1
|
Wang PY, Zuo LL, Wu JD, Li CY, Li JF. Nanocavity-based single-molecule plasmon-enhanced Raman spectroscopy: Features and advancements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125664. [PMID: 39787801 DOI: 10.1016/j.saa.2024.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Since 1997, driven by advancements in nanoscience, single-molecule plasmon-enhanced Raman spectroscopy (SM-PERS) has developed into a powerful technique for ultrasensitive trace analysis through fingerprint vibrational chemical information. The nanocavity between the coupled plasmonic nanostructures, offering an exceptionally high Raman signal enhancement factor (i.e., plasmonic field hotspot), is crucial for the achievement of SM-PERS. Herein, we first briefly review the development of SM-PERS, followed by an introduction of the features and methodologies of SM-PERS, as well as the applications of SM-PERS in biological analysis, high-resolution chemical imaging, and the investigations of single-molecule reactions. Finally, a perspective highlighting the advancement of new methods and applications of nano-driven SM-PERS is presented.
Collapse
Affiliation(s)
- Peng-Yu Wang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liao-Liao Zuo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jie-Du Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Chao-Yu Li
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
4
|
Park Y, Hamada I, Hammud A, Kumagai T, Wolf M, Shiotari A. Atomic-precision control of plasmon-induced single-molecule switching in a metal-semiconductor nanojunction. Nat Commun 2024; 15:6709. [PMID: 39112448 PMCID: PMC11306799 DOI: 10.1038/s41467-024-51000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Atomic-scale control of photochemistry facilitates extreme miniaturisation of optoelectronic devices. Localised surface plasmons, which provide strong confinement and enhancement of electromagnetic fields at the nanoscale, secure a route to achieve sub-nanoscale reaction control. Such local plasmon-induced photochemistry has been realised only in metallic structures so far. Here we demonstrate controlled plasmon-induced single-molecule switching of peryleneanhydride on a silicon surface. Using a plasmon-resonant tip in low-temperature scanning tunnelling microscopy, we can selectively induce the dissociation of the O-Si bonds between the molecule and surface, resulting in reversible switching between two configurations within the nanojunction. The switching rate can be controlled by changing the tip height with 0.1-Å precision. Furthermore, the plasmon-induced reactivity can be modified by chemical substitution within the molecule, suggesting the importance of atomic-level design for plasmon-driven optoelectronic devices. Thus, metal-single-molecule-semiconductor junctions may serve as a prominent controllable platform beyond conventional nano-optoelectronics.
Collapse
Affiliation(s)
- Youngwook Park
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Takashi Kumagai
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Akitoshi Shiotari
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| |
Collapse
|
5
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
6
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
7
|
Sun X, Liu R, Kandapal S, Xu B. Development and mechanisms of photo-induced molecule junction device. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1535-1560. [PMID: 39678175 PMCID: PMC11636484 DOI: 10.1515/nanoph-2023-0921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 12/17/2024]
Abstract
The utilization of single molecule electronic devices represents a significant avenue toward advancing next-generation circuits. Recent investigations have notably augmented our understanding of the optoelectronic characteristics exhibited by diverse single molecule materials. This comprehensive review underscores the latest progressions in probing photo-induced electron transport behaviors within molecular junctions. Encompassing both single molecule and self-assembled monolayer configurations, this review primarily concentrates on unraveling the fundamental mechanisms and guiding principles underlying photo-switchable devices within single molecule junctions. Furthermore, it presents an outlook on the obstacles faced and future prospects within this dynamically evolving domain.
Collapse
Affiliation(s)
- Xin Sun
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Ran Liu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
8
|
Sommer M, Laible F, Braun K, Goschurny T, Meixner AJ, Fleischer M. Nano-antennas with decoupled transparent leads for optoelectronic studies. NANOTECHNOLOGY 2024; 35:215302. [PMID: 38456537 DOI: 10.1088/1361-6528/ad2b4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Performing electrical measurements on single plasmonic nanostructures presents a challenging task due to the limitations in contacting the structure without disturbing its optical properties. In this work, we show two ways to overcome this problem by fabricating bow-tie nano-antennas with indium tin oxide leads. Indium tin oxide is transparent in the visible range and electrically conducting, but non-conducting at optical frequencies. The structures are prepared by electron beam lithography. Further definition, such as introducing small gaps, is achieved by focused helium ion beam milling. Dark-field reflection spectroscopy characterization of the dimer antennas shows typical unperturbed plasmonic spectra with multiple resonance peaks from mode hybridization.
Collapse
Affiliation(s)
- Melanie Sommer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Tübingen, Germany
| | - Florian Laible
- Institute for Applied Physics and Center LISA+, University of Tübingen, Tübingen, Germany
| | - Kai Braun
- Institute of Physical and Theoretical Chemistry and Center LISA+, University of Tübingen, Tübingen, Germany
| | - Thomas Goschurny
- Institute for Applied Physics and Center LISA+, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry and Center LISA+, University of Tübingen, Tübingen, Germany
| | - Monika Fleischer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Mejía L, Cossio P, Franco I. Microscopic theory, analysis, and interpretation of conductance histograms in molecular junctions. Nat Commun 2023; 14:7646. [PMID: 37996422 PMCID: PMC10667247 DOI: 10.1038/s41467-023-43169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Molecular electronics break-junction experiments are widely used to investigate fundamental physics and chemistry at the nanoscale. Reproducibility in these experiments relies on measuring conductance on thousands of freshly formed molecular junctions, yielding a broad histogram of conductance events. Experiments typically focus on the most probable conductance, while the information content of the conductance histogram has remained unclear. Here we develop a microscopic theory for the conductance histogram by merging the theory of force-spectroscopy with molecular conductance. The procedure yields analytical equations that accurately fit the conductance histogram of a wide range of molecular junctions and augments the information content that can be extracted from them. Our formulation captures contributions to the conductance dispersion due to conductance changes during the mechanical elongation inherent to the experiments. In turn, the histogram shape is determined by the non-equilibrium stochastic features of junction rupture and formation. The microscopic parameters in the theory capture the junction's electromechanical properties and can be isolated from separate conductance and rupture force (or junction-lifetime) measurements. The predicted behavior can be used to test the range of validity of the theory, understand the conductance histograms, design molecular junction experiments with enhanced resolution and molecular devices with more reproducible conductance properties.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York City, NY, 10010, USA
- Center for Computational Biology, Flatiron Institute, New York City, NY, 10010, USA
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA.
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
10
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
11
|
Liao S, Zhu Y, Ye Q, Sanders S, Yang J, Alabastri A, Natelson D. Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions. J Phys Chem Lett 2023; 14:7574-7580. [PMID: 37589653 DOI: 10.1021/acs.jpclett.3c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is enabled by local surface plasmon resonances (LSPRs) in metallic nanogaps. When SERS is excited by direct illumination of the nanogap, the background heating of the lattice and electrons can prevent further manipulation of the molecules. To overcome this issue, we report SERS in electromigrated gold molecular junctions excited remotely: surface plasmon polaritons (SPPs) are excited at nearby gratings, propagate to the junction, and couple to the local nanogap plasmon modes. Like direct excitation, remote excitation of the nanogap can generate both SERS emission and an open-circuit photovoltage (OCPV). We compare the SERS intensity and the OCPV in both direct and remote illumination configurations. SERS spectra obtained by remote excitation are much more stable than those obtained through direct excitation when the photon count rates are comparable. By statistical analysis of 33 devices, the coupling efficiency of remote excitation is calculated to be around 10%, consistent with the simulated energy flow.
Collapse
Affiliation(s)
- Shusen Liao
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Qian Ye
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Jiawei Yang
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Douglas Natelson
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Kukkar D, Chhillar M, Kim KH. Application of SERS-based nanobiosensors to metabolite biomarkers of CKD. Biosens Bioelectron 2023; 232:115311. [PMID: 37086564 DOI: 10.1016/j.bios.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
A clinical diagnosis of chronic kidney disease (CKD) is commonly achieved by estimating the serum levels of urea and creatinine (CR). Given the limitations of the conventional diagnostic assays, it is imperative to seek alternative, economical strategies for the detection of CKD-specific biomarkers with high specificity and selectivity. In this respect, surface-enhanced Raman spectroscopy (SERS) can be regarded as an ideal choice. SERS signals can be greatly amplified by noble metal nanoparticles (e.g., gold nanoparticles (GNPs)) of numerous sizes, shapes, and configurations to help achieve ultra-sensitive single molecule-level detection at 10-15 M (up to 10 orders of magnitude more sensitive than fluorescence-based detection). The irregular geometry of GNPs with spike-like tips, dimers, and aggregates with small nanogaps (i.e., due to plasmon coupling such as Raman hot spots) play a pivotal role in enhancing the specificity and sensitivity of SERS. This review critically outlines the performance of SERS-based biosensors in the ultrasensitive detection of CKD biomarkers in various body fluids in terms of basic quality assurance parameters (e.g., limit of detection, figure of merit, enhancement factor, and stability of the biosensor). Moreover, the challenges and perspectives are described with respect to the expansion of such sensing techniques in practical clinical settings.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Monika Chhillar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
13
|
A DFT study of the adsorption and surface enhanced Raman spectroscopy of pyridine on Au20, Ag20, and bimetallic Ag8Au12 clusters. J Mol Graph Model 2022; 115:108234. [DOI: 10.1016/j.jmgm.2022.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
|
14
|
Cirera B, Litman Y, Lin C, Akkoush A, Hammud A, Wolf M, Rossi M, Kumagai T. Charge Transfer-Mediated Dramatic Enhancement of Raman Scattering upon Molecular Point Contact Formation. NANO LETTERS 2022; 22:2170-2176. [PMID: 35188400 PMCID: PMC8949761 DOI: 10.1021/acs.nanolett.1c02626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Charge-transfer enhancement of Raman scattering plays a crucial role in current-carrying molecular junctions. However, the microscopic mechanism of light scattering in such nonequilibrium systems is still imperfectly understood. Here, using low-temperature tip-enhanced Raman spectroscopy (TERS), we investigate how Raman scattering evolves as a function of the gap distance in the single C60-molecule junction consisting of an Ag tip and various metal surfaces. Precise gap-distance control allows the examination of two distinct transport regimes, namely tunneling regime and molecular point contact (MPC). Simultaneous measurement of TERS and the electric current in scanning tunneling microscopy shows that the MPC formation results in dramatic Raman enhancement that enables one to observe the vibrations undetectable in the tunneling regime. This enhancement is found to commonly occur not only for coinage but also transition metal substrates. We suggest that the characteristic enhancement upon the MPC formation is rationalized by charge-transfer excitation.
Collapse
Affiliation(s)
- Borja Cirera
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yair Litman
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Chenfang Lin
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Alaa Akkoush
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Adnan Hammud
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Mariana Rossi
- MPI
for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Takashi Kumagai
- Department
of Physical Chemistry, Fritz-Haber Institute
of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Center
for Mesoscopic Sciences, Institute for Molecular
Science, Okazaki 444-8585, Japan
| |
Collapse
|
15
|
Minamimoto H, Zhou R, Fukushima T, Murakoshi K. Unique Electronic Excitations at Highly Localized Plasmonic Field. Acc Chem Res 2022; 55:809-818. [PMID: 35184549 DOI: 10.1021/acs.accounts.1c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusUnder visible light illuminations, noble metal nanostructures can condense photon energy into the nanoscale region. By precisely tuning the metal nanostructures, the ultimate confinement of photoenergy at the molecular scale can be obtained. At such a confined photon energy field, various unique photoresponses of molecules, such as efficient visible light energy conversion processes or efficient multielectron transfer reactions, can be observed. Light-matter interactions also increase with the condensation of photons with nanoscale regions, leading to efficient light energy utilizations. Moreover, the strong field confinement can often modulate electronic excitations beyond normal selection rules. Such unique electronic excitations could realize innovative photoenergy conversion systems. On the other hand, such interactions lead to changes in the optical absorption property of the system via the formation of hybridized electronic energy states. This hybridized state is expected to have the potential to modulate the chemical reaction pathways. Taking these facts into consideration, a probe for the molecular absorption process with high sensitivity allows us to find novel ways for further precise tuning of light-matter interactions. In this Account, we review phenomena of unique electronic excitations from the perspective of our previous investigations using surface-enhanced Raman scattering (SERS) spectroscopy at electrified interfaces. Because the enhancement mechanism of Raman scattering at interfaces is deeply correlated with the photon absorption process accompanied by the electronic excitations between molecules and electrode surfaces, the detailed SERS investigations of the well-defined system can provide information on the electronic excitation processes. Through SERS observations of single-molecule junctions at electrodes or well-defined low-dimensional carbon materials, we have observed the characteristic Raman bands containing additional polarization tensors, indicating the occurrence of electronic polarization induced by electronic excitations based on a distinct selection rule. The origins for the observed facts were attributed to the highly condensed electric field producing the huge intensity gradient at the nano scale. The electrochemical potential control of the system would be valuable for the control of the excitation process. Additionally, from Raman spectra of dye molecules coupled to the plasmonic field, the changes in the Raman scattering intensity depending on the strength of interactions suggested the modulation of the absorption characteristics of the system. In addition, we have proved that the electrochemical potential control method can be a powerful tool for the active tuning of the light-matter interaction, leading to the change in the light absorption property. The molecular behaviors of dyes in the strong-coupling regime were reversibly tuned to show intense SERS. The current descriptions provide novel insights for these unique electronic excitations, realized by the plasmon excitation, that lead to advanced photoenergy conversions beyond the limits of present systems.
Collapse
Affiliation(s)
- Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Ruifeng Zhou
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
16
|
Review of the use of nanodevices to detect single molecules. Anal Biochem 2022; 654:114645. [DOI: 10.1016/j.ab.2022.114645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
|
17
|
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. NANOMATERIALS 2022; 12:nano12040698. [PMID: 35215024 PMCID: PMC8878161 DOI: 10.3390/nano12040698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Probing charge and energy transport in molecular junctions (MJs) has not only enabled a fundamental understanding of quantum transport at the atomic and molecular scale, but it also holds significant promise for the development of molecular-scale electronic devices. Recent years have witnessed a rapidly growing interest in understanding light-matter interactions in illuminated MJs. These studies have profoundly deepened our knowledge of the structure–property relations of various molecular materials and paved critical pathways towards utilizing single molecules in future optoelectronics applications. In this article, we survey recent progress in investigating light-driven charge transport in MJs, including junctions composed of a single molecule and self-assembled monolayers (SAMs) of molecules, and new opportunities in optical sensing at the single-molecule level. We focus our attention on describing the experimental design, key phenomena, and the underlying mechanisms. Specifically, topics presented include light-assisted charge transport, photoswitch, and photoemission in MJs. Emerging Raman sensing in MJs is also discussed. Finally, outstanding challenges are explored, and future perspectives in the field are provided.
Collapse
|
18
|
Kobayashi S, Kaneko S, Tamaki T, Kiguchi M, Tsukagoshi K, Terao J, Nishino T. Principal Component Analysis of Surface-Enhanced Raman Scattering Spectra Revealing Isomer-Dependent Electron Transport in Spiropyran Molecular Junctions: Implications for Nanoscale Molecular Electronics. ACS OMEGA 2022; 7:5578-5583. [PMID: 35187372 PMCID: PMC8851897 DOI: 10.1021/acsomega.1c07105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The characterization of single-molecule structures could provide significant insights into the operation mechanisms of functional devices. Structural transformation via isomerization has been extensively employed to implement device functionalities. Although single-molecule identification has recently been achieved using near-field spectroscopy, discrimination between isomeric forms remains challenging. Further, the structure-function relationship at the single-molecule scale remains unclear. Herein, we report the observation of the isomerization of spiropyran in a single-molecule junction (SMJ) using simultaneous surface-enhanced Raman scattering (SERS) and conductance measurements. SERS spectra were used to discriminate between isomers based on characteristic peaks. Moreover, conductance measurements, in conjunction with the principal component analysis of the SERS spectra, clearly showed the isomeric effect on the conductance of the SMJ.
Collapse
Affiliation(s)
- Shuji Kobayashi
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Satoshi Kaneko
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takashi Tamaki
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Manabu Kiguchi
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kazuhito Tsukagoshi
- International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Terao
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tomoaki Nishino
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
19
|
Oyamada N, Minamimoto H, Murakoshi K. Room-Temperature Molecular Manipulation via Plasmonic Trapping at Electrified Interfaces. J Am Chem Soc 2022; 144:2755-2764. [PMID: 35107293 DOI: 10.1021/jacs.1c12213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For the motion control of individual molecules at room temperature, optical tweezers could be one of the best approaches to realize desirable selectivity with high resolution in time and space. Because of physical limitations due to the thermal fluctuation, optical manipulation of small molecules at room temperature is still a challenging subject. The difficulty of the manipulation also emerged from the variation of molecular polarizability depending on the choice of molecules as well as the molecular orientation to the optical field. In this article, we have demonstrated plasmonic optical trapping of small size molecules with less than 1 nm at the gap of a single metal nanodimer immersed in an electrolyte solution. In situ electrochemical surface-enhanced Raman scattering measurements prove that a plasmonic structure under electrochemical potential control realizes not only the selective molecular condensation but also the formation of unique mixed molecular phases which is distinct from those under a thermodynamic equilibrium. Through detailed analyses of optical trapping behavior, we established the methodology of plasmonic optical trapping to create the novel adsorption isotherm under applying an optical force at electrified interfaces.
Collapse
Affiliation(s)
- Nobuaki Oyamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
20
|
Nanodevices for Biological and Medical Applications: Development of Single-Molecule Electrical Measurement Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A comprehensive detection of a wide variety of diagnostic markers is required for the realization of personalized medicine. As a sensor to realize such personalized medicine, a single molecule electrical measurement method using nanodevices is currently attracting interest for its comprehensive simultaneous detection of various target markers for use in biological and medical application. Single-molecule electrical measurement using nanodevices, such as nanopore, nanogap, or nanopipette devices, has the following features:; high sensitivity, low-cost, high-throughput detection, easy-portability, low-cost availability by mass production technologies, and the possibility of integration of various functions and multiple sensors. In this review, I focus on the medical applications of single- molecule electrical measurement using nanodevices. This review provides information on the current status and future prospects of nanodevice-based single-molecule electrical measurement technology, which is making a full-scale contribution to realizing personalized medicine in the future. Future prospects include some discussion on of the current issues on the expansion of the application requirements for single-mole-cule measurement.
Collapse
|
21
|
Griffiths J, Földes T, de Nijs B, Chikkaraddy R, Wright D, Deacon WM, Berta D, Readman C, Grys DB, Rosta E, Baumberg JJ. Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra. Nat Commun 2021; 12:6759. [PMID: 34799553 PMCID: PMC8604935 DOI: 10.1038/s41467-021-26898-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Metal/organic-molecule interactions underpin many key chemistries but occur on sub-nm scales where nanoscale visualisation techniques tend to average over heterogeneous distributions. Single molecule imaging techniques at the atomic scale have found it challenging to track chemical behaviour under ambient conditions. Surface-enhanced Raman spectroscopy can optically monitor the vibrations of single molecules but understanding is limited by the complexity of spectra and mismatch between theory and experiment. We demonstrate that spectra from an optically generated metallic adatom near a molecule of interest can be inverted into dynamic sub-Å metal-molecule interactions using a comprehensive model, revealing anomalous diffusion of a single atom. Transient metal-organic coordination bonds chemically perturb molecular functional groups > 10 bonds away. With continuous improvements in computational methods for modelling large and complex molecular systems, this technique will become increasingly applicable to accurately tracking more complex chemistries.
Collapse
Affiliation(s)
- Jack Griffiths
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Tamás Földes
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Demelza Wright
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - William M Deacon
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Dénes Berta
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Charlie Readman
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Edina Rosta
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
22
|
Jimbo A, Nishikado Y, Imura K. Optical Field and Chemical Environment Near the Surface Modified Gold Nanoparticle Assembly Revealed by Two-Photon Induced Photoluminescence and Surface Enhanced Raman Scattering. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Atsuko Jimbo
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yui Nishikado
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Imura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
23
|
Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix JC. Single-Molecule Junctions with Highly Improved Stability. NANO LETTERS 2021; 21:6540-6548. [PMID: 34286999 DOI: 10.1021/acs.nanolett.1c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule junctions (SMJs) have been fabricated using layers generated by diazonium electroreduction. This process creates a C-Au covalent bond between the molecule and the electrode. Rigid oligomers of variable length, based on porphyrin derivatives in their free base or cobalt complex forms, have been grafted on the surface. The conductance of the oligomers has been studied by a scanning tunneling microscopy break junction (STM-bj) technique and G(t) measurements, and the lifetime of the SMJs has been investigated. The conductance histograms indicate that charge transport in the porphyrins is relatively efficient and influenced by the presence of the cobalt center. With both systems, random telegraph G(t) signals are easily recorded, showing SMJ on/off states. The SMJs then stabilize and exhibit a surprisingly long lifetime around 10 s, and attenuation plots, obtained by both G(t) and STM-bj measurements, give identical values. This work shows that highly stable SMJs can be prepared using a diazonium grafting approach.
Collapse
Affiliation(s)
- Xinlei Yao
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Maïwenn Combes
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Xiaonan Sun
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
24
|
Domulevicz L, Jeong H, Paul NK, Gomez-Diaz JS, Hihath J. Multidimensional Characterization of Single-Molecule Dynamics in a Plasmonic Nanocavity. Angew Chem Int Ed Engl 2021; 60:16436-16441. [PMID: 33847037 DOI: 10.1002/anie.202100886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Nanoscale manipulation and characterization of individual molecules is necessary to understand the intricacies of molecular structure, which governs phenomena such as reaction mechanisms, catalysis, local effective temperatures, surface interactions, and charge transport. Here we utilize Raman enhancement between two nanostructured electrodes in combination with direct charge transport measurements to allow for simultaneous characterization of the electrical, optical, and mechanical properties of a single molecule. This multi-dimensional information yields repeatable, self-consistent, verification of single-molecule resolution, and allows for detailed analysis of structural and configurational changes of the molecule in situ. These experimental results are supported by a machine-learning based statistical analysis of the spectral information and calculations to provide insight into the correlation between structural changes in a single-molecule and its charge-transport properties.
Collapse
Affiliation(s)
- Lucas Domulevicz
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Hyunhak Jeong
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Nayan K Paul
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Juan Sebastian Gomez-Diaz
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
25
|
Domulevicz L, Jeong H, Paul NK, Gomez‐Diaz JS, Hihath J. Multidimensional Characterization of Single‐Molecule Dynamics in a Plasmonic Nanocavity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucas Domulevicz
- Department of Electrical and Computer Engineering University of California Davis One Shields Ave. Davis CA 95616 USA
| | - Hyunhak Jeong
- Department of Electrical and Computer Engineering University of California Davis One Shields Ave. Davis CA 95616 USA
| | - Nayan K. Paul
- Department of Electrical and Computer Engineering University of California Davis One Shields Ave. Davis CA 95616 USA
| | - Juan Sebastian Gomez‐Diaz
- Department of Electrical and Computer Engineering University of California Davis One Shields Ave. Davis CA 95616 USA
| | - Joshua Hihath
- Department of Electrical and Computer Engineering University of California Davis One Shields Ave. Davis CA 95616 USA
| |
Collapse
|
26
|
Kim D, Yun HS, Das B, Rhie J, Vasa P, Kim YI, Choa SH, Park N, Lee D, Bahk YM, Kim DS. Topology-Changing Broadband Metamaterials Enabled by Closable Nanotrenches. NANO LETTERS 2021; 21:4202-4208. [PMID: 33710897 DOI: 10.1021/acs.nanolett.1c00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries. When an inner bending is applied on the substrate, the nanotrench closes and the accompanying topological change results in abrupt switching of metamaterial functionalities such as resonance, chirality, and polarization selectivity. Closable nanotrenches can be embedded in metamaterials of broadband spectrum, ranging from visible to microwave. The 99.9% extinction performance is robust, enduring more than a thousand bending cycles. Our work provides a wafer-scale platform for active quantum plasmonics and photonic application of subnanometer phenomena.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong Seok Yun
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Bamadev Das
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeah Rhie
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Parinda Vasa
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Young-Il Kim
- Graduate School of NID Fusion Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sung-Hoon Choa
- Graduate School of NID Fusion Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Namkyoo Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dukhyung Lee
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young-Mi Bahk
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Lu Z, Zheng J, Shi J, Zeng BF, Yang Y, Hong W, Tian ZQ. Application of Micro/Nanofabrication Techniques to On-Chip Molecular Electronics. SMALL METHODS 2021; 5:e2001034. [PMID: 34927836 DOI: 10.1002/smtd.202001034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Molecular electronics is a promising subject to overcome the size limitation of silicon-based electronic devices. In the past decades, various micro/nanofabrication techniques have been developed for constructing molecular junctions, and a number of breakthroughs are made in the characterizations and applications of the single-molecule device. The history and progress are reviewed in this article, laying emphasis on the recent works on the combination of micro/nanofabrication techniques with other techniques such as electrochemical deposition and surface-enhanced Raman spectroscopy (SERS). Some prototypical single-molecule devices such as molecular transistors are presented. Finally, the challenges and prospects in the fabrication of single-molecule devices are discussed.
Collapse
Affiliation(s)
- Zhixing Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Biao-Feng Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
28
|
Braun K, Hauler O, Zhang D, Wang X, Chassé T, Meixner AJ. Probing Bias-Induced Electron Density Shifts in Metal-Molecule Interfaces via Tip-Enhanced Raman Scattering. J Am Chem Soc 2021; 143:1816-1821. [PMID: 33492134 DOI: 10.1021/jacs.0c09392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface charging effects at metal-molecule interfaces, for example, charge transfer, charge transport, charge injection, and so on, have a strong impact on the performance of organic electronics. Only having molecules bound or adsorbed on different metals results in a doping-like behavior at the interface by the different work functions of the metals and creates hybrid surface states, which strongly affect the efficiencies. With the ongoing downsizing and thinning of the organic components, the impact of the interface will even further increase. However, most of the investigations only monitor the interface without the additional charging effects from applying a voltage to the interface. In this work we present a spectroscopic approach based on tip-enhanced Raman spectroscopy (TERS) to study metal-molecule interfaces with an applied voltage simulating the electric field strength in real devices. We monitor how an intrinsic inductive effect of partial functional groups in molecules can shift the molecular electron density (ED) distribution when a bias voltage is applied. Therefore, we choose two molecules as model systems, which are similar in size and binding condition to a smooth gold surface, but with different electronic structure. By placing the tip 1 nm over the molecular surface at a fixed position and changing the applied bias voltage, we record electric-field-dependent tip-enhanced Raman spectra. Specific vibrational bands exhibit voltage-dependent intensity changes related to the shift of the local ED inside the molecules. We believe this experiment is valuable to gain deeper insights into charged metal-molecule interfaces.
Collapse
Affiliation(s)
- Kai Braun
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.,Center for Light-Matter Interaction, Sensors & Analytics (LISA+), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Otto Hauler
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.,Center for Light-Matter Interaction, Sensors & Analytics (LISA+), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Xiao Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, Hunan 410012, China
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.,Center for Light-Matter Interaction, Sensors & Analytics (LISA+), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.,Center for Light-Matter Interaction, Sensors & Analytics (LISA+), University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Zhang D, Tang L, Chen J, Tang Z, Liang P, Huang Y, Cao M, Zou M, Ni D, Chen J, Yu Z, Jin S. Controllable Self-Assembly of SERS Hotspots in Liquid Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:939-948. [PMID: 33397111 DOI: 10.1021/acs.langmuir.0c03323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable synthesis of novel metal nanoparticles and effective capture of hotspots are of great significance for SERS (surface-enhanced Raman spectroscopy) detection. Therefore, in this paper, a green controllable synthesis method of gold nanoparticle was achieved via epigallocatechin gallate reduction. Different morphologies of gold nanoparticles were synthesized just by changing the solution pH values, and the growth kinetics of AuNPs (gold nanoparticles) were systematically studied. The synthetic AuNPs were put in a droplet to study dynamic variations of self-assembly SERS hotspots from the liquid sol state to the solid dry state. The addition of halogen ions in the droplet can controllably regulate the self-assembly three-dimensional hotspot model of gold nanoparticles in the evaporation process of a droplet, during which the most enhancement effect can be easily captured. The dynamically changing images of nanoparticles in the process were graphically described based on the internal interaction forces of a droplet. Two stronger areas in the changes of SERS intensity were achieved with a high concentration of halogen ions, while only one maximum intensity area was obtained with a low concentration of halogen ions added. This method can effectively avoid complex and unpredictable microenvironments of SERS substrates in the liquid drop, further improving the reproducibility of SERS detection as well as broadening it to biological applications.
Collapse
Affiliation(s)
- De Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Lisha Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | | | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
- China Inspection Laboratory Technologies Co. Ltd. (CILT), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
| | | | | | | | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| |
Collapse
|
30
|
Kim Y. Photoswitching Molecular Junctions: Platforms and Electrical Properties. Chemphyschem 2020; 21:2368-2383. [PMID: 32777151 DOI: 10.1002/cphc.202000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Indexed: 11/10/2022]
Abstract
Remarkable advances in technology have enabled the manipulation of individual molecules and the creation of molecular electronic devices utilizing single and ensemble molecules. Maturing the field of molecular electronics has led to the development of functional molecular devices, especially photoswitching or photochromic molecular junctions, which switch electronic properties under external light irradiation. This review introduces and summarizes the platforms for investigating the charge transport in single and ensemble photoswitching molecular junctions as well as the electronic properties of diverse photoswitching molecules such as diarylethene, azobenzene, dihydropyrene, and spiropyran. Furthermore, the article discusses the remaining challenges and the direction for moving forward in this area for future photoswitching molecular devices.
Collapse
Affiliation(s)
- Youngsang Kim
- Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Current address, 7644 Ambrose way, California, 95831, USA
| |
Collapse
|
31
|
Gruber CM, Herrmann L, Bellido EP, Dössegger J, Olziersky A, Drechsler U, Puebla-Hellmann G, Botton GA, Novotny L, Lörtscher E. Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control. NANO LETTERS 2020; 20:4346-4353. [PMID: 32369701 DOI: 10.1021/acs.nanolett.0c01072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enhanced electromagnetic fields in nanometer gaps of plasmonic structures increase the optical interaction with matter, including Raman scattering and optical absorption. Quantum electron tunneling across sub-1 nm gaps, however, lowers these effects again. Understanding these phenomena requires controlled variation of gap sizes. Mechanically actuated plasmonic antennas enable repeatable tuning of gap sizes from the weak-coupling over the quantum-electron-tunneling to the direct-electrical-contact regime. Gap sizes are controlled electrically via leads that only weakly disturb plasmonic modes. Conductance signals show a near-continuous transition from electron tunneling to metallic contact. As the antenna's absorption cross-section is reduced, thermal expansion effects are negligible, in contrast to conventional break-junctions. Optical scattering spectra reveal first continuous red shifts for decreasing gap sizes and then blue shifts below gaps of 0.3 nm. The approach provides pathways to study opto- and electromolecular processes at the limit of plasmonic sensing.
Collapse
Affiliation(s)
- Cynthia M Gruber
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Photonics Laboratory, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Lars Herrmann
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Photonics Laboratory, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Edson P Bellido
- McMaster University, 1280 Main Street West, Hamilton, ON L8S4M1, Canada
| | - Janine Dössegger
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Photonics Laboratory, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Antonis Olziersky
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Ute Drechsler
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Gabriel Puebla-Hellmann
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | | | - Lukas Novotny
- ETH Zürich, Photonics Laboratory, Hönggerbergring 64, CH-8093 Zürich, Switzerland
| | - Emanuel Lörtscher
- IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
32
|
Shibata K, Fujii S, Sun Q, Miura A, Ueno K. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. J Chem Phys 2020; 152:104706. [DOI: 10.1063/1.5142569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Kizuku Shibata
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Sho Fujii
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Quan Sun
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Atsushi Miura
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
33
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1589] [Impact Index Per Article: 317.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
34
|
Xie Y, You Q, Dai P, Wang S, Hong P, Liu G, Yu J, Sun X, Zeng Y. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117086. [PMID: 31200266 DOI: 10.1016/j.saa.2019.04.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
With the miniaturization of Raman spectrometers, Raman spectroscopy (including Surface-enhanced Raman spectroscopy) has been widely applied to various fields, especially towards rapid detection applications. In order to deal with the accompanied massive databases, large numbers of Raman spectra require to be handled and identified in an effective and automatic manner. This paper proposes an algorithm of material auto-identification, which makes use of machine learning methods to analyze Raman spectra. Firstly, a universal method of spectral feature extraction is designed to automatically process Raman spectra after the background subtraction. Secondly, the extracted feature vectors are used to classify and identify target materials by Adaptive Hypergraph (AH), an efficient classifier in the field of machine learning, in a manner of automation with an accuracy rate of ~99%. Compared with Support Vector Machine (SVM) and Random Forest (RF), two typical methods of classification, the AH classifier provides better performance free of tuning any parameter facing different targets. Thirdly, Cubic Spline Interpolation is introduced to enhance the universal of the proposed algorithm between different databases from different Raman spectrometers with variant vendors. The identification accuracy rate is up to 98% using the high frequency sampling spectra as the learning and the low frequency sampling ones as the testing, respectively.
Collapse
Affiliation(s)
- Yi Xie
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiaobei You
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Pingyang Dai
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuyi Wang
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peiyi Hong
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jun Yu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Xilong Sun
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yongming Zeng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
35
|
Oyamada N, Minamimoto H, Wakisaka Y, Murakoshi K. Determination of Molecular Orientation in Bi-analyte Mono-molecule Layer through Electrochemical Surface-enhanced Raman Scattering Measurements. CHEM LETT 2019. [DOI: 10.1246/cl.190282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nobuaki Oyamada
- Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yumi Wakisaka
- Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
36
|
Guo C, Chen X, Ding SY, Mayer D, Wang Q, Zhao Z, Ni L, Liu H, Lee T, Xu B, Xiang D. Molecular Orbital Gating Surface-Enhanced Raman Scattering. ACS NANO 2018; 12:11229-11235. [PMID: 30335940 DOI: 10.1021/acsnano.8b05826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the promising approaches to meet the urgent demand for further device miniaturization is to create functional devices using single molecules. Although various single-molecule electronic devices have been demonstrated recently, single-molecule optical devices which use external stimulations to control the optical response of a single molecule have rarely been reported. Here, we propose and demonstrate a field-effect Raman scattering (FERS) device with a single molecule, an optical counterpart to field-effect transistors (a key component of modern electronics). With our devices, the gap size between electrodes can be precisely adjusted at subangstrom accuracy to form single molecular junctions as well as to reach the maximum performance of Raman scattering via plasmonic enhancement. Based on this maximum performance, we demonstrated that the intensity of Raman scattering can be further enhanced by an additional ∼40% if the orbitals of the molecules bridged two electrodes were shifted by a gating voltage. This finding not only provides a method to increase the sensitivity of Raman scattering beyond the limit of plasmonic enhancement, but also makes it feasible to realize addressable functional FERS devices with a gate electrode array.
Collapse
Affiliation(s)
- Chenyang Guo
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
| | - Xing Chen
- Department of Chemistry , The Pennsylvania State University , State College , Pennsylvania 16802 , United States
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Dirk Mayer
- Peter-Grünberg-Institute PGI-8, Bioelectronic Research Center Jülich GmbH and JARA Fundamentals of Future Information Technology , Jülich 52425 , Germany
| | - Qingling Wang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
| | - Zhikai Zhao
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
- Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Korea
| | - Lifa Ni
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Haitao Liu
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
| | - Takhee Lee
- Department of Physics and Astronomy , Seoul National University , Seoul 08826 , Korea
| | - Bingqian Xu
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Dong Xiang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
37
|
|
38
|
Frisenda R, Stefani D, van der Zant HSJ. Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study. Acc Chem Res 2018; 51:1359-1367. [PMID: 29862817 DOI: 10.1021/acs.accounts.7b00493] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This Account provides an overview of our recent efforts to unravel charge transport characteristics of a metal-molecule-metal junction containing an individual π-conjugated molecule. The model system of our choice is an oligo(phenylene-ethynylene) consisting of three rings, in short OPE3, which represents a paradigmatic model system for molecular-scale electronics. Members of the OPE family are among the most studied in the field thanks to their simple and rigid structure, the possibility of chemically functionalizing them, and their clear transport characteristics. When investigating charge transport in molecular systems, two general directions can be distinguished: one in which assemblies composed of many molecules contacted in parallel are studied, while in the other a single molecule is investigated at a time. In the former approach, molecule-molecule interactions and ensemble-averaged quantities may play a role, thereby introducing broadening of spectral features and hindering the study of the behavior of individual molecules making it more difficult to deconvolute local and intrinsic molecular effects from collective ones. In contrast, single-molecule experiments directly probe individual molecular features and, when they are repeated many times, allow build up of a statistical representation of the changes introduced by, e.g., different junction configurations. Especially in recent years, experimental techniques have advanced such that now large sets of individual events can be measured and analyzed with statistical tools. To study individual single-molecule junctions, we use the break junction technique, in which two sharp movable electrodes are formed by breaking a thin metallic wire and used to contact a single or few molecules. By probing thousands of single-molecule junctions in different conditions, we show that their creation involves independent events justifying the statistical tools that are used. By combining room- and low-temperature data, we show that the dominant transport mechanism for electrons through the OPE3 molecule is off-resonant tunneling. The simplest model capturing transport details in this case is a single-level model characterized by three parameters: the level alignment of the frontier orbital with the Fermi energy of the leads and the electronic couplings to the leads. Variations in these parameters give a broad distribution (1 order of magnitude) in the observed conductance values, indicating that at the microscopic level both the hybridization with the metallic electrodes and the molecular electronic configuration can fluctuate. The low-temperature data show that these variations are due to abrupt changes in the configuration of the molecule in the junction leading to changes in either one of these parameters or both at the same time. The complementary information gained from different experiments is needed to build up a consistent and extended picture of the variability of molecular configurations, omnipresent in single-molecule studies. Knowledge of this variability can help one to better understand the behavior of molecules at the atomic level and at the metal-molecule interface in particular.
Collapse
Affiliation(s)
- Riccardo Frisenda
- Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
- Instituto Madrileño de Estudios Avanzados de Nanociencia (IMDEA-nanociencia), E-28049 Madrid, Spain
| | - Davide Stefani
- Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
- Instituto Madrileño de Estudios Avanzados de Nanociencia (IMDEA-nanociencia), E-28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
39
|
Dependence of Stretch Length on Electrical Conductance and Electronic Structure of the Benzenedithiol Single Molecular Junction. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2018. [DOI: 10.1380/ejssnt.2018.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Photochemical Reaction Using Aminobenzenethiol Single Molecular Junction. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2018. [DOI: 10.1380/ejssnt.2018.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen ZB, Shi J, Xiao Z, Hong W, Tian ZQ. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem Sci 2018; 9:5033-5038. [PMID: 29938032 PMCID: PMC5994741 DOI: 10.1039/c8sc00727f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023] Open
Abstract
Electrical and in situ SERS characterization of the benzene-1,4-dithiol (BDT) junction suggested that dimerization of BDT contributed to the low conductance.
We applied a combination of mechanically controllable break junction (MCBJ) and in situ surface enhanced Raman spectroscopy (SERS) methods to investigate the long-standing single-molecule conductance discrepancy of prototypical benzene-1,4-dithiol (BDT) junctions. Single-molecule conductance characterization, together with configuration analysis of the molecular junction, suggested that disulfide-mediated dimerization of BDT contributed to the low conductance feature, which was further verified by the detection of S–S bond formation through in situ SERS characterization. Control experiments demonstrated that the disulfide-mediated dimerization could be tuned via the chemical inhibitor. Our findings suggest that a combined electrical and SERS method is capable of probing chemical reactions at the single-molecule level.
Collapse
Affiliation(s)
- Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Yijing Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Xi Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zhao-Bin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| |
Collapse
|
42
|
Zhao Z, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C, Ni L, Chen X, Wang M, Li Z, Lee T, Xiang D. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703815. [PMID: 29542239 DOI: 10.1002/smll.201703815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/16/2018] [Indexed: 05/27/2023]
Abstract
A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries.
Collapse
Affiliation(s)
- Zhikai Zhao
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Nankai, 300071, China
| | - Ran Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Dirk Mayer
- Peter-Grünberg-Institute PGI-8, Bioelectronic Research Center Jülich GmbH and JARA, Fundamentals of Future Information Technology, Jülich, 52425, Germany
| | - Maristella Coppola
- Peter-Grünberg-Institute PGI-8, Bioelectronic Research Center Jülich GmbH and JARA, Fundamentals of Future Information Technology, Jülich, 52425, Germany
| | - Lu Sun
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Nankai, 300071, China
| | - Youngsang Kim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chuankui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Lifa Ni
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Nankai, 300071, China
| | - Xing Chen
- Penn State Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA, 16802, USA
| | - Maoning Wang
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Nankai, 300071, China
| | - Zongliang Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Takhee Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Dong Xiang
- Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Nankai, 300071, China
| |
Collapse
|
43
|
Isshiki Y, Matsuzawa Y, Fujii S, Kiguchi M. Investigation on Single-Molecule Junctions Based on Current⁻Voltage Characteristics. MICROMACHINES 2018; 9:mi9020067. [PMID: 30393343 PMCID: PMC6187306 DOI: 10.3390/mi9020067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022]
Abstract
The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V) that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes) are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.
Collapse
Affiliation(s)
- Yuji Isshiki
- Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Yuya Matsuzawa
- Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Shintaro Fujii
- Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Manabu Kiguchi
- Department of Chemistry, Graduate School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
44
|
Oikawa S, Minamimoto H, Li X, Murakoshi K. Nanoscale control of plasmon-active metal nanodimer structures via electrochemical metal dissolution reaction. NANOTECHNOLOGY 2018; 29:045702. [PMID: 29189202 DOI: 10.1088/1361-6528/aa9e78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we report the control of the optical properties of metal nanodimer structures using electrochemical metal dissolution reactions. The reaction rate could be precisely tuned by changing the electrochemical potential and, as a consequence, fine tuning of the size and gap distance of metal nanodimers was achieved as the functions of applied potential and polarization time. The observed linear correlation between the scattering intensity and charge resulting from nanostructure dissolutions suggested that the surface dissolution rate was 0.30 nm min-1, corresponding to the surface dissolution of a single atomic layer per min. The present method can control the change in the volume of the structures, leading to the change in the gap distance of nanodimers at an atomic-scale level.
Collapse
Affiliation(s)
- Shunpei Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
45
|
You T, Lang X, Huang A, Yin P. A DFT study on surface-enhanced Raman spectroscopy of aromatic dithiol derivatives adsorbed on gold nanojunctions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:222-229. [PMID: 28715690 DOI: 10.1016/j.saa.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X=O, S, Se, NH, CH2, NN, CHCH, CC) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.
Collapse
Affiliation(s)
- Tingting You
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Xiufeng Lang
- Material Simulation and Computing Laboratory, Department of Physics, Hebei Normal University of Science & Technology, Qinghuangdao 066004, China
| | - Anping Huang
- School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
46
|
KIGUCHI M. Studies on single-molecule bridging metal electrodes: development of new characterization technique and functionalities. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:350-359. [PMID: 30416175 PMCID: PMC6275331 DOI: 10.2183/pjab.94.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
A single molecular junction is a nanoscale structure prepared by bridging a single molecule between macroscopic metal electrodes. It has attracted significant attention due to its unique structure and potential applications in ultra-small single molecular electronic devices. It has two metal-molecule interfaces, and thus the electronic structure of the molecule can be significantly modulated from its original one. The single molecular junction can be regarded as a new material that includes metal electrodes, a so-called "double interface material". Therefore, we can expect unconventional physical and chemical properties. To develop a better understanding of the properties and functionalities of single molecular junctions, their atomic and electronic structures should be characterized. In this review, we describe the development of these characterization techniques, such as inelastic electron tunneling spectroscopy, surface-enhanced Raman scattering, as well as shot noise and thermopower measurements. We have also described some unique properties and functionalities of single molecular junctions, such as switching and diode properties.
Collapse
Affiliation(s)
- Manabu KIGUCHI
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
47
|
Panneerselvam R, Liu GK, Wang YH, Liu JY, Ding SY, Li JF, Wu DY, Tian ZQ. Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun (Camb) 2018; 54:10-25. [DOI: 10.1039/c7cc05979e] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This feature article discusses developmental bottleneck issues in surface Raman spectroscopy in its early stages and surface-enhanced Raman spectroscopy (SERS) in the past four decades and future perspectives.
Collapse
Affiliation(s)
- Rajapandiyan Panneerselvam
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Guo-Kun Liu
- Department of the Environment & Ecology
- State Key Laboratory of Marine Environmental Science
- Xiamen University
- Xiamen 361102
- China
| | - Yao-Hui Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- Xiamen University
- Xiamen 361005
- China
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- iChEM
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
48
|
Yonezawa Y, Minamimoto H, Nagasawa F, Takase M, Yasuda S, Murakoshi K. In-situ electrochemical surface-enhanced Raman scattering observation of molecules accelerating the hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Surface-Enhanced Raman Scattering in Molecular Junctions. SENSORS 2017; 17:s17081901. [PMID: 28820430 PMCID: PMC5580101 DOI: 10.3390/s17081901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.
Collapse
|
50
|
Advance of Mechanically Controllable Break Junction for Molecular Electronics. Top Curr Chem (Cham) 2017; 375:61. [DOI: 10.1007/s41061-017-0149-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|