1
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Duan Z, Kong C, Fan S, Wu C. Triscysteine disulfide-directing motifs enabling design and discovery of multicyclic peptide binders. Nat Commun 2024; 15:7799. [PMID: 39242578 PMCID: PMC11379947 DOI: 10.1038/s41467-024-51723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Peptides are valuable for therapeutic development, with multicyclic peptides showing promise in mimicking antigen-binding potency of antibodies. However, our capability to engineer multicyclic peptide scaffolds, particularly for the construction of large combinatorial libraries, is still limited. Here, we study the interplay of disulfide pairing between three biscysteine motifs, and designed a range of triscysteine motifs with unique disulfide-directing capability for regulating the oxidative folding of multicyclic peptides. We demonstrate that incorporating these motifs into random sequences allows the design of disulfide-directed multicyclic peptide (DDMP) libraries with up to four disulfide bonds, which have been applied for the successful discovery of peptide binders with nanomolar affinity to several challenging targets. This study encourages the use of more diverse disulfide-directing motifs for creating multicyclic peptide libraries and opens an avenue for discovering functional peptides in sequence and structural space beyond existing peptide scaffolds, potentially advancing the field of peptide drug discovery.
Collapse
Affiliation(s)
- Zengping Duan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuilian Kong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P.R. China.
| |
Collapse
|
3
|
Brown L, Vidal AV, Dias AL, Rodrigues T, Sigurdardottir A, Journeaux T, O'Brien S, Murray TV, Ravn P, Papworth M, Bernardes GJL. Proximity-driven site-specific cyclization of phage-displayed peptides. Nat Commun 2024; 15:7308. [PMID: 39181880 PMCID: PMC11344848 DOI: 10.1038/s41467-024-51610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Cyclization provides a general strategy for improving the proteolytic stability, cell membrane permeability and target binding affinity of peptides. Insertion of a stable, non-reducible linker into a disulphide bond is a commonly used approach for cyclizing phage-displayed peptides. However, among the vast collection of cysteine reactive linkers available, few provide the selectivity required to target specific cysteine residues within the peptide in the phage display system, whilst sparing those on the phage capsid. Here, we report the development of a cyclopropenone-based proximity-driven chemical linker that can efficiently cyclize synthetic peptides and peptides fused to a phage-coat protein, and cyclize phage-displayed peptides in a site-specific manner, with no disruption to phage infectivity. Our cyclization strategy enables the construction of stable, highly diverse phage display libraries. These libraries can be used for the selection of high-affinity cyclic peptide binders, as exemplified through model selections on streptavidin and the therapeutic target αvβ3.
Collapse
Affiliation(s)
- Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Aldrin V Vidal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ana Laura Dias
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anna Sigurdardottir
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Toby Journeaux
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Siobhan O'Brien
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas V Murray
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Monika Papworth
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Zhang YN, Wan XC, Tang Y, Chen Y, Zheng FH, Cui ZH, Zhang H, Zhou Z, Fang GM. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery. Chem Sci 2024; 15:9649-9656. [PMID: 38939140 PMCID: PMC11206207 DOI: 10.1039/d4sc01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Xiao-Cui Wan
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Ying Chen
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Feng-Hao Zheng
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhi-Hui Cui
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Hua Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai 200438 P. R. China
| | - Ge-Min Fang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
5
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Chen FJ, Pinnette N, Gao J. Strategies for the Construction of Multicyclic Phage Display Libraries. Chembiochem 2024; 25:e202400072. [PMID: 38466139 PMCID: PMC11437370 DOI: 10.1002/cbic.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
Peptide therapeutics have gained great interest due to their multiple advantages over small molecule and antibody-based drugs. Peptide drugs are easier to synthesize, have the potential for oral bioavailability, and are large enough to target protein-protein interactions that are undruggable by small molecules. However, two major limitations have made it difficult to develop novel peptide therapeutics not derived from natural products, including the metabolic instability of peptides and the difficulty of reaching antibody-like potencies and specificities. Compared to linear and disulfide-monocyclized peptides, multicyclic peptides can provide increased conformational rigidity, enhanced metabolic stability, and higher potency in inhibiting protein-protein interactions. The identification of novel multicyclic peptide binders can be difficult, however, recent advancements in the construction of multicyclic phage libraries have greatly advanced the process of identifying novel multicyclic peptide binders for therapeutically relevant protein targets. This review will describe the current approaches used to create multicyclic peptide libraries, highlighting the novel chemistries developed and the proof-of-concept work done on validating these libraries against different protein targets.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center 2609 Beacon Street, Chestnut Hill, MA-02467, USA
| |
Collapse
|
7
|
Villequey C, Zurmühl SS, Cramer CN, Bhusan B, Andersen B, Ren Q, Liu H, Qu X, Yang Y, Pan J, Chen Q, Münzel M. An efficient mRNA display protocol yields potent bicyclic peptide inhibitors for FGFR3c: outperforming linear and monocyclic formats in affinity and stability. Chem Sci 2024; 15:6122-6129. [PMID: 38665530 PMCID: PMC11040643 DOI: 10.1039/d3sc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target. Yet, within those libraries, the performance of linear vs. mono- or bicyclic peptides has rarely been studied. Indeed, a key parameter to perform such a comparison is to use a display protocol and cyclization chemistry that enables the formation of all 3 formats in equal quality and diversity. Here, we developed a simple, efficient and fast mRNA display protocol which meets these criteria and can be used to generate highly diverse libraries of thioether cyclized polycyclic peptides. As a proof of concept, we selected peptides against fibroblast growth factor receptor 3c (FGFR3c) and compared the different formats regarding affinity, specificity, and human plasma stability. The peptides with the best KD's and stability were identified among bicyclic peptide hits, further strengthening the body of evidence pointing at the superiority of this class of molecules and providing functional and selective inhibitors of FGFR3c.
Collapse
Affiliation(s)
- Camille Villequey
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Silvana S Zurmühl
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Christian N Cramer
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Bhaskar Bhusan
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford UK
| | - Birgitte Andersen
- Global Drug Discovery, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Qianshen Ren
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Yang Yang
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Jia Pan
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Qiujia Chen
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Martin Münzel
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| |
Collapse
|
8
|
Wan XC, Zhang YN, Zhang H, Chen Y, Cui ZH, Zhu WJ, Fang GM. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display. Org Lett 2024; 26:2601-2605. [PMID: 38529932 DOI: 10.1021/acs.orglett.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report here an enzymatic strategy for asparaginyl endopeptidase-mediated peptide cyclization. Incorporation of chloroacetyl groups into the recognition sequence of OaAEP1 enabled intramolecular cyclization with Cys residues. Combining this strategy and phage display, we identified nanomolar macrocyclic peptide ligands targeting TEAD4. One of the bicyclic peptides binds to TEAD4 with a KD value of 139 nM, 16 times lower than its linear analogue, demonstrating the utility of this platform in discovering high-affinity macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
9
|
Li J, Liu H, Xiao S, Fan S, Cheng X, Wu C. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery. J Am Chem Soc 2023; 145:28264-28275. [PMID: 38092662 DOI: 10.1021/jacs.3c11856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.
Collapse
Affiliation(s)
- Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xueting Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
10
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
11
|
Mazzocato Y, Perin S, Morales-Sanfrutos J, Romanyuk Z, Pluda S, Acquasaliente L, Borsato G, De Filippis V, Scarso A, Angelini A. A novel genetically-encoded bicyclic peptide inhibitor of human urokinase-type plasminogen activator with better cross-reactivity toward the murine orthologue. Bioorg Med Chem 2023; 95:117499. [PMID: 37879145 DOI: 10.1016/j.bmc.2023.117499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
The inhibition of human urokinase-type plasminogen activator (huPA), a serine protease that plays an important role in pericellular proteolysis, is a promising strategy to decrease the invasive and metastatic activity of tumour cells. However, the generation of selective small molecule huPA inhibitors has proven to be challenging due to the high structural similarity of huPA to other paralogue serine proteases. Efforts to generate more specific therapies have led to the development of cyclic peptide-based inhibitors with much higher selectivity against huPA. While this latter property is desired, the sparing of the orthologue murine poses difficulties for the testing of the inhibitor in preclinical mouse model. In this work, we have applied a Darwinian evolution-based approach to identify phage-encoded bicyclic peptide inhibitors of huPA with better cross-reactivity towards murine uPA (muPA). The best selected bicyclic peptide (UK132) inhibited huPA and muPA with Ki values of 0.33 and 12.58 µM, respectively. The inhibition appears to be specific for uPA, as UK132 only weakly inhibits a panel of structurally similar serine proteases. Removal or substitution of the second loop with one not evolved in vitro led to monocyclic and bicyclic peptide analogues with lower potency than UK132. Moreover, swapping of 1,3,5-tris-(bromomethyl)-benzene with different small molecules not used in the phage selection, resulted in an 80-fold reduction of potency, revealing the important structural role of the branched cyclization linker. Further substitution of an arginine in UK132 to a lysine resulted in a bicyclic peptide UK140 with enhanced inhibitory potency against both huPA (Ki = 0.20 µM) and murine orthologue (Ki = 2.79 µM). By combining good specificity, nanomolar affinity and a low molecular mass, the bicyclic peptide inhibitor developed in this work may provide a novel human and murine cross-reactive lead for the development of a potent and selective anti-metastatic therapy.
Collapse
Affiliation(s)
- Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Zhanna Romanyuk
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Fidia Farmaceutici S.p.A., Via Ponte della Fabbrica 3/A, Abano Terme 35031, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Borsato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Alessandro Scarso
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy.
| |
Collapse
|
12
|
Chinta S, Vander Meer R, O’Reilly E, Choi MY. Insecticidal Effects of Receptor-Interference Isolated Bioactive Peptides on Fire Ant Colonies. Int J Mol Sci 2023; 24:13978. [PMID: 37762281 PMCID: PMC10530802 DOI: 10.3390/ijms241813978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Receptor-interference (Receptor-i) is a novel technology used to identify bioactive peptides as agonists or antagonists against a specific receptor, primarily targeting G-protein-coupled receptors (GPCRs). Using Receptor-i methodology, we targeted the pheromone biosynthesis activating neuropeptide receptor (PBAN-R) of the red imported fire ant (Solenopsis invicta). Based on previous studies, we selected four bioactive peptides cyclized with two cysteines: CVKLGSHFC, CIQQGSHFC, CERVGSHFC, and CMARYMSAC, and we conducted small-scale feeding bioassays, measuring fire ant worker mortality. All peptides reduced ant survival; however, CMARYMSAC (MARY) and CIQQGSHFC (IQQG) were the most effective and were selected for feeding trials against large, fully functional fire ant field colonies containing queen, brood, and up to 8000 workers. At the end of the experiment, day 84, synthetic peptide MARY killed over 80% of the workers and two of four queens. IQQG killed over 70% of the workers and three of four queens. The surviving two MARY queens lost an average of 21% of their starting weight. The surviving IQQG queen lost 31% of its weight. In contrast, control colony queens gained an average of 11% of their starting weight. These results provide proof-of-concept for the Receptor-i technology and will synergize applications to other agricultural and medical pests.
Collapse
Affiliation(s)
- Satya Chinta
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
- Foresight Science and Technology, Hopkinton, MA 01748, USA
| | - Robert Vander Meer
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Erin O’Reilly
- Center for Medical, Agricultural, and Veterinary Entomology, USDA-ARS, Gainesville, FL 32608, USA; (S.C.); (E.O.)
| | - Man-Yeon Choi
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR 97330, USA
| |
Collapse
|
13
|
Chen FJ, Pinnette N, Yang F, Gao J. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization. Angew Chem Int Ed Engl 2023; 62:e202306813. [PMID: 37285100 PMCID: PMC10527288 DOI: 10.1002/anie.202306813] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Efficient and site-specific modification of native peptides and proteins is desirable for synthesizing antibody-drug conjugates as well as for constructing chemically modified peptide libraries using genetically encoded platforms such as phage display. In particular, there is much interest in efficient multicyclization of native peptides due to the appeals of multicyclic peptides as therapeutics. However, conventional approaches for multicyclic peptide synthesis require orthogonal protecting groups or non-proteinogenic clickable handles. Herein, we report a cysteine-directed proximity-driven strategy for the constructing bicyclic peptides from simple natural peptide precursors. This linear to bicycle transformation initiates with rapid cysteine labeling, which then triggers proximity-driven amine-selective cyclization. This bicyclization proceeds rapidly under physiologic conditions, yielding bicyclic peptides with a Cys-Lys-Cys, Lys-Cys-Lys or N-terminus-Cys-Cys stapling pattern. We demonstrate the utility and power of this strategy by constructing bicyclic peptides fused to proteins as well as to the M13 phage, paving the way to phage display of novel bicyclic peptide libraries.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fan Yang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
14
|
Lu S, Fan S, Xiao S, Li J, Zhang S, Wu Y, Kong C, Zhuang J, Liu H, Zhao Y, Wu C. Disulfide-Directed Multicyclic Peptide Libraries for the Discovery of Peptide Ligands and Drugs. J Am Chem Soc 2023; 145:1964-1972. [PMID: 36633218 DOI: 10.1021/jacs.2c12462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multicyclic peptides with stable 3D structures are a kind of novel and promising peptide formats for drug design and discovery as they have the potential to combine the best characteristics of small molecules and proteins. However, the development of multicyclic peptides is largely limited to naturally occurring products. It remains a big challenge to develop multicyclic peptides with new structures and functions without recourse to the existing natural scaffolds. Here, we report a general and robust method relying on the utility of new disulfide-directing motifs for designing and discovering diverse multicyclic peptides with potent protein-binding capability. These peptides, referred to as disulfide-directed multicyclic peptides (DDMPs), are tolerant to extensive sequence manipulations and variations of disulfide-pairing frameworks, enabling the development of de novo DDMP libraries useful for ligand and drug discovery. This study opens a new avenue for creating a new generation of multicyclic peptides in sequence and structure space inaccessible by natural scaffolds, thus would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Shuaimin Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shihui Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shuling Xiao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jinjing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Shilong Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yapei Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuilian Kong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhuang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Hongtan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
15
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Abstract
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
17
|
Oppewal T, Jansen ID, Hekelaar J, Mayer C. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display. J Am Chem Soc 2022; 144:3644-3652. [PMID: 35171585 PMCID: PMC8895403 DOI: 10.1021/jacs.1c12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
Collapse
Affiliation(s)
- Titia
Rixt Oppewal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Ivar D. Jansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Johan Hekelaar
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| |
Collapse
|
18
|
Mochizuki K, Matsukura L, Ito Y, Miyashita N, Taki M. A medium-firm drug-candidate library of cryptand-like structures on T7 phage: design and selection of a strong binder for Hsp90. Org Biomol Chem 2021; 19:146-150. [PMID: 33095213 DOI: 10.1039/d0ob01855d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed and synthesized a medium-firm drug-candidate library of cryptand-like structures possessing a randomized peptide linker on the bacteriophage T7. From the macrocyclic library with a 109 diversity, we obtained a binder toward a cancer-related protein (Hsp90) with an antibody-like strong affinity (KD = 62 nM) and the binding was driven by the enthalpy. The selected supramolecular ligand inhibited Hsp90 activity by site-specific binding outside of the well-known ATP-binding pocket on the N-terminal domain (NTD).
Collapse
Affiliation(s)
- Kazuto Mochizuki
- Department of Engineering Science, Bioscience and Technology Program, The Graduate School of Informatics and Engineering, The University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | | | | | | | | |
Collapse
|
19
|
Vu QN, Young R, Sudhakar HK, Gao T, Huang T, Tan YS, Lau YH. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem 2021; 12:887-901. [PMID: 34263169 PMCID: PMC8230030 DOI: 10.1039/d1md00098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclisation is a common synthetic strategy for enhancing the therapeutic potential of peptide-based molecules. While there are extensive studies on peptide cyclisation for reinforcing regular secondary structures such as α-helices and β-sheets, there are remarkably few reports of cyclising peptides which adopt irregular conformations in their bioactive target-bound state. In this review, we highlight examples where cyclisation techniques have been successful in stabilising irregular conformations, then discuss how the design of cyclic constraints for irregularly structured peptides can be informed by existing β-strand stabilisation approaches, new computational design techniques, and structural principles extracted from cyclic peptide library screening hits. Through this analysis, we demonstrate how existing peptide cyclisation techniques can be adapted to address the synthetic design challenge of stabilising irregularly structured binding motifs.
Collapse
Affiliation(s)
- Quynh Ngoc Vu
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Reginald Young
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | | | - Tianyi Gao
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Tiancheng Huang
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR) 30 Biopolis Street, #07-01, Matrix Singapore 138671 Singapore
| | - Yu Heng Lau
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| |
Collapse
|
20
|
A structure-based approach for the development of a bicyclic peptide acting as a miniaturized anti-CD55 antibody. Int J Biol Macromol 2021; 182:1455-1462. [PMID: 34015405 DOI: 10.1016/j.ijbiomac.2021.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/20/2023]
Abstract
CD55 is a major regulator of the complement system, a complex network of proteins that cooperate to clear tissue and blood pathogens from the organism. Indeed, overexpression of CD55 is associated with many diseases and is connected to the resistance mechanisms exhibited by several cancers towards immunotherapy approaches. High level of CD55 expression on tumour cells renders it a good target for both imaging and immunotherapy. Indeed, a conceivable approach to tackle disease is to interfere with CD55-mediated complement regulation with the use of CD55-targeting antibodies. However, the large size and poor tissue penetration together with to the high costs of antibodies often limits their widespread therapeutic use. Here, we employed bioinformatic and chemical approaches to design and synthesize molecules of small dimensions able to mimic a CD55 blocking antibody. As a result, a bicyclic peptide, named as miniAB55, proved to bind CD55 with nanomolar affinity. This molecule represents an attracting chemical scaffold for CD55-directed diagnostic tools in diseases associated with CD55 overproduction. To further support the applicative potential of miniAB55, we prove that the miniAB55 binds CD55 on the same region involved in inactivation of the complement C3 and C5 convertases, thus opening promising scenarios for the development of complement-modulating tools.
Collapse
|
21
|
Selection of fluorescent biosensors against galectin-3 from an NBD-modified phage library displaying designed α-helical peptides. Bioorg Med Chem Lett 2021; 37:127835. [PMID: 33556574 DOI: 10.1016/j.bmcl.2021.127835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Fluorescent biosensors are indispensable tools for molecular imaging, detection, and drug screening. Conventionally, fluorescent biosensors were constructed by incorporating fluorophores into ligands. Here, to develop ligand-independent biosensors, we demonstrated biosensor selection from a fluorophore-modified peptide phage library. In this library, the peptides were designed to form α-helical structures, and one cysteine, the probe modification site, was located at the center of four randomized residues on the same face of the helix. By conjugation with 4-nitrobenzoxadiazole (NBD), we constructed an NBD-modified phage library. We conducted selection against galectin-3 (Gal-3), a galactose-specific lectin associated with various biological events such as tumor metastasis and insulin resistance. After biopanning, we obtained NBD-modified peptides that selectively bind to Gal-3 from the library. The fluorescence intensity of the hit biosensors increased with the concentration of Gal-3, and this fluorescent response was visually observed.
Collapse
|
22
|
Chen S, Lovell S, Lee S, Fellner M, Mace PD, Bogyo M. Identification of highly selective covalent inhibitors by phage display. Nat Biotechnol 2021; 39:490-498. [PMID: 33199876 PMCID: PMC8043995 DOI: 10.1038/s41587-020-0733-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/09/2020] [Indexed: 12/20/2022]
Abstract
Molecules that covalently bind macromolecular targets have found widespread applications as activity-based probes and as irreversibly binding drugs. However, the general reactivity of the electrophiles needed for covalent bond formation makes control of selectivity difficult. There is currently no rapid, unbiased screening method to identify new classes of covalent inhibitors from highly diverse pools of candidate molecules. Here we describe a phage display method to directly screen for ligands that bind to protein targets through covalent bond formation. This approach makes use of a reactive linker to form cyclic peptides on the phage surface while simultaneously introducing an electrophilic 'warhead' to covalently react with a nucleophile on the target. Using this approach, we identified cyclic peptides that irreversibly inhibited a cysteine protease and a serine hydrolase with nanomolar potency and exceptional specificity. This approach should enable rapid, unbiased screening to identify new classes of highly selective covalent inhibitors for diverse molecular targets.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumin Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
23
|
Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties. Int J Mol Sci 2021; 22:ijms22041611. [PMID: 33562633 PMCID: PMC7915549 DOI: 10.3390/ijms22041611] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The sheer size and vast chemical space (i.e., diverse repertoire and spatial distribution of functional groups) underlie peptides’ ability to engage in specific interactions with targets of various structures. However, the inherent flexibility of the peptide chain negatively affects binding affinity and metabolic stability, thereby severely limiting the use of peptides as medicines. Imposing conformational constraints to the peptide chain offers to solve these problems but typically requires laborious structure optimization. Alternatively, libraries of constrained peptides with randomized modules can be screened for specific functions. Here, we present the properties of conformationally constrained peptides and review rigidification chemistries/strategies, as well as synthetic and enzymatic methods of producing macrocyclic peptides. Furthermore, we discuss the in vitro molecular evolution methods for the development of constrained peptides with pre-defined functions. Finally, we briefly present applications of selected constrained peptides to illustrate their exceptional properties as drug candidates, molecular recognition probes, and minimalist catalysts.
Collapse
|
24
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
25
|
Iskandar SE, Haberman VA, Bowers AA. Expanding the Chemical Diversity of Genetically Encoded Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:712-733. [PMID: 33167616 PMCID: PMC8284915 DOI: 10.1021/acscombsci.0c00179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The power of ribosomes has increasingly been harnessed for the synthesis and selection of molecular libraries. Technologies, such as phage display, yeast display, and mRNA display, effectively couple genotype to phenotype for the molecular evolution of high affinity epitopes for many therapeutic targets. Genetic code expansion is central to the success of these technologies, allowing researchers to surpass the intrinsic capabilities of the ribosome and access new, genetically encoded materials for these selections. Here, we review techniques for the chemical expansion of genetically encoded libraries, their abilities and limits, and opportunities for further development. Importantly, we also discuss methods and metrics used to assess the efficiency of modification and library diversity with these new techniques.
Collapse
Affiliation(s)
- Sabrina E Iskandar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Haberman
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
McAllister TE, Coleman OD, Roper G, Kawamura A. Structural diversity in
de novo
cyclic peptide ligands from genetically encoded library technologies. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tom E. McAllister
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Oliver D. Coleman
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Grace Roper
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| | - Akane Kawamura
- Chemistry – School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Chemistry Research Laboratory, Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
27
|
Zheng X, Liu W, Liu Z, Zhao Y, Wu C. Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries. Bioconjug Chem 2020; 31:2085-2091. [DOI: 10.1021/acs.bioconjchem.0c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuejun Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Ziyan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
28
|
Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 2020; 52:367-379. [PMID: 32152451 PMCID: PMC7156416 DOI: 10.1038/s12276-020-0397-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
The function of the fibrinolytic system was first identified to dissolve fibrin to maintain vascular patency. Connections between the fibrinolytic system and many other physiological and pathological processes have been well established. Dysregulation of the fibrinolytic system is closely associated with multiple pathological conditions, including thrombosis, inflammation, cancer progression, and neuropathies. Thus, molecules in the fibrinolytic system are potent therapeutic and diagnostic targets. This review summarizes the currently used agents targeting this system and the development of novel therapeutic strategies in experimental studies. Future directions for the development of modulators of the fibrinolytic system are also discussed. The fibrinolytic system was originally identified to dissolve blood clots, and is shown to have important roles in other pathological processes, including cancer progression, inflammation, and thrombosis. Molecules or therapeutics targeting fibrinolytic system have been successfully used in the clinical treatments of cancer and thrombotic diseases. The clinical studies and experimental models targeting fibrinolytic system are reviewed by Haili Lin at Sanming First Hosipital, Mingdong Huang at Fuzhou University in China, and Peng Xu at A*STAR in Singapore to demonstrate fibrinolytic system as novel therapeutic targets. As an example, the inhibition of fibrinolytic system protein can be used to suppress cancer prolifieration and metastasis. This review also discusses the potential therapeutic effects of inhibitiors of fibrinolytic system on inflammatory disorders.
Collapse
Affiliation(s)
- Haili Lin
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Luning Xu
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China.
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| |
Collapse
|
29
|
Chen J, Sun S, Zhao R, Xi C, Qiu W, Wang N, Wang Y, Bierer D, Shi J, Li Y. Chemical Synthesis of Six‐Atom Thioether Bridged Diaminodiacid for Solid‐Phase Synthesis of Peptide Disulfide Bond Mimics. ChemistrySelect 2020. [DOI: 10.1002/slct.201904042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junyou Chen
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Shuaishuai Sun
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Rui Zhao
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Chen‐Peng Xi
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Wenjie Qiu
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ning Wang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| | - Ya Wang
- School of Life ScienceAnhui University Hefei 230601 China
| | - Donald Bierer
- Department of Medicinal ChemistryBayer AG Aprather Weg 18 A 42096 Wuppertal Germany
| | - Jing Shi
- Department of ChemistryUniversity of Science and Techmology of China Hefei 230026 China
| | - Yi‐Ming Li
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 China
| |
Collapse
|
30
|
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020; 4:90-101. [PMID: 37128052 DOI: 10.1038/s41570-019-0159-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Drug discovery has traditionally focused on using libraries of small molecules to identify therapeutic drugs, but new modalities, especially libraries of genetically encoded cyclic peptides, are increasingly used for this purpose. Several technologies now exist for the production of libraries of cyclic peptides, including phage display, mRNA display and split-intein circular ligation of peptides and proteins. These different approaches are each compatible with particular methods of screening libraries, such as functional or affinity-based screening, and screening in vitro or in cells. These techniques allow the rapid preparation of libraries of hundreds of millions of molecules without the need for chemical synthesis, and have therefore lowered the entry barrier to generating and screening for inhibitors of a given target. This ease of use combined with the inherent advantages of the cyclic-peptide scaffold has yielded inhibitors of targets that have proved difficult to drug with small molecules. Multiple reports demonstrate that cyclic peptides act as privileged scaffolds in drug discovery, particularly against 'undruggable' targets such as protein-protein interactions. Although substantial challenges remain in the clinical translation of hits from screens of cyclic-peptide libraries, progress continues to be made in this area, with an increasing number of cyclic peptides entering clinical trials. Here, we detail the various platforms for producing and screening libraries of genetically encoded cyclic peptides and discuss and evaluate the advantages and disadvantages of each approach when deployed for drug discovery.
Collapse
|
31
|
Wang XS, Chen PC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang D, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage‐Displayed Cyclic‐Peptide Library. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - J. Trae Hampton
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jeffery M. Tharp
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Catrina A. Reed
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Sukant K. Das
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Duen‐Shian Wang
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Yang Shen
- Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843-3218 USA
| | - Jin Liu
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Wenshe Ray Liu
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
32
|
Wang XS, Chen PHC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang DS, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library. Angew Chem Int Ed Engl 2019; 58:15904-15909. [PMID: 31398275 PMCID: PMC6803038 DOI: 10.1002/anie.201908713] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/10/2022]
Abstract
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded Nϵ -acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4- to 6-fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.
Collapse
Affiliation(s)
- Xiaoshan Shayna Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng-Hsun Chase Chen
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - J Trae Hampton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Catrina A Reed
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Sukant K Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Duen-Shian Wang
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3218, USA
| | - Jin Liu
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| |
Collapse
|
33
|
Abstract
Macrocyclic peptides make up an emerging class of candidate therapeutics and chemical probes, with properties that make them potentially applicable to a wide range of targets that are intractable using current pharmacological agents. Additionally, a number of biochemical screening strategies have been developed, particularly over the past decade, that allow for the massively parallel screening of cyclic peptide libraries of up to 1 trillion compounds or more, leading to the isolation of molecules with exceptional target affinity, selectivity, and bioactivity. Clinical development of compounds derived from such screens is already underway, but the nature of these molecules means that such development is likely to follow pathways different from those of traditional small molecule drugs or well-established biologics such as monoclonal antibodies. In addition, recent work has shown that the biochemical techniques used to identify macrocyclic peptides can also be used to rapidly characterize and optimize them. These findings are likely to facilitate the development of these compounds as chemical probes and as therapeutics for areas of unmet medical need.
Collapse
Affiliation(s)
- Toby Passioura
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
34
|
Dong H, Meng X, Zheng X, Cheng X, Zheng Y, Zhao Y, Wu C. Design and Synthesis of Cross-Link-Dense Peptides by Manipulating Regioselective Bisthioether Cross-Linking and Orthogonal Disulfide Pairing. J Org Chem 2019; 84:5187-5194. [PMID: 30895794 DOI: 10.1021/acs.joc.9b00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Existing disulfide-rich peptides, both naturally occurring and de novo designed, only represent a tiny amount of the possible sequence space because natural evolution and de novo design only keep sequences that are structurally approachable by correct disulfide pairings. To bypass this limitation for designing new peptide scaffolds beyond the natural sequence space, we dedicate to developing novel disulfide-rich peptides with predefined disulfide pairing patterns irrelevant to primary sequences. However, most of these designed peptides still suffer from disulfide rearrangements to at least one to three possible isomers. Here, we report a general and reliable strategy for the design and synthesis of a range of structurally diverse cross-link-dense peptide (CDP) scaffolds with two orthogonal disulfide bonds and a bisthioether bridge that are not subject to disulfide isomerizations. Altering the pattern of cysteine and penicillamine generates hundreds of different CDP scaffolds tolerant to extensive sequence manipulations. This work thus provides many useful scaffolds for the design of functional molecules such as protein binders with improved proteolytic stability (e.g., designed by epitope grafting).
Collapse
Affiliation(s)
- Huilei Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoting Meng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xiaoli Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueting Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yiwu Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|
35
|
Sun SS, Chen J, Zhao R, Bierer D, Wang J, Fang GM, Li YM. Efficient synthesis of a side-chain extended diaminodiacid for solid-phase synthesis of peptide disulfide bond mimics. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Shi Y, Parag S, Patel R, Lui A, Murr M, Cai J, Patel NA. Stabilization of lncRNA GAS5 by a Small Molecule and Its Implications in Diabetic Adipocytes. Cell Chem Biol 2019; 26:319-330.e6. [PMID: 30661991 PMCID: PMC10498384 DOI: 10.1016/j.chembiol.2018.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/08/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Long noncoding RNA (lncRNA) are regulatory RNAs >200 nt. We previously showed that lncRNA GAS5 decreases significantly in serum of type 2 diabetes mellitus (T2DM) patients. Hence, we sought to decipher the molecular mechanisms underlying the role of GAS5 in T2DM in adipose tissue. Using CHIP-RIP, we demonstrate that GAS5 binds to promoter of insulin receptor to regulate its expression, and its depletion inhibits glucose uptake and insulin signaling. Toward stabilizing GAS5 levels in T2DM, we incorporated a strategy to limit the degradation of GAS5 by blocking the interaction of GAS5 and UPF1 with a small molecule identified using OBTC screening strategy. NP-C86 binds to GAS5 with high affinity, and increases GAS5 levels and glucose uptake in diabetic patient adipocytes. As a broader impact, NP-C86 may be used as a molecular probe to investigate the intricacies of GAS5 in relevant biological systems as it offers specificity, efficient cellular uptake and is non-cytotoxic.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Sajan Parag
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Rekha Patel
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Ashley Lui
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Michel Murr
- Department of Surgery, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Niketa A Patel
- James A. Haley Veterans Hospital, 13000 Bruce B. Downs Boulevard, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
37
|
Wang D, Yang Y, Jiang L, Wang Y, Li J, Andreasen PA, Chen Z, Huang M, Xu P. Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. J Med Chem 2019; 62:2172-2183. [PMID: 30707839 DOI: 10.1021/acs.jmedchem.8b01908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a diagnostic marker for breast and prostate cancers recommended by American Society for Clinical Oncology and German Breast Cancer Society. Inhibition of uPA was proposed as an efficient strategy for cancer treatments. In this study, we report peptide-based uPA inhibitors with high potency and specificity comparable to monoclonal antibodies. We revealed the binding and inhibitory mechanisms by combining crystallography, molecular dynamic simulation, and other biophysical and biochemical approaches. Besides, we showed that our peptides efficiently inhibited the invasion of cancer cells via intervening with the processes of the degradation of extracellular matrices. Furthermore, our peptides significantly suppressed the tumor growth and the cancer metastases in tumor-bearing mice. This study demonstrates that these uPA peptides are highly potent anticancer agents and reveals the mechanistic insights of these uPA inhibitors, which can be useful for developing other serine protease inhibitors.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Yongshuai Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China.,College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Longguang Jiang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Wang
- College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jinyu Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics , Aarhus University , Aarhus C 8000 , Denmark
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peng Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| |
Collapse
|
38
|
Tsiamantas C, Otero-Ramirez ME, Suga H. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System. Methods Mol Biol 2019; 2001:299-315. [PMID: 31134577 DOI: 10.1007/978-1-4939-9504-2_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide's N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
39
|
Martínez-Crespo L, Escudero-Adán EC, Costa A, Rotger C. The Role of N
-Methyl Squaramides in a Hydrogen-Bonding Strategy to Fold Peptidomimetic Compounds. Chemistry 2018; 24:17802-17813. [DOI: 10.1002/chem.201803930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Luís Martínez-Crespo
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| | - Eduardo C. Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ); Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio Costa
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| | - Carmen Rotger
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| |
Collapse
|
40
|
Xu P, Huang M. Small Peptides as Modulators of Serine Proteases. Curr Med Chem 2018; 27:3686-3705. [PMID: 30332941 DOI: 10.2174/0929867325666181016163630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Serine proteases play critical roles in many physiological and pathological processes, and are proven diagnostic and therapeutic targets in a number of clinical indications. Suppression of the aberrant proteolytic activities of these proteases has been clinically used for the treatments of relevant diseases. Polypeptides with 10-20 residues are of great interests as medicinal modulators of serine proteases, because these peptides demonstrate the characteristics of both small molecule drugs and macromolecular drugs. In this review, we summarized the recent development of peptide-based inhibitors against serine proteases with potent inhibitory and high specificity comparable to monoclonal antibodies. In addition, we also discussed the strategies of enhancing plasma half-life and bioavailability of peptides in vivo, which is the main hurdle that limits the clinical translation of peptide-based drugs. This review advocates new avenue for the development of effective serine protease inhibitors and highlights the prospect of the medicinal use of these inhibitors.
Collapse
Affiliation(s)
- Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
41
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
|
43
|
Abstract
In this report, we describe an efficient way to generate libraries of macrocyclic glycopeptides in one step by reacting phage-displayed libraries of peptides with dichloro-oxime derivatives. We showed that the reactions do not interfere with the ability of phage to replicate in bacteria. The reactions are site-selective for phage-displayed peptides and they do not modify any other proteins of phage. The technology described in this report will be instrumental for genetic selection of macrocyclic glycopeptides for diverse glycan-binding proteins.
Collapse
Affiliation(s)
- Simon Ng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Ratmir Derda
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
44
|
Zheng Y, Meng X, Wu Y, Zhao Y, Wu C. De novo design of constrained and sequence-independent peptide scaffolds with topologically-formidable disulfide connectivities. Chem Sci 2018; 9:569-575. [PMID: 29629120 PMCID: PMC5869988 DOI: 10.1039/c7sc03956e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
Disulfide-rich peptides are interesting scaffolds for drug design and discovery. However, peptide scaffolds constrained by disulfide bonds, either naturally occurring or computationally designed, have been suffering from the elusive (oxidative) folding behavior complying with Anfinsen's dogma, which strongly restricts their applicability in bioactive peptide design and discovery; because when primary peptide sequences are extensively manipulated, their disulfide connectivities might become scrambled. Here we present the design of cysteine/penicillamine (C/Pen)-mixed peptide frameworks that are capable of folding into specific regioisomers without dependence on primary amino acid sequences. Even certain folds that are considered to be topologically formidable can be generated in high yields. Currently, almost all disulfide-rich peptide scaffolds are vitally correlated to primary amino acid sequences, but ours are exceptional. These scaffolds should be of particular interest for further designing constrained peptides with new structures and functions, and more importantly, the ultimately designed peptides would not suffer from general oxidative folding problems.
Collapse
Affiliation(s)
- Yiwu Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China .
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China .
| | - Yaqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China .
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China .
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , State Key Laboratory of Physical Chemistry of Solid Surfaces , Department of Chemistry , College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , P. R. China .
| |
Collapse
|
45
|
Zha M, Lin P, Yao H, Zhao Y, Wu C. A phage display-based strategy for the de novo creation of disulfide-constrained and isomer-free bicyclic peptide affinity reagents. Chem Commun (Camb) 2018; 54:4029-4032. [DOI: 10.1039/c7cc09142g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a phage-screening strategy for the development of bicyclic peptide ligands constrained with two sterically different and isomerically forbidden noncanonical disulfide bridges without elaborate chemical modifications and recourses to genetic code reprogramming.
Collapse
Affiliation(s)
- Mirao Zha
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Ping Lin
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Hongwei Yao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Yibing Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| | - Chuanliu Wu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Xiamen University
| |
Collapse
|
46
|
Phage display and selection of lanthipeptides on the carboxy-terminus of the gene-3 minor coat protein. Nat Commun 2017; 8:1500. [PMID: 29138389 PMCID: PMC5686179 DOI: 10.1038/s41467-017-01413-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging class of natural products with drug-like properties. To fully exploit the potential of RiPPs as peptide drug candidates, tools for their systematic engineering are required. Here we report the engineering of lanthipeptides, a subclass of RiPPs characterized by multiple thioether cycles that are enzymatically introduced in a regio- and stereospecific manner, by phage display. This was achieved by heterologous co-expression of linear lanthipeptide precursors fused to the widely neglected C-terminus of the bacteriophage M13 minor coat protein pIII, rather than the conventionally used N-terminus, along with the modifying enzymes from distantly related bacteria. We observe that C-terminal precursor peptide fusions to pIII are enzymatically modified in the cytoplasm of the producing cell and subsequently displayed as mature cyclic peptides on the phage surface. Biopanning of large C-terminal display libraries readily identifies artificial lanthipeptide ligands specific to urokinase plasminogen activator (uPA) and streptavidin. Lanthipeptides are a class of cyclic post-translationally modified peptides with potential drug-like properties. Here the authors develop a phage display system by expressing lanthipeptide precursors as C-terminal fusions to the phage M13 coat protein pIII in E. coli along with the heterologous modifying enzymes.
Collapse
|
47
|
Shi Y, Challa S, Sang P, She F, Li C, Gray GM, Nimmagadda A, Teng P, Odom T, Wang Y, van der Vaart A, Li Q, Cai J. One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2. J Med Chem 2017; 60:9290-9298. [PMID: 29111705 DOI: 10.1021/acs.jmedchem.7b01280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (Kd = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Sridevi Challa
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Fengyu She
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Geoffrey M Gray
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Alekhya Nimmagadda
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
48
|
Furukawa A, Kakita K, Yamada T, Ishizuka M, Sakamoto J, Hatori N, Maeda N, Ohsaka F, Saitoh T, Nomura T, Kuroki K, Nambu H, Arase H, Matsunaga S, Anada M, Ose T, Hashimoto S, Maenaka K. Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRα immune cell receptor. J Biol Chem 2017; 292:21128-21136. [PMID: 29046357 DOI: 10.1074/jbc.m117.799239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Before entering host cells, herpes simplex virus-1 uses its envelope glycoprotein B to bind paired immunoglobulin-like type 2 receptor α (PILRα) on immune cells. PILRα belongs to the Siglec (sialic acid (SA)-binding immunoglobulin-like lectin)-like family, members of which bind SA. PILRα is the only Siglec member to recognize not only the sialylated O-linked sugar T antigen (sTn) but also its attached peptide region. We previously determined the crystal structure of PILRα complexed with the sTn-linked glycopeptide of glycoprotein B, revealing the simultaneous recognition of sTn and peptide by the receptor. However, the contribution of each glycopeptide component to PILRα binding was largely unclear. Here, we chemically synthesized glycopeptide derivatives and determined the thermodynamic parameters of their interaction with PILRα. We show that glycopeptides with different sugar units linking SA and peptides (i.e. "GlcNAc-type" and "deoxy-GlcNAc-type" glycopeptides) have lower affinity and more enthalpy-driven binding than the wild type (i.e. GalNAc-type glycopeptide). The crystal structures of PILRα complexed with these glycopeptides highlighted the importance of stereochemical positioning of the O4 atom of the sugar moiety. These results provide insights both for understanding the unique O-glycosylated peptide recognition by the PILRα and for the rational design of herpes simplex virus-1 entry inhibitors.
Collapse
Affiliation(s)
| | - Kosuke Kakita
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Tomoki Yamada
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| | | | | | - Nanao Hatori
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Naoyoshi Maeda
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| | - Fumina Ohsaka
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| | | | - Hisanori Nambu
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Hisashi Arase
- World Premier International Immunology Frontier Research Center and.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeki Matsunaga
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Masahiro Anada
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Toyoyuki Ose
- From the Laboratories of Biomolecular Science and
| | - Shunichi Hashimoto
- Synthetic and Industrial Chemistry, Faculty of Pharmaceutical Sciences and
| | - Katsumi Maenaka
- From the Laboratories of Biomolecular Science and .,Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan and
| |
Collapse
|
49
|
Xu P, Andreasen PA, Huang M. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci 2017; 13:1222-1233. [PMID: 29104489 PMCID: PMC5666521 DOI: 10.7150/ijbs.21597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| |
Collapse
|
50
|
Deyle K, Kong XD, Heinis C. Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc Chem Res 2017; 50:1866-1874. [PMID: 28719188 DOI: 10.1021/acs.accounts.7b00184] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic peptides can bind to protein targets with high affinities and selectivities, which makes them an attractive modality for the development of research reagents and therapeutics. Additional properties, including low inherent toxicity, efficient chemical synthesis, and facile modification with labels or immobilization reagents, increase their attractiveness. Cyclic peptide ligands against a wide range of protein targets have been isolated from natural sources such as bacteria, fungi, plants, and animals. Many of them are currently used as research tools, and several have found application as therapeutics, such as the peptide hormones oxytocin and vasopressin and the antibiotics vancomycin and daptomycin, proving the utility of cyclic peptides in research and medicine. With the advent of phage display and other in vitro evolution techniques, it has become possible to generate cyclic peptide binders to diverse protein targets for which no natural peptides have been discovered. A highly robust and widely applied approach is based on the cyclization of peptides displayed on phage via a disulfide bridge. Disulfide-cyclized peptide ligands to more than a hundred different proteins have been reported in the literature. Technology advances achieved over the last three decades, including methods for generating larger phage display libraries, improved phage panning protocols, new cyclic peptide formats, and high-throughput sequencing, have enabled the generation of cyclic peptides with ever better binding affinities to more challenging targets. A relatively new cyclic peptide format developed using phage display involves bicyclic peptides. These molecules consist of two macrocyclic peptide rings cyclized through a chemical linker. Compared to monocyclic peptides of comparable molecular mass, bicyclic peptides are more constrained in their conformation. As a result, they can bind to their targets with a higher affinity and are more resistant to proteolytic degradation. Phage-encoded bicyclic peptides are generated by chemically cyclizing random peptide libraries on phage. Binders are identified by conventional phage panning and DNA sequencing. Next-generation sequencing and new sequence alignment tools have enabled the rapid identification of bicyclic peptides. Bicyclic peptide ligands were developed against a range of diverse target classes including enzymes, receptors, and cytokines. Most ligands bind with nanomolar affinities, with some reaching the picomolar range. To date, several bicyclic peptides have been positively evaluated in preclinical studies, and the first clinical tests are in sight. While bicyclic peptide phage display was developed with therapeutic applications in mind, these peptides are increasingly used as research tools for target evaluation or as basic research probes as well. Given the efficient development method, the ease of synthesis and handling, and the favorable binding and biophysical properties, bicyclic peptides are being developed against more and more targets, ever increasing their potential applications in research and medicine.
Collapse
Affiliation(s)
- Kaycie Deyle
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|