1
|
Tikhonova TN, Barkovaya AV, Efremov YM, Mamed-Nabizade VV, Kolmogorov VS, Timashev PS, Sysoev NN, Fadeev VV, Gorelkin PV, Adler-Abramovich L, Erofeev AS, Shirshin EA. Non-Invasive Nanometer Resolution Assessment of Cell-Soft Hydrogel System Mechanical Properties by Scanning Ion Conductance Microscopy. Int J Mol Sci 2024; 25:13479. [PMID: 39769241 PMCID: PMC11678895 DOI: 10.3390/ijms252413479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Biomimetic hydrogels have garnered increased interest due to their considerable potential for use in various fields, such as tissue engineering, 3D cell cultivation, and drug delivery. The primary challenge for applying hydrogels in tissue engineering is accurately evaluating their mechanical characteristics. In this context, we propose a method using scanning ion conductance microscopy (SICM) to determine the rigidity of living human breast cancer cells MCF-7 cells grown on a soft, self-assembled Fmoc-FF peptide hydrogel. Moreover, it is demonstrated that the map of Young's modulus distribution obtained by the SICM method allows for determining the core location. The Young's modules for MCF-7 cells decrease with the substrate stiffening, with values of 1050 Pa, 835 Pa, and 600 Pa measured on a Petri dish, Fmoc-FF hydrogel, and Fmoc-FF/chitosan hydrogel, respectively. A comparative analysis of the SICM results and the data obtained by atomic force microscopy was in good agreement, allowing for the use of a composite cell-substrate model (CoCS) to evaluate the 'soft substrate effect'. Using the CoCS model allowed us to conclude that the MCF-7 softening was due to the cells' mechanical properties variations due to cytoskeletal changes. This research provides immediate insights into changes in cell mechanical properties resulting from different soft scaffold substrates.
Collapse
Affiliation(s)
- Tatiana N. Tikhonova
- Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia; (A.V.B.); (N.N.S.); (V.V.F.)
| | - Anastasia V. Barkovaya
- Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia; (A.V.B.); (N.N.S.); (V.V.F.)
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (Y.M.E.); (P.S.T.)
| | - Vugara V. Mamed-Nabizade
- Laboratory of Biophysics, National University of Science and Technology MISIS, 4 Leninskiy prospekt, 119049 Moscow, Russia; (V.V.M.-N.); (V.S.K.); (P.V.G.); (A.S.E.)
| | - Vasilii S. Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, 4 Leninskiy prospekt, 119049 Moscow, Russia; (V.V.M.-N.); (V.S.K.); (P.V.G.); (A.S.E.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (Y.M.E.); (P.S.T.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Nikolay N. Sysoev
- Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia; (A.V.B.); (N.N.S.); (V.V.F.)
| | - Victor V. Fadeev
- Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia; (A.V.B.); (N.N.S.); (V.V.F.)
| | - Petr V. Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, 4 Leninskiy prospekt, 119049 Moscow, Russia; (V.V.M.-N.); (V.S.K.); (P.V.G.); (A.S.E.)
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander S. Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, 4 Leninskiy prospekt, 119049 Moscow, Russia; (V.V.M.-N.); (V.S.K.); (P.V.G.); (A.S.E.)
| | - Evgeny A. Shirshin
- Department of Physics, M.V. Lomonosov Moscow State University, 1/2 Leninskie Gory, 119991 Moscow, Russia; (A.V.B.); (N.N.S.); (V.V.F.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| |
Collapse
|
2
|
Kiseleva D, Kolmogorov V, Cherednichenko V, Khovantseva U, Bogatyreva A, Markina Y, Gorelkin P, Erofeev A, Markin A. Effect of LDL Extracted from Human Plasma on Membrane Stiffness in Living Endothelial Cells and Macrophages via Scanning Ion Conductance Microscopy. Cells 2024; 13:358. [PMID: 38391971 PMCID: PMC10887070 DOI: 10.3390/cells13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples. We show that the cells stiffened in the presence of LDL, which also triggered caveolae formation. Endothelial cells accumulated less cholesterol in the form of lipid droplets in comparison to THP-1 cells based on fluorescence intensity data and biochemical analysis; however, the effect on Young's modulus is higher. The cell stiffness is closely connected to the distribution of lipid droplets along the z-axis. In conclusion, we show that the sensitivity of endothelial cells to LDL is higher compared to that of THP-1, triggering changes in the cytoskeleton and membrane stiffness which may result in the increased permeability of the intima layer due to loss of intercellular connections and adhesion.
Collapse
Affiliation(s)
- Diana Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Vasilii Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Vadim Cherednichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Ulyana Khovantseva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Anastasia Bogatyreva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Yuliya Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Petr Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Markin
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
3
|
Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate. Cells 2023; 12:2428. [PMID: 37887273 PMCID: PMC10604991 DOI: 10.3390/cells12202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mechanical properties of neuronal cells have a key role for growth, generation of traction forces, adhesion, migration, etc. Mechanical properties are regulated by chemical signaling, neurotransmitters, and neuronal ion exchange. Disturbance of chemical signaling is accompanied by several diseases such as ischemia, trauma, and neurodegenerative diseases. It is known that the disturbance of chemical signaling, like that caused by glutamate excitotoxicity, leads to the structural reorganization of the cytoskeleton of neuronal cells and the deviation of native mechanical properties. Thus, to investigate the mechanical properties of living neuronal cells in the presence of glutamate, it is crucial to use noncontact and low-stress methods, which are the advantages of scanning ion-conductance microscopy (SICM). Moreover, a nanopipette may be used for the local delivery of small molecules as well as for a probe. In this work, SICM was used as an advanced technique for the simultaneous local delivery of glutamate and investigation of living neuronal cell morphology and mechanical behavior caused by an excitotoxic effect of glutamate.
Collapse
Affiliation(s)
- Vasilii Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | - Alexander Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Lyubov Gorbacheva
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Kolesov
- Research Laboratory of SPM, Moscow Polytechnic University, Moscow 107023, Russia
| | - Natalia Klyachko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London SW7 2BX, UK
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Petr Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| |
Collapse
|
4
|
Rabinowitz J, Hartel AJW, Dayton H, Fabbri JD, Jo J, Dietrich LEP, Shepard KL. Charge Mapping of Pseudomonas aeruginosa Using a Hopping Mode Scanning Ion Conductance Microscopy Technique. Anal Chem 2023; 95:5285-5292. [PMID: 36920847 PMCID: PMC10359948 DOI: 10.1021/acs.analchem.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping. We validate our method usingPseudomonas aeruginosaPA14 (PA) cells and observe a surface charge density of σPA = -2.0 ± 0.45 mC/m2 that is homogeneous within the ∼80 nm lateral scan resolution. This biological surface charge is detected from at least 1.7 μm above the membrane (395× the Debye length), and the long-range charge detection is attributed to electroosmotic amplification. We show that imaging with a nanobubble-plugged probe reduces perturbation of the underlying sample. We extend the technique to PA biofilms and observe a charge density exceeding -20 mC/m2. We use a solid-state calibration to quantify surface charge density and show that HP-SICM cannot be quantitatively described by a steady-state finite element model. This work contributes to the body of scanning probe methods that can uniquely contribute to microbiology and cellular biology.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Andreas J W Hartel
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States.,Department of Biology, Columbia University, New York, New York 10027, United States
| | - Hannah Dayton
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Jason D Fabbri
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeanyoung Jo
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Lars E P Dietrich
- Department of Biology, Columbia University, New York, New York 10027, United States
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Surface morphology live-cell imaging reveals how macropinocytosis inhibitors affect membrane dynamics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Iwata F, Shirasawa T, Mizutani Y, Ushiki T. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes. Microscopy (Oxf) 2021; 70:423-435. [PMID: 33644794 DOI: 10.1093/jmicro/dfab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is useful for imaging soft and fragile biological samples in liquids because it probes the samples' surface topography by detecting ion currents under non-contact and force-free conditions. SICM acquires the surface topographical height by detecting the ion current reduction that occurs when an electrolyte-filled glass nanopipette approaches the sample surface. However, most biological materials have electrically charged surfaces in liquid environments, which sometimes affect the behavior of the ion currents detected by SICM and, especially, make topography measurements difficult. For measuring such charged samples, we propose a novel imaging method that uses a double-barrel nanopipette as an SICM probe. The ion current between the two apertures of the nanopipette desensitizes the surface charge effect on imaging. In this study, metaphase chromosomes of Indian muntjac were imaged by this technique because, owing to their strongly negatively charged surfaces in phosphate-buffered saline, it is difficult to obtain the topography of the chromosomes by the conventional SICM with a single-aperture nanopipette. Using the proposed method with a double-barrel nanopipette, the surfaces of the chromosomes were successfully measured, without any surface charge confounder. Since the detailed imaging of sample topography can be performed in physiological liquid conditions regardless of the sample charge, it is expected to be used for analyzing the high-order structure of chromosomes in relation to their dynamic changes in the cell division.
Collapse
Affiliation(s)
- Futoshi Iwata
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.,Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan
| | - Tatsuru Shirasawa
- Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Yusuke Mizutani
- Office of Institutional Research, Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
8
|
Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette. Anal Chem 2021; 93:12281-12288. [PMID: 34460243 DOI: 10.1021/acs.analchem.1c01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Collapse
Affiliation(s)
- James Teahan
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Baoping Chen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
9
|
Klenerman D, Korchev Y, Novak P, Shevchuk A. Noncontact Nanoscale Imaging of Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:347-361. [PMID: 34314223 DOI: 10.1146/annurev-anchem-091420-120101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The reduction in ion current as a fine pipette approaches a cell surface allows the cell surface topography to be imaged, with nanoscale resolution, without contact with the delicate cell surface. A variety of different methods have been developed and refined to scan the topography of the dynamic cell surface at high resolution and speed. Measurement of cell topography can be complemented by performing local probing or mapping of the cell surface using the same pipette. This can be done by performing single-channel recording, applying force, delivering agonists, using pipettes fabricated to contain an electrochemical probe, or combining with fluorescence imaging. These methods in combination have great potential to image and map the surface of live cells at the nanoscale.
Collapse
Affiliation(s)
- David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Yuri Korchev
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pavel Novak
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
- National University of Science and Technology (MISiS), Moscow 119991, Russia
| | - Andrew Shevchuk
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
| |
Collapse
|
10
|
Kolmogorov VS, Erofeev AS, Woodcock E, Efremov YM, Iakovlev AP, Savin NA, Alova AV, Lavrushkina SV, Kireev II, Prelovskaya AO, Sviderskaya EV, Scaini D, Klyachko NL, Timashev PS, Takahashi Y, Salikhov SV, Parkhomenko YN, Majouga AG, Edwards CRW, Novak P, Korchev YE, Gorelkin PV. Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette-sample force interactions. NANOSCALE 2021; 13:6558-6568. [PMID: 33885535 DOI: 10.1039/d0nr08349f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mechanical properties of living cells determined by cytoskeletal elements play a crucial role in a wide range of biological functions. However, low-stress mapping of mechanical properties with nanoscale resolution but with a minimal effect on the fragile structure of cells remains difficult. Scanning Ion-Conductance Microscopy (SICM) for quantitative nanomechanical mapping (QNM) is based on intrinsic force interactions between nanopipettes and samples and has been previously suggested as a promising alternative to conventional techniques. In this work, we have provided an alternative estimation of intrinsic force and stress and demonstrated the possibility to perform qualitative and quantitative analysis of cell nanomechanical properties of a variety of living cells. Force estimation on decane droplets with well-known elastic properties, similar to living cells, revealed that the forces applied using a nanopipette are much smaller than in the case using atomic force microscopy. We have shown that we can perform nanoscale topography and QNM using a scanning procedure with no detectable effect on live cells, allowing long-term QNM as well as detection of nanomechanical properties under drug-induced alterations of actin filaments and microtubulin.
Collapse
Affiliation(s)
- Vasilii S Kolmogorov
- National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Scanning ion conductance microscopy of isolated metaphase chromosomes in a liquid environment. Chromosome Res 2021; 29:95-106. [PMID: 33694044 DOI: 10.1007/s10577-021-09659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Scanning probe microscopy (SPM) uses a probing tip which scans over a sample surface for obtaining information on the sample surface characteristics. Among various types of SPM, atomic force microscopy (AFM) has been widely applied to imaging of biological samples including chromosomes. Scanning ion conductance microscopy (SICM) has been also introduced for visualizing the surface structure of biological samples because it can obtain "contact-free" topographic images in liquid conditions by detecting ion current flow through a pipette opening. However, we recently noticed that the consistent imaging of chromosomes is difficult by SICM. In this paper, the behaviors of the ion current on the sample surfaces were precisely investigated for obtaining SICM images of isolated muntjac metaphase chromosomes more consistently than at present. The present study revealed that application of positive potential to the pipette electrode was acceptable for obtaining the topographic image of chromosomes, while application of negative potential failed in imaging. The approach curves were then studied for analyzing the relationship between the ion current and the tip sample distance when the pipette is approaching chromosomes. The current-voltage (I-V) curve further provided us the accurate interpretation of the ion current behavior during chromosome imaging. These data were further compared with those for SICM imaging of HeLa cells. Our findings indicated that chromosomes are electrically charged and the net charge is strongly negative in normal Dulbecco's phosphate buffered saline. We finally showed that the ion concentration of the bath electrolyte is important for imaging chromosomes by SICM.
Collapse
|
12
|
Clarke RW. Theory of cell membrane interaction with glass. Phys Rev E 2021; 103:032401. [PMID: 33862714 DOI: 10.1103/physreve.103.032401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/19/2021] [Indexed: 11/07/2022]
Abstract
There are three regimes of cell membrane interaction with glass: Tight and loose adhesion, separated by repulsion. Explicitly including hydration, this paper evaluates the pressure between the surfaces as functions of distance for ion correlation and ion-screened electrostatics and electromagnetic fluctuations. The results agree with data for tight adhesion energy (0.5-3 vs 0.4-4 mJ/m^{2}), detachment pressure (7.9 vs. 9 MPa), and peak repulsion (3.4-7.5 vs. 5-10 kPa), also matching the repulsion's distance dependence on renormalization by steric pressure mainly from undulations.
Collapse
Affiliation(s)
- Richard W Clarke
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| |
Collapse
|
13
|
Bednarska J, Pelchen-Matthews A, Novak P, Burden JJ, Summers PA, Kuimova MK, Korchev Y, Marsh M, Shevchuk A. Rapid formation of human immunodeficiency virus-like particles. Proc Natl Acad Sci U S A 2020; 117:21637-21646. [PMID: 32817566 PMCID: PMC7474690 DOI: 10.1073/pnas.2008156117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular mechanisms involved in the assembly of viruses is essential for discerning how viruses transmit from cell to cell and host to host. Although molecular aspects of assembly have been studied for many viruses, we still have little information about these events in real time. Enveloped viruses such as HIV that assemble at, and bud from, the plasma membrane have been studied in some detail using live cell fluorescence imaging techniques; however, these approaches provide little information about the real-time morphological changes that take place as viral components come together to form individual virus particles. Here we used correlative scanning ion conductance microscopy and fluorescence confocal microscopy to measure the topological changes, together with the recruitment of fluorescently labeled viral proteins such as Gag and Vpr, during the assembly and release of individual HIV virus-like particles (VLPs) from the top, nonadherent surfaces of living cells. We show that 1) labeling of viral proteins with green fluorescent protein affects particle formation, 2) the kinetics of particle assembly on different plasma membrane domains can vary, possibly as a consequence of differences in membrane biophysical properties, and 3) VLPs budding from the top, unimpeded surface of cells can reach full size in 20 s and disappear from the budding site in 0.5 to 3 min from the moment curvature is initially detected, significantly faster than has been previously reported.
Collapse
Affiliation(s)
- Joanna Bednarska
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
| | - Annegret Pelchen-Matthews
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Pavel Novak
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Functional Low-Dimensional Structures Laboratory, National University of Science and Technology "MISIS", 119991 Moscow, Russian Federation
| | - Jemima J Burden
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | - Peter A Summers
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Marina K Kuimova
- Molecular Sciences Research Hub, Department of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Yuri Korchev
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom
- Nano Life Science Institute, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom;
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, W12 0NN London, United Kingdom;
| |
Collapse
|
14
|
Watanabe S, Kitazawa S, Sun L, Kodera N, Ando T. Development of high-speed ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123704. [PMID: 31893861 DOI: 10.1063/1.5118360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) can image the surface topography of specimens in ionic solutions without mechanical probe-sample contact. This unique capability is advantageous for imaging fragile biological samples but its highest possible imaging rate is far lower than the level desired in biological studies. Here, we present the development of high-speed SICM. The fast imaging capability is attained by a fast Z-scanner with active vibration control and pipette probes with enhanced ion conductance. By the former, the delay of probe Z-positioning is minimized to sub-10 µs, while its maximum stroke is secured at 6 μm. The enhanced ion conductance lowers a noise floor in ion current detection, increasing the detection bandwidth up to 100 kHz. Thus, temporal resolution 100-fold higher than that of conventional systems is achieved, together with spatial resolution around 20 nm.
Collapse
Affiliation(s)
- Shinji Watanabe
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoko Kitazawa
- Department of Physics, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
|
16
|
Ghosal S, Sherwood JD, Chang HC. Solid-state nanopore hydrodynamics and transport. BIOMICROFLUIDICS 2019; 13:011301. [PMID: 30867871 PMCID: PMC6404949 DOI: 10.1063/1.5083913] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/31/2018] [Indexed: 05/08/2023]
Abstract
The resistive pulse method based on measuring the ion current trace as a biomolecule passing through a nanopore has become an important tool in biotechnology for characterizing molecules. A detailed physical understanding of the translocation process is essential if one is to extract the relevant molecular properties from the current signal. In this Perspective, we review some recent progress in our understanding of hydrodynamic flow and transport through nanometer sized pores. We assume that the problems of interest can be addressed through the use of the continuum version of the equations of hydrodynamic and ion transport. Thus, our discussion is restricted to pores of diameter greater than about ten nanometers: such pores are usually synthetic. We address the fundamental nanopore hydrodynamics and ion transport mechanisms and review the wealth of observed phenomena due to these mechanisms. We also suggest future ionic circuits that can be synthesized from different ionic modules based on these phenomena and their applications.
Collapse
Affiliation(s)
- Sandip Ghosal
- Department of Mechanical Engineering and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
| | - John D Sherwood
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
17
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Mapping Surface Charge of Individual Microdomains with Scanning Ion Conductance Microscopy. ChemElectroChem 2018. [DOI: 10.1002/celc.201800724] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Takahashi Y, Ida H, Matsumae Y, Komaki H, Zhou Y, Kumatani A, Kanzaki M, Shiku H, Matsue T. 3D electrochemical and ion current imaging using scanning electrochemical-scanning ion conductance microscopy. Phys Chem Chem Phys 2018; 19:26728-26733. [PMID: 28951914 DOI: 10.1039/c7cp05157c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local cell-membrane permeability and ionic strength are important factors for maintaining the functions of cells. Here, we measured the spatial electrochemical and ion concentration profile near the sample surface with nanoscale resolution using scanning electrochemical microscopy (SECM) combined with scanning ion-conductance microscopy (SICM). The ion current feedback system is an effective way to control probe-sample distance without contact and monitor the kinetic effect of mediator regeneration and the chemical concentration profile. For demonstrating 3D electrochemical and ion concentration mapping, we evaluated the reaction rate of electrochemical mediator regeneration on an unbiased conductor and visualized inhomogeneous permeability and the ion concentration 3D profile on a single fixed adipocyte cell surface.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- WPI-Advanced Institute for Materials Research, Tohoku University, 980-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Perera RT, Rosenstein JK. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles. Sci Rep 2018; 8:1965. [PMID: 29386652 PMCID: PMC5792608 DOI: 10.1038/s41598-018-20412-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.
Collapse
Affiliation(s)
- Rukshan T Perera
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA
| | - Jacob K Rosenstein
- School of Engineering, Brown University, 184 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|
21
|
Liu HL, Cao J, Hanif S, Yuan C, Pang J, Levicky R, Xia XH, Wang K. Size-Controllable Gold Nanopores with High SERS Activity. Anal Chem 2017; 89:10407-10413. [DOI: 10.1021/acs.analchem.7b02410] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hai-Ling Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiao Cao
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sumaira Hanif
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunge Yuan
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Pang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rastislav Levicky
- Department
of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Xing-Hua Xia
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Page A, Perry D, Unwin PR. Multifunctional scanning ion conductance microscopy. Proc Math Phys Eng Sci 2017; 473:20160889. [PMID: 28484332 PMCID: PMC5415692 DOI: 10.1098/rspa.2016.0889] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.
Collapse
Affiliation(s)
- Ashley Page
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
23
|
Wang Y, Wang D, Mirkin MV. Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proc Math Phys Eng Sci 2017; 473:20160931. [PMID: 28413354 DOI: 10.1098/rspa.2016.0931] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 11/12/2022] Open
Abstract
Along with more prevalent solid-state nanopores, glass or quartz nanopipettes have found applications in resistive-pulse and rectification sensing. Their advantages include the ease of fabrication, small physical size and needle-like geometry, rendering them useful for local measurements in small spaces and delivery of nanoparticles/biomolecules. Carbon nanopipettes fabricated by depositing a thin carbon layer on the inner wall of a quartz pipette provide additional means for detecting electroactive species and fine-tuning the current rectification properties. In this paper, we discuss the fundamentals of resistive-pulse sensing with nanopipettes and our recent studies of current rectification in carbon pipettes.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, CA 90032, USA
| | - Dengchao Wang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, NY 11367, USA
| |
Collapse
|
24
|
Page A, Perry D, Young P, Mitchell D, Frenguelli BG, Unwin PR. Fast Nanoscale Surface Charge Mapping with Pulsed-Potential Scanning Ion Conductance Microscopy. Anal Chem 2016; 88:10854-10859. [DOI: 10.1021/acs.analchem.6b03744] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ashley Page
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Philip Young
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Daniel Mitchell
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §School of Life Sciences, and ∥Warwick Medical
School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Clarke RW, Novak P, Zhukov A, Tyler EJ, Cano-Jaimez M, Drews A, Richards O, Volynski K, Bishop C, Klenerman D. Low Stress Ion Conductance Microscopy of Sub-Cellular Stiffness. SOFT MATTER 2016; 12:7953-8. [PMID: 27604678 PMCID: PMC5166566 DOI: 10.1039/c6sm01106c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Directly examining subcellular mechanics whilst avoiding excessive strain of a live cell requires the precise control of light stress on very small areas, which is fundamentally difficult. Here we use a glass nanopipet out of contact with the plasma membrane to both exert the stress on the cell and also accurately monitor cellular compression. This allows the mapping of cell stiffness at a lateral resolution finer than 100 nm. We calculate the stress a nanopipet exerts on a cell as the sum of the intrinsic pressure between the tip face and the plasma membrane plus its direct pressure on any glycocalyx, both evaluated from the gap size in terms of the ion current decrease. A survey of cell types confirms that an intracellular pressure of approximately 120 Pa begins to detach the plasma membrane from the cytoskeleton and reveals that the first 0.66 ± 0.09 μm of compression of a neuron cell body is much softer than previous methods have been able to detect.
Collapse
Affiliation(s)
- Richard W. Clarke
- University Chemical Laboratories , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Pavel Novak
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , London , E1 4NS , UK
| | - Alexander Zhukov
- University Chemical Laboratories , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Eleanor J. Tyler
- Centre for Cell Biology and Cutaneous Research , Queen Mary University of London , 4 Newark Street , London , E1 2AT , UK
| | | | - Anna Drews
- University Chemical Laboratories , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Owen Richards
- University Chemical Laboratories , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| | - Kirill Volynski
- UCL Institute of Neurology , Queen Square , London , WC1N 3BG , UK
| | - Cleo Bishop
- Centre for Cell Biology and Cutaneous Research , Queen Mary University of London , 4 Newark Street , London , E1 2AT , UK
| | - David Klenerman
- University Chemical Laboratories , Lensfield Road , Cambridge , CB2 1EW , UK . ;
| |
Collapse
|
26
|
Klausen LH, Fuhs T, Dong M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat Commun 2016; 7:12447. [PMID: 27561322 PMCID: PMC5007656 DOI: 10.1038/ncomms12447] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. Surface charges on lipid bilayers deeply influence the way proteins interact with cellular membranes, yet their precise quantification has proven challenging. Here, the authors report on a quantitative method to map and evaluate surface charge densities under physiological conditions.
Collapse
Affiliation(s)
- Lasse Hyldgaard Klausen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø DK-2100, Denmark
| | - Thomas Fuhs
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Affiliation(s)
- David Perry
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Robert A. Lazenby
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
28
|
Perry D, Paulose Nadappuram B, Momotenko D, Voyias PD, Page A, Tripathi G, Frenguelli BG, Unwin PR. Surface Charge Visualization at Viable Living Cells. J Am Chem Soc 2016; 138:3152-60. [DOI: 10.1021/jacs.5b13153] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- David Perry
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Binoy Paulose Nadappuram
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Philip D. Voyias
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ashley Page
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gyanendra Tripathi
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bruno G. Frenguelli
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, ‡MOAC Doctoral Training Centre, §Division of Metabolic and Vascular
Health, Warwick Medical School, and ∥School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
29
|
Perry D, Al Botros R, Momotenko D, Kinnear SL, Unwin PR. Simultaneous Nanoscale Surface Charge and Topographical Mapping. ACS NANO 2015; 9:7266-7276. [PMID: 26132922 DOI: 10.1021/acsnano.5b02095] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.
Collapse
Affiliation(s)
- David Perry
- †Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Rehab Al Botros
- †Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- †Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sophie L Kinnear
- †Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- †Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
30
|
Jung GE, Noh H, Shin YK, Kahng SJ, Baik KY, Kim HB, Cho NJ, Cho SJ. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications. NANOSCALE 2015; 7:10989-97. [PMID: 25959131 DOI: 10.1039/c5nr01577d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.
Collapse
Affiliation(s)
- Goo-Eun Jung
- Research and Development Center, Park Systems, Suwon 443-270, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gesper A, Thatenhorst D, Wiese S, Tsai T, Dietzel ID, Happel P. Long-term, long-distance recording of a living migrating neuron by scanning ion conductance microscopy. SCANNING 2015; 37:226-231. [PMID: 25728639 DOI: 10.1002/sca.21200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Bias-free, three-dimensional imaging of entire living cellular specimen is required for investigating shape and volume changes that occur during cellular growth or migration. Here we present fifty consecutive recordings of a living cultured neuron from a mouse dorsal root ganglion obtained by Scanning ion conductance microscopy (SICM). We observed a saltatory migration of the neuron with a mean velocity of approximately 20 μm/h. These results demonstrate the non-invasiveness of SICM, which makes it unique among the scanning probe microscopes. In contrast to SICM, most scanning probe techniques require a usually denaturating preparation of the cells, or they exert a non-negligible force on the cellular membrane, impeding passive observation. Moreover, the present series of recordings demonstrates the potential use of SICM for the detailed investigation of cellular migration and membrane surface dynamics even of such delicate samples as living neurons.
Collapse
Affiliation(s)
- Astrid Gesper
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr University Bochum, Bochum, Germany
| | - Denis Thatenhorst
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Bochum, Germany
| | - Stefan Wiese
- Department of Cell Morphology and Molecular Neurobiology, Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Department of Cell Morphology and Molecular Neurobiology, Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | - Irmgard D Dietzel
- Department of Biochemisty II, Electrobiochemistry of Neural Cells, Ruhr University Bochum, Bochum, Germany
| | - Patrick Happel
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
32
|
Scheenen WJJM, Celikel T. Nanophysiology: Bridging synapse ultrastructure, biology, and physiology using scanning ion conductance microscopy. Synapse 2015; 69:233-41. [PMID: 25655013 DOI: 10.1002/syn.21807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
Synaptic communication is at the core of neural circuit function, and its plasticity allows the nervous system to adapt to the changes in its environment. Understanding the mechanisms of this synaptic (re)organization will benefit from novel methodologies that enable simultaneous study of synaptic ultrastructure, biology, and physiology in identified circuits. Here, we describe one of these methodologies, i.e., scanning ion conductance microscopy (SICM), for electrical mapping of the membrane anatomy in tens of nanometers resolution in living neurons. When combined with traditional patch-clamp and fluorescence microscopy techniques, and the newly emerging nanointerference methodologies, SICM has the potential to mechanistically bridge the synaptic structure and function longitudinally throughout the life of a synapse.
Collapse
Affiliation(s)
- Wim J J M Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
| | | |
Collapse
|
33
|
Wang Y, Cai H, Mirkin MV. Delivery of Single Nanoparticles from Nanopipettes under Resistive-Pulse Control. ChemElectroChem 2014. [DOI: 10.1002/celc.201402328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem 2014; 87:172-87. [PMID: 25405581 PMCID: PMC4287834 DOI: 10.1021/ac504180h] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel G Haywood
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|
35
|
Thatenhorst D, Rheinlaender J, Schäffer TE, Dietzel ID, Happel P. Effect of Sample Slope on Image Formation in Scanning Ion Conductance Microscopy. Anal Chem 2014; 86:9838-45. [DOI: 10.1021/ac5024414] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Thatenhorst
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
- International
Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Johannes Rheinlaender
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilman E. Schäffer
- Institute
of Applied Physics and LISA+, University of Tübingen, Auf
der Morgenstelle 10, 72076 Tübingen, Germany
| | - Irmgard D. Dietzel
- Department
of Biochemistry II, Electrobiochemistry of Neural Cells, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Patrick Happel
- Central
Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
36
|
McKelvey K, Kinnear SL, Perry D, Momotenko D, Unwin PR. Surface Charge Mapping with a Nanopipette. J Am Chem Soc 2014; 136:13735-44. [DOI: 10.1021/ja506139u] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kim McKelvey
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry, U.K. CV4
7AL
| | - Sophie L. Kinnear
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry, U.K. CV4
7AL
| | - David Perry
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry, U.K. CV4
7AL
| | - Dmitry Momotenko
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry, U.K. CV4
7AL
| | - Patrick R. Unwin
- Department of Chemistry and ‡MOAC Doctoral Training Centre, University of Warwick, Coventry, U.K. CV4
7AL
| |
Collapse
|
37
|
Hu K, Wang Y, Cai H, Mirkin MV, Gao Y, Friedman G, Gogotsi Y. Open carbon nanopipettes as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. Anal Chem 2014; 86:8897-901. [PMID: 25160727 DOI: 10.1021/ac5022908] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Collapse
Affiliation(s)
- Keke Hu
- Key Laboratory of Cluster Science (Ministry of Education of China) and Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology , Beijing 100081, P. R. China
| | | | | | | | | | | | | |
Collapse
|
38
|
Yamada H, Haraguchi D, Yasunaga K. Fabrication and Characterization of a K+-Selective Nanoelectrode and Simultaneous Imaging of Topography and Local K+ Flux Using Scanning Electrochemical Microscopy. Anal Chem 2014; 86:8547-52. [DOI: 10.1021/ac502444y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Yamada
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Daiki Haraguchi
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Kenji Yasunaga
- Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
39
|
Imaging a Single Living Cell via Shear Force-based Scanning Ion Conductance Microscopy in Standing Approach Mode with Differential Control. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Del Linz S, Willman E, Caldwell M, Klenerman D, Fernández A, Moss G. Contact-free scanning and imaging with the scanning ion conductance microscope. Anal Chem 2014; 86:2353-60. [PMID: 24521282 PMCID: PMC3944807 DOI: 10.1021/ac402748j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Scanning ion conductance microscopy
(SICM) offers the ability to
obtain very high-resolution topographical images of living cells.
One of the great advantages of SICM lies in its ability to perform
contact-free scanning. However, it is not yet clear when the requirements
for this scan mode are met. We have used finite element modeling (FEM)
to examine the conditions for contact-free scanning. Our findings
provide a framework for understanding the contact-free mode of SICM
and also extend previous findings with regard to SICM resolution.
Finally, we demonstrate the importance of our findings for accurate
biological imaging.
Collapse
Affiliation(s)
- Samantha Del Linz
- Department of Neuroscience, Physiology and Pharmacology, University College London , Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Sa N, Lan WJ, Shi W, Baker LA. Rectification of ion current in nanopipettes by external substrates. ACS NANO 2013; 7:11272-11282. [PMID: 24200344 PMCID: PMC3933015 DOI: 10.1021/nn4050485] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We describe ion distribution and the current-voltage (i-V) response of nanopipettes at different probe-to-substrate distances (Dps) as simulated by finite-element methods. Results suggest electrostatic interactions between a charged substrate and the nanopipette dominate electrophoretic ion transport through the nanopipette when Dps is within 1 order of magnitude of the Debye length (∼10 nm for a 1 mM solution as employed in the simulation). Ion current rectification (ICR) and permselectivity associated with a neutral or charged nanopipette can be reversibly enhanced or reduced dependent on Dps, charge polarity, and charge density (σ) of the substrate. Regulation of nanopipette current is a consequence of the enrichment or depletion of ions within the nanopipette interior, which influences conductivity of the nanopipette. When the external substrate is less negatively charged than the nanopipette, the substrate first reduces, and then enhances the ICR as Dps decreases. Surprisingly, both experimental and simulated data show that a neutral substrate was also able to reduce and reverse the ICR of a slightly negatively charged nanopipette. Simulated results ascribe such effects to the elimination of ion depletion within the nanopipette at positive potentials.
Collapse
Affiliation(s)
- Niya Sa
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Wen-Jie Lan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112
| | - Wenqing Shi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| | - Lane A. Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405
| |
Collapse
|