nanjing, China.
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, 210093, Nanjing, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, 210093, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, 210093, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, 210093, Nanjing, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, 325001, Wenzhou, China.
| |
Collapse
|
44
|
Gwak MA, Hong BM, Seok JM, Park SA, Park WH. Effect of tannic acid on the mechanical and adhesive properties of catechol-modified hyaluronic acid hydrogels. Int J Biol Macromol 2021; 191:699-705. [PMID: 34582911 DOI: 10.1016/j.ijbiomac.2021.09.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Hyaluronic acid (HA) is applied in various fields, including pharmaceutical science, owing to its favorable biological properties such as moisture retention, non-toxicity, biodegradability, biocompatibility and biodegradability. In particular, many studies have aimed at its application in the form of a hydrogel. However, the applications of HA hydrogels are limited owing to their poor mechanical properties. In this study, an HA-catechol conjugate (HA-Cat) was synthesized by reacting the HA polymer with dopamine to improve its adhesion to various substrates. The HA-Cat hydrogel was prepared via oxidative crosslinking using a small amount of NaIO4 as the oxidant, and the hydrogel formation was investigated by rheological and mechanical studies. Further, the effect of tannic acid (TA) on the adhesive strength and compressive strength of the HA-Cat/TA hydrogels was examined according to the amount of NaIO4 used for crosslinking and the TA contents. Both the adhesive and compressive properties of the HA-Cat hydrogels were improved with the addition of TA. The HA-based hydrogels containing TA have great potential as cost-effective and biocompatible medical adhesives.
Collapse
Affiliation(s)
- Min A Gwak
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Bo Min Hong
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ji Min Seok
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
45
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
46
|
Yi Y, Xie C, Liu J, Zheng Y, Wang J, Lu X. Self-adhesive hydrogels for tissue engineering. J Mater Chem B 2021; 9:8739-8767. [PMID: 34647120 DOI: 10.1039/d1tb01503f] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels consisting of a three-dimensional hydrophilic network of biocompatible polymers have been widely used in tissue engineering. Owing to their tunable mechanical properties, hydrogels have been applied in both hard and soft tissues. However, most hydrogels lack self-adhesive properties that enable integration with surrounding tissues, which may result in suture or low repair efficacy. Self-adhesive hydrogels (SAHs), an emerging class of hydrogels based on a combination of three-dimensional hydrophilic networks and self-adhesive properties, continue to garner increased attention in recent years. SAHs exhibit reliable and suitable adherence to tissues, and easily integrate into tissues to promote repair efficiency. SAHs are designed either by mimicking the adhesion mechanism of natural organisms, such as mussels and sandcastle worms, or by using supramolecular strategies. This review summarizes the design and processing strategies of SAHs, clarifies underlying adhesive mechanisms, and discusses their applications in tissue engineering, as well as future challenges.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jin Liu
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
47
|
Rahman MA, Bowland C, Ge S, Acharya SR, Kim S, Cooper VR, Chen XC, Irle S, Sokolov AP, Savara A, Saito T. Design of tough adhesive from commodity thermoplastics through dynamic crosslinking. SCIENCE ADVANCES 2021; 7:eabk2451. [PMID: 34652933 PMCID: PMC8519568 DOI: 10.1126/sciadv.abk2451] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 05/25/2023]
Abstract
Tough adhesives provide resistance against high debonding forces, and these adhesives are difficult to design because of the simultaneous requirement of strength and ductility. Here, we report a design of tough reversible/recyclable adhesive materials enabled by incorporating dynamic covalent bonds of boronic ester into commodity triblock thermoplastic elastomers that reversibly bind with various fillers and substrates. The spectroscopic measurements and density functional theory calculations unveil versatile dynamic covalent binding of boronic ester with various hydroxy-terminated surfaces such as silica nanoparticles, aluminum, steel, and glass. The designed multiphase material exhibits exceptionally high adhesion strength and work of debonding with a rebonding capability, as well as outstanding mechanical, thermal, and chemical resistance properties. Bonding and debonding at the interfaces dictate hybrid material properties, and this revelation of tailored dynamic interactions with multiple interfaces will open up a new design of adhesives and hybrid materials.
Collapse
Affiliation(s)
- Md Anisur Rahman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christopher Bowland
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sirui Ge
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Shree Ram Acharya
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sungjin Kim
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Valentino R. Cooper
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - X. Chelsea Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Aditya Savara
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
48
|
Huang S, Wan Y, Ming X, Zhou J, Zhou M, Chen H, Zhang Q, Zhu S. Adhering Low Surface Energy Materials without Surface Pretreatment via Ion-Dipole Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41112-41119. [PMID: 34406738 DOI: 10.1021/acsami.1c11822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low surface energy materials resist adhesion due to their chemical inertness and non-wetting properties. Herein, we report the creation of a transparent ionogel adhesive that uses ion-dipole interactions to achieve a higher bonding performance to polytetrafluoroethylene (PTFE) relative to most commercial glues. The ionogel adhesive is composed of a poly(hexafluorobutyl acrylate-co-methyl methacrylate) random copolymer and a hydrophobic ionic liquid. The prepared ionogel can adhere to various hydrophobic substrates, such as PTFE, polypropylene, and polyethylene, as well as hydrophilic glass, ceramics, and steel. The design strategy and adhesion behavior are well interpreted using the density functional theory calculations and molecular dynamics simulations. The straightforward ultraviolet-curing method, high optical clarity, versatile adhesion ability, and reversible adhesion capabilities make this high-performance adhesive a promising product for commercialization.
Collapse
Affiliation(s)
- Shuaishuai Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yichen Wan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Jiaming Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Miaomiao Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hong Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
49
|
Pang H, Ma C, Shen Y, Sun Y, Li J, Zhang S, Cai L, Huang Z. Novel Bionic Soy Protein-Based Adhesive with Excellent Prepressing Adhesion, Flame Retardancy, and Mildew Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38732-38744. [PMID: 34369140 DOI: 10.1021/acsami.1c11004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soy protein (SP)-based adhesives can replace traditional aldehyde-based adhesives for the manufacturing of wood-based panels. However, developing a SP-based adhesive with excellent prepressing bonding strength, flame retardancy, and mildew resistance remains a challenge. Herein, an inorganic crystal cross-linked hybrid SP adhesive was developed inspired by the "secreting-hardening" process of the mussel adhesive protein and the organic-inorganic hybrid adhesive system of the oyster. Calcium sulfoaluminate (CSA) was introduced into the adhesive mixture of SP and acrylic acid to induce the in situ polymerization of acrylic acid to achieve adhesive gelation. The generation of the inorganic crystals by hydration of CSA not only contributed to the formation of a stable cross-linked hybrid adhesive system for strong cohesion but also provided strong interfacial adhesion between the adhesive layers and the plywood veneers. As anticipated, the prepared plywood sample bonded with the hybrid adhesive gel had an excellent prepressing bonding strength of 544 kPa, representing a significant increase compared to that of the pure SP adhesive (19 kPa). Moreover, the generated inorganic crystals endowed the adhesive with excellent mildew resistance and flame retardancy. This study provides a novel and effective strategy for the preparation of high-performance SP-based adhesives.
Collapse
Affiliation(s)
- Huiwen Pang
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Chao Ma
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yulin Shen
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yi Sun
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jianzhang Li
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application and Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, P.R. China
| | - Liping Cai
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
50
|
Zhang SJ, Chen XX, Cui CH, Ma L, Zhong QY, Shen KX, Yu J, Li Z, Wu YS, Zhang Q, Cheng YL, He L, Zhang YF. Strong, Removable, and Photoluminescent Hyperbranched Polyamide-amine Hot Melt Adhesive. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|