1
|
Tan X, Zhou J, Yang L, Chang Q, Li SY, Rockenbauer A, Song Y, Liu Y. Simultaneous Quantitation of Persulfides, Biothiols, and Hydrogen Sulfide through Sulfur Exchange Reaction with Trityl Spin Probes. J Am Chem Soc 2024. [PMID: 39431326 DOI: 10.1021/jacs.4c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Reactive sulfur species (RSS) including persulfides (RSSHs), biothiols, and hydrogen sulfide (H2S) are key regulators in various physiological processes. To better understand the symbiotic relationship and interconversion of these RSS, it is highly desirable but challenging to develop analytical techniques that are capable of detecting and quantifying them. Herein, we report the rational design and synthesis of novel trityl-radical-based electron paramagnetic resonance (EPR) probes dubbed CT02-TNB and OX-TNB. CT02-TNB underwent fast sulfur exchange reactions with two reactive RSSHs (PS1 and PS2) which were released from their corresponding donors PSD1 and PSD2 to afford the specific conjugates. The resulting conjugates exhibit characteristic EPR spectra, thus enabling discriminative detection and quantitation of the two RSSHs. Moreover, CT02-TNB showed good response toward other RSS including glutathione (GSH), cysteine (Cys), H2S, and sulfite as well. Importantly, based on the updated EPR spectral simulation program, simultaneous quantitation of multiple RSS (e.g., PS1/GSH/Cys or PS1/GSH/H2S) by CT02-TNB was also achieved. Finally, the levels of released PS1 from PSD1 and endogenous GSH in isolated mouse livers were measured by the hydrophilic OX-TNB. This work represents the first study achieving discriminative and quantitative detection of different persulfides and other RSS by a spectroscopic method.
Collapse
Affiliation(s)
- Xiaoli Tan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiaxin Zhou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Luhua Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Shao-Yong Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences and, Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, Budapest 1111, Hungary
| | - Yuguang Song
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
2
|
Li S, Deng P, Chang Q, Feng M, Shang Y, Song Y, Liu Y. In Situ Generation and High Bioresistance of Trityl-based Semiquinone Methide Radicals Under Anaerobic Conditions in Cellular Systems. Chemistry 2024; 30:e202400985. [PMID: 38932665 DOI: 10.1002/chem.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM⋅ and CTQM⋅) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM⋅ which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM⋅ exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide, respectively. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM⋅ moiety. Owing to extremely high resistance of OXQM⋅ towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.
Collapse
Affiliation(s)
- Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Meirong Feng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yixuan Shang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
3
|
Eubank TD, Bobko AA, Hoblitzell EH, Gencheva M, Driesschaert B, Khramtsov VV. In Vivo Electron Paramagnetic Resonance Molecular Profiling of Tumor Microenvironment upon Tumor Progression to Malignancy in an Animal Model of Breast Cancer. Mol Imaging Biol 2024; 26:424-434. [PMID: 37610610 PMCID: PMC10884355 DOI: 10.1007/s11307-023-01847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy. PROCEDURES These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes. RESULTS Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages. CONCLUSION Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.
Collapse
Affiliation(s)
- Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
4
|
Sarvari S, McGee D, O'Connell R, Tseytlin O, Bobko AA, Tseytlin M. Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs. Mol Imaging Biol 2024; 26:511-524. [PMID: 38038860 PMCID: PMC11211156 DOI: 10.1007/s11307-023-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth dimension is temporal. Failure to provide living cells with sufficient amounts of oxygen at any point along the developmental timeline may jeopardize the bioprinting goals. Even transient hypoxia may alter cells' differentiation and proliferation or trigger apoptosis. Electron paramagnetic resonance (EPR) imaging modality is proposed to permit 4D monitoring of oxygen within bioprinted structures. PROCEDURES Lithium octa-n-butoxy-phthalocyanine (LiNc-BuO) probes have been introduced into gelatin methacrylate (GelMA) bioink. GelMA is a cross-linkable hydrogel, and LiNc-BuO is an oxygen-sensitive compound that permits longitudinal oximetric measurements. The effects of the oxygen probe on printability have been evaluated. A digital light processing (DLP) bioprinter was built in the laboratory. Bioprinting protocols have been developed that consider the optical properties of the GelMA/LiNc-BuO composites. Acellular and cell-laden constructs have been printed and imaged. The post-printing effect of residual photoinitiator on oxygen depletion has been investigated. RESULTS Models have been successfully printed using a lab-built bioprinter. Rapid scan EPR images reflective of the expected oxygen concentration levels have been acquired. An unreported problem of oxygen depletion in bioprinted constructs by the residual photoinitiator has been documented. EPR imaging is proposed as a control method for its removal. The oxygen consumption rates by HEK293T cells within a bioprinted cylinder have been imaged and quantified. CONCLUSIONS The feasibility of the cointegration of 4D EPR imaging and 4D bioprinting has been demonstrated. The proof-of-concept experiments, which were conducted using oxygen probes loaded into GelMA, lay the foundation for a broad range of applications, such as bioprinting with many types of bioinks loaded with diverse varieties of molecular spin probes.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Ryan O'Connell
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Oxana Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance Center at Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
- West Virginia University Cancer Institute, Morgantown, WV, USA.
| |
Collapse
|
5
|
Zhang L, Li H, Zhu Y, Zhang S. A quantum-chemical insight into SOMO-HOMO conversion in phosphorus-boron cation radicals. Phys Chem Chem Phys 2024; 26:8273-8286. [PMID: 38385562 DOI: 10.1039/d4cp00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Organic radicals exhibiting SOMO-HOMO conversion (SHC) electronic configurations have recently garnered increasing attention due to their exceptional stability and photophysical properties. In this study, we investigate two series of phosphorus-boron cation radicals based on 1,3,5-trimethylphenyl units substituted with P and B atoms, varying numbers of P-B moieties, and π-conjugation linkers. We perform quantum-chemical calculations to systematically assess the influence of chemical substituents on the SHC electronic structural features. Our computational results demonstrate that the SHC electronic configurations of the studied complexes are primarily determined by the number of P-B moieties, specifically, phosphorus-boron cation radicals with two P-B moieties as terminal groups in π-conjugation linkers, which efficiently arrange electrons to increase HOMO energies compared to corresponding radicals with only one P-B unit. Furthermore, spin density distributions change as the size of π-conjugation linkers increases. Natural bond orbital (NBO) and atoms-in-molecules (AIM) analyses reveal strong intramolecular charge transfer between P and B atoms along with other stabilized donor-acceptor interactions and significant covalent bonds between P and B atoms. Moreover, synergistic effects resulting from 1,3,5-trimethylphenyl substitutions and enlarged π-conjugation linkers containing P-B units confer excellent photophysical properties upon these studied radicals, making them potential stable radicals in optoelectronic applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Hongbo Li
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Yanbin Zhu
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| | - Shoufeng Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, Guangxi, China.
| |
Collapse
|
6
|
Buyse C, Mignion L, Joudiou N, Melloul S, Driesschaert B, Gallez B. Sensitive simultaneous measurements of oxygenation and extracellular pH by EPR using a stable monophosphonated trityl radical and lithium phthalocyanine. Free Radic Biol Med 2024; 213:11-18. [PMID: 38218552 PMCID: PMC10923140 DOI: 10.1016/j.freeradbiomed.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The monitoring of acidosis and hypoxia is crucial because both factors promote cancer progression and impact the efficacy of anti-cancer treatments. A phosphonated tetrathiatriarylmethyl (pTAM) has been previously described to monitor both parameters simultaneously, but the sensitivity to tackle subtle changes in oxygenation was limited. Here, we describe an innovative approach combining the pTAM radical and lithium phthalocyanine (LiPc) crystals to provide sensitive simultaneous measurements of extracellular pH (pHe) and pO2. Both parameters can be measured simultaneously as both EPR spectra do not overlap, with a gain in sensitivity to pO2 variations by a factor of 10. This procedure was applied to characterize the impact of carbogen breathing in a breast cancer 4T1 model as a proof-of-concept. No significant change in pHe and pO2 was observed using pTAM alone, while LiPc detected a significant increase in tumor oxygenation. Interestingly, we observed that pTAM systematically overestimated the pO2 compared to LiPc. In addition, we analyzed the impact of an inhibitor (UK-5099) of the mitochondrial pyruvate carrier (MPC) on the tumor microenvironment. In vitro, the exposure of 4T1 cells to UK-5099 for 24 h induced a decrease in pHe and oxygen consumption rate (OCR). In vivo, a significant decrease in tumor pHe was observed in UK-5099-treated mice, while there was no change for mice treated with the vehicle. Despite the change observed in OCR, no significant change in tumor oxygenation was observed after the UK-5099 treatment. This approach is promising for assessing in vivo the effect of treatments targeting tumor metabolism.
Collapse
Affiliation(s)
- Chloe Buyse
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Lionel Mignion
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Samia Melloul
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group (REMA), Louvain Drug Research Institute (LDRI), UCLouvain, Brussels, Belgium.
| |
Collapse
|
7
|
Evans JV, Suman S, Goruganthu MUL, Tchekneva EE, Guan S, Arasada RR, Antonucci A, Piao L, Ilgisonis I, Bobko AA, Driesschaert B, Uzhachenko RV, Hoyd R, Samouilov A, Amann J, Wu R, Wei L, Pallerla A, Ryzhov SV, Feoktistov I, Park KP, Kikuchi T, Castro J, Ivanova AV, Kanagasabai T, Owen DH, Spakowicz DJ, Zweier JL, Carbone DP, Novitskiy SV, Khramtsov VV, Shanker A, Dikov MM. Improving combination therapies: targeting A2B-adenosine receptor to modulate metabolic tumor microenvironment and immunosuppression. J Natl Cancer Inst 2023; 115:1404-1419. [PMID: 37195421 PMCID: PMC10637048 DOI: 10.1093/jnci/djad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/18/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Anatomy, and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Shankar Suman
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mounika Uttam L Goruganthu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Elena E Tchekneva
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuxiao Guan
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rajeswara Rao Arasada
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Pfizer Inc, New York, NY, USA
| | - Anneliese Antonucci
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Longzhu Piao
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Irina Ilgisonis
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Roman V Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rebecca Hoyd
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alexandre Samouilov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Joseph Amann
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ruohan Wu
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Lai Wei
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaditya Pallerla
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Igor Feoktistov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Kyungho P Park
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Takefumi Kikuchi
- Division of Gastroenterology, Department of Internal Medicine, Sapporo Shirakabadai Hospital, Sapporo, Japan
| | | | - Alla V Ivanova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Dwight H Owen
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel J Spakowicz
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jay L Zweier
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - David P Carbone
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sergey V Novitskiy
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA
| | - Mikhail M Dikov
- Department of Internal Medicine, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
9
|
Hasanbasri Z, Poncelet M, Hunter H, Driesschaert B, Saxena S. A new 13C trityl-based spin label enables the use of DEER for distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107363. [PMID: 36620971 PMCID: PMC9928843 DOI: 10.1016/j.jmr.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Triarylmethyl (TAM)-based labels, while still underutilized, are a powerful class of labels for pulsed-Electron Spin Resonance (ESR) distance measurements. They feature slow relaxation rates for long-lasting signals, high stability for cellular experiments, and narrow spectral features for efficient excitation of the spins. However, the typical narrow line shape limits the available distance measurements to only single-frequency experiments, such as Double Quantum Coherence (DQC) and Relaxation Induced Dipolar Modulation Enhancement (RIDME), which can be complicated to perform or hard to process. Therefore, widespread usage of TAM labels can be enhanced by the use of Double Electron-Electron Resonance (DEER) distance measurements. In this work, we developed a new spin label, 13C1-mOX063-d24, with a 13C isotope as the radical center. Due to the resolved hyperfine splitting, the spectrum is sufficiently broadened to permit DEER-based experiments at Q-band spectrometers. Additionally, this new label can be incorporated orthogonally with Cu(II)-based protein label. The orthogonal labeling scheme enables DEER distance measurement at X-band frequencies. Overall, the new trityl label allows for DEER-based distance measurements that complement existing TAM-label DQC and RIDME experiments.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States
| | - Hannah Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States; C. Eugene Bennett Department of Chemistry West Virginia University, Morgantown, WV 26506, United States.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
10
|
Feng Y, Tan X, Shi Z, Villamena FA, Zweier JL, Song Y, Liu Y. Trityl Quinodimethane Derivatives as Unimolecular Triple-Function Extracellular EPR Probes for Redox, pH, and Oxygen. Anal Chem 2023; 95:1057-1064. [PMID: 36602544 DOI: 10.1021/acs.analchem.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging coupled with the use of suitable probes is a promising tool for assessment of the tumor microenvironment (TME). Measurement of multiple TME parameters by EPR is very desirable but challenging. Herein, we designed and synthesized a class of negative-charged trityl quinodimethane MTPs as unimolecular triple-function extracellular probes for redox, pH, and oxygen (O2) levels. Using the deuterated analogue, dMTP5, which has an optimal pKa as well as high sensitivity to bioreduction and O2, we reasonably evaluated pH effects on efflux of reducing agents from HepG2 cells and cellular O2 consumption.
Collapse
Affiliation(s)
- Yalan Feng
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Xiaoli Tan
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Zhaojun Shi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio43210, United States
| | - Yuguang Song
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Yangping Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| |
Collapse
|
11
|
Gluth TD, Poncelet M, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Biocompatible Monophosphonated Trityl Spin Probe, HOPE71, for In Vivo Measurement of pO 2, pH, and [P i] by Electron Paramagnetic Resonance Spectroscopy. Anal Chem 2023; 95:946-954. [PMID: 36537829 PMCID: PMC9852220 DOI: 10.1021/acs.analchem.2c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.
Collapse
Affiliation(s)
- Teresa D. Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Emily H. Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
12
|
Poncelet M, Ngendahimana T, Gluth TD, Hoblitzell EH, Eubank TD, Eaton GR, Eaton SS, Driesschaert B. Synthesis and characterization of a biocompatible 13C 1 isotopologue of trityl radical OX071 for in vivo EPR viscometry. Analyst 2022; 147:5643-5648. [PMID: 36373434 PMCID: PMC9729415 DOI: 10.1039/d2an01527g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We describe the synthesis, characterization, and application of an isotopologue of the trityl radical OX071, labeled with 13C at the central carbon (13C1). This spin probe features large anisotropy of the hyperfine coupling with the 13C1 (I = 1/2), leading to an EPR spectrum highly sensitive to molecular tumbling. The high biocompatibility and lack of interaction with blood albumin allow for systemic delivery and in vivo measurement of tissue microviscosity by EPR.
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
- Eugene Bennett Department of Chemistry, West Virginia University, WV, 26506, USA
| |
Collapse
|
13
|
|
14
|
Samouilov A, Komarov D, Petryakov S, Iosilevich A, Zweier JL. Development of an L-band resonator optimized for fast scan EPR imaging of the mouse head. Magn Reson Med 2021; 86:2316-2327. [PMID: 33938574 PMCID: PMC8295191 DOI: 10.1002/mrm.28821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To develop a novel resonator for high-quality fast scan electron paramagnetic resonance (EPR) and EPR/NMR co-imaging of the head and brain of mice at 1.25 GHz. METHODS Resonator dimensions were scaled to fit the mouse head with maximum filling factor. A single-loop 6-gap resonator of 20 mm diameter and 20 mm length was constructed. High resonator stability was achieved utilizing a fixed position double coupling loop. Symmetrical mutually inverted connections rendered it insensitive to field modulation and fast scan. Coupling adjustment was provided by a parallel-connected variable capacitor located at the feeding line at λ/4 distance. To minimize radiation loss, the shield around the resonator was supplemented with a planar conductive disc that focuses return magnetic flux. RESULTS Coupling of the resonator loaded with the mouse head was efficient and easy. This resonator enabled high-quality in vivo 3D EPR imaging of the mouse head following intravenous infusion of nitroxide probes. With this resonator and rapid scan EPR system, 4 ms scans were acquired in forward and reverse directions so that images with 2-scan 3,136 projections were acquired in 25 s. Head images were achieved with resolutions of 0.4 mm, enabling visualization of probe localization and uptake across the blood-brain barrier. CONCLUSIONS This resonator design provides good sensitivity, high stability, and B1 field homogeneity for in vivo fast scan EPR of the mouse head and brain, enabling faster measurements and higher resolution imaging of probe uptake, localization, and metabolism than previously possible.
Collapse
Affiliation(s)
- Alexandre Samouilov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Denis Komarov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Sergey Petryakov
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Arkadiy Iosilevich
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Jay L. Zweier
- Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
15
|
Gluth TD, Poncelet M, DeVience S, Gencheva M, Hoblitzell EH, Khramtsov VV, Eubank TD, Driesschaert B. Large-scale synthesis of a monophosphonated tetrathiatriarylmethyl spin probe for concurrent in vivo measurement of pO 2, pH and inorganic phosphate by EPR. RSC Adv 2021; 11:25951-25954. [PMID: 34354828 PMCID: PMC8314523 DOI: 10.1039/d1ra04551b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Low-field electron paramagnetic resonance spectroscopy paired with pTAM, a mono-phosphonated triarylmethyl radical, is an unmatched technique for concurrent and non-invasive measurement of oxygen concentration, pH, and inorganic phosphate concentration for in vivo investigations. However, the prior reported synthesis is limited by its low yield and poor scalability, making wide-spread application of pTAM unfeasible. Here, we report a new strategy for the synthesis of pTAM with significantly greater yields demonstrated on a large scale. We also present a standalone application with user-friendly interface for automatic spectrum fitting and extraction of pO2, pH, and [Pi] values. Finally, we confirm that pTAM remains in the extracellular space and has low cytotoxicity appropriate for local injection.
Collapse
Affiliation(s)
- Teresa D Gluth
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| | - Stephen DeVience
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Emily H Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Biochemistry, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, School of Medicine Morgantown WV 26506 USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy Morgantown WV 26506 USA .,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University Morgantown WV 26506 USA
| |
Collapse
|
16
|
Rogozhnikova OY, Trukhin DV, Asanbaeva NB, Tormyshev VM. A Simple and Convenient Synthesis of a Multifunctional Spin Probe, Phosphonate Derivative of a Persistent Radical of the Triarylmethyl Series. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s107042802106004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Chen L, Wu L, Tan X, Rockenbauer A, Song Y, Liu Y. Synthesis and Redox Properties of Water-Soluble Asymmetric Trityl Radicals. J Org Chem 2021; 86:8351-8364. [PMID: 34043350 DOI: 10.1021/acs.joc.1c00766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tetrathiatriarylmethyl (trityl) radicals have been recently shown to react with biological oxidoreductants including glutathione (GSH), ascorbic acid (Asc), and superoxide anion radical (O2•-). However, how the substituents affect the reactivity of trityl radicals is still unknown. In this work, five asymmetric trityl radicals were synthesized and their reactivities with GSH, Asc, and O2•- investigated. Under aerobic conditions, GSH induces fast decays for the thioether- (TSA) and N-methyleneglycine-substituted (TGA) derivatives and slow decay for the 4-carboxyphenyl-containing one (TPA). Under anaerobic conditions, the direct reduction of these radicals by GSH also occurs with rate constants (kGSH) from 1.8 × 10-4 M-1 s-1 for TPA to 1.0 × 10-2 M-1 s-1 for TGA. Moreover, these radicals can also react with O2•- with rate constants (kSO) from 1.2 × 103 M-1 s-1 for ET-01 to 1.6 × 104 M-1 s-1 for TGA. Surprisingly, these radicals are completely inert to Asc in both aerobic and anaerobic conditions. Additionally, the substituents exert an important effect on redox potentials of these trityl radicals. This work demonstrates that the redox properties of the trityl radicals strongly depend on their substituents, and TPA with high stability toward GSH shows great potential for intracellular applications.
Collapse
Affiliation(s)
- Li Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Lanlan Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest, Hungary
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Medicinal Chemistry, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
18
|
Hasanbasri Z, Singewald K, Gluth TD, Driesschaert B, Saxena S. Cleavage-Resistant Protein Labeling With Hydrophilic Trityl Enables Distance Measurements In-Cell. J Phys Chem B 2021; 125:5265-5274. [PMID: 33983738 DOI: 10.1021/acs.jpcb.1c02371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitive in-cell distance measurements in proteins using pulsed-electron spin resonance (ESR) require reduction-resistant and cleavage-resistant spin labels. Among the reduction-resistant moieties, the hydrophilic trityl core known as OX063 is promising due to its long phase-memory relaxation time (Tm). This property leads to a sufficiently intense ESR signal for reliable distance measurements. Furthermore, the Tm of OX063 remains sufficiently long at higher temperatures, opening the possibility for measurements at temperatures above 50 K. In this work, we synthesized deuterated OX063 with a maleimide linker (mOX063-d24). We show that the combination of the hydrophilicity of the label and the maleimide linker enables high protein labeling that is cleavage-resistant in-cells. Distance measurements performed at 150 K using this label are more sensitive than the measurements at 80 K. The sensitivity gain is due to the significantly short longitudinal relaxation time (T1) at higher temperatures, which enables more data collection per unit of time. In addition to in vitro experiments, we perform distance measurements in Xenopus laevis oocytes. Interestingly, the Tm of mOX063-d24 is sufficiently long even in the crowded environment of the cell, leading to signals of appreciable intensity. Overall, mOX063-d24 provides highly sensitive distance measurements both in vitro and in-cells.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Teresa D Gluth
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Velayutham M, Poncelet M, Eubank TD, Driesschaert B, Khramtsov VV. Biological Applications of Electron Paramagnetic Resonance Viscometry Using a 13C-Labeled Trityl Spin Probe. Molecules 2021; 26:molecules26092781. [PMID: 34066858 PMCID: PMC8125944 DOI: 10.3390/molecules26092781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1–2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.
Collapse
Affiliation(s)
- Murugesan Velayutham
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Martin Poncelet
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Timothy D. Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Microbiology, Immunology & Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (B.D.); (V.V.K.); Tel.: +1-304-293-7401 (B.D.); +1-304-293-4470 (V.V.K.)
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; (M.V.); (M.P.); (T.D.E.)
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Correspondence: (B.D.); (V.V.K.); Tel.: +1-304-293-7401 (B.D.); +1-304-293-4470 (V.V.K.)
| |
Collapse
|
20
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
21
|
Steinberger KJ, Forget MA, Bobko AA, Mihalik NE, Gencheva M, Roda JM, Cole SL, Mo X, Hoblitzell EH, Evans R, Gross AC, Moldovan L, Marsh CB, Khramstov VV, Eubank TD. Hypoxia-Inducible Factor α Subunits Regulate Tie2-Expressing Macrophages That Influence Tumor Oxygen and Perfusion in Murine Breast Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2301-2311. [PMID: 32938724 PMCID: PMC7596922 DOI: 10.4049/jimmunol.2000185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022]
Abstract
Tie2-expressing monocytes/macrophages (TEMs) are a distinct subset of proangiogenic monocytes selectively recruited to tumors in breast cancer. Because of the hypoxic nature of solid tumors, we investigated if oxygen, via hypoxia-inducible transcription factors HIF-1α and HIF-2α, regulates TEM function in the hypoxic tumor microenvironment. We orthotopically implanted PyMT breast tumor cells into the mammary fat pads of syngeneic LysMcre, HIF-1α fl/fl /LysMcre, or HIF-2α fl/fl /LysMcre mice and evaluated the tumor TEM population. There was no difference in the percentage of tumor macrophages among the mouse groups. In contrast, HIF-1α fl/fl /LysMcre mice had a significantly smaller percentage of tumor TEMs compared with control and HIF-2α fl/fl /LysMcre mice. Proangiogenic TEMs in macrophage HIF-2α-deficient tumors presented significantly more CD31+ microvessel density but exacerbated hypoxia and tissue necrosis. Reduced numbers of proangiogenic TEMs in macrophage HIF-1α-deficient tumors presented significantly less microvessel density but tumor vessels that were more functional as lectin injection revealed more perfusion, and functional electron paramagnetic resonance analysis revealed more oxygen in those tumors. Macrophage HIF-1α-deficient tumors also responded significantly to chemotherapy. These data introduce a previously undescribed and counterintuitive prohypoxia role for proangiogenic TEMs in breast cancer which is, in part, suppressed by HIF-2α.
Collapse
Affiliation(s)
- Kayla J Steinberger
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Mary A Forget
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Andrey A Bobko
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| | - Nicole E Mihalik
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| | - Marieta Gencheva
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Julie M Roda
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Sara L Cole
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210; and
| | - E Hannah Hoblitzell
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Randall Evans
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Amy C Gross
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Leni Moldovan
- Division of Pulmonary Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Clay B Marsh
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
| | - Valery V Khramstov
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26506;
- Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| |
Collapse
|
22
|
Liu CH, Hamzehpoor E, Sakai-Otsuka Y, Jadhav T, Perepichka DF. A Pure-Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angew Chem Int Ed Engl 2020; 59:23030-23034. [PMID: 32822514 DOI: 10.1002/anie.202009867] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/06/2022]
Abstract
Red luminescence is found in off-white tris(iodoperchlorophenyl)methane (3I-PTMH ) crystals which is characterized by a high photoluminescence quantum yield (PLQY 91 %) and color purity (CIE coordinates 0.66, 0.34). The emission originates from the doublet excited state of the neutral radical 3I-PTMR , which is spontaneously formed and becomes embedded in the 3I-PTMH matrix. The radical defect can also be deliberately introduced into 3I-PTMH crystals which maintain a high PLQY with up to 4 % radical concentration. The immobilized iodinated radical demonstrates excellent photostability (estimated half-life >1 year under continuous irradiation) and intriguing luminescent lifetime (69 ns). TD-DFT calculations demonstrate that electron-donating iodine atoms accelerate the radiative transition while the rigid halogen-bonded matrix suppresses the nonradiative decay.
Collapse
Affiliation(s)
- Cheng-Hao Liu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Yoko Sakai-Otsuka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Thaksen Jadhav
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
23
|
Liu C, Hamzehpoor E, Sakai‐Otsuka Y, Jadhav T, Perepichka DF. A Pure‐Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cheng‐Hao Liu
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Yoko Sakai‐Otsuka
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Thaksen Jadhav
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Dmitrii F. Perepichka
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
24
|
|
25
|
Baghery S, Zarei M, Zolfigol MA, Mallakpour S, Behranvand V. Application of trityl moieties in chemical processes: part I. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Wang X, Peng C, He K, Ji K, Tan X, Han G, Liu Y, Liu Y, Song Y. Intracellular delivery of liposome-encapsulated Finland trityl radicals for EPR oximetry. Analyst 2020; 145:4964-4971. [PMID: 32510063 DOI: 10.1039/d0an00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications in electron paramagnetic resonance (EPR) oximetry. However, the biomedical applications of TAM radicals were exclusively limited to an extracellular region owing to their negatively charged nature. The intracellular delivery of TAM radicals still remains a challenge. In the present work, we report a liposome-based method to encapsulate the water-soluble Finland trityl radical CT-03 for its intracellular delivery. Using the thin lipid film hydration method, CT-03-loaded liposomes were prepared from DSPC/cholesterol/DOTAP with a mean size of 167.5 ± 2.4 nm and a zeta potential of 27.8 ± 0.8 mV. EPR results showed that CT-03 was entrapped into the liposomes and still exhibited good oxygen (O2) sensitivity. Moreover, CT-03 was successfully delivered into HepG2 cells and HUVECs using the CT-03-loaded liposomes. Importantly, the combination of the liposome-encapsulated radical CT-03 and the other TAM radical CT02-H enabled simultaneous measurements of the intracellular and extracellular O2 concentrations and O2 consumption rates in HepG2 cells. Our present study provides a new approach for intracellular delivery of TAM radicals and could significantly expand their biomedical applications.
Collapse
Affiliation(s)
- Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bobko AA. Chemical exchange induced Hahn echo modulation in pulsed electron paramagnetic resonance experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 315:106742. [PMID: 32447257 PMCID: PMC7282351 DOI: 10.1016/j.jmr.2020.106742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Triarylmethyl (TAM) radicals are probes well suited to study microenvironment parameters using pulse electron paramagnetic resonance (EPR) due to their long relaxation times. Here, we are reporting the study of relaxation properties of monophosphonated TAM radicals in the presence of chemical exchange processes. The dependence of Hahn and inversion recovery echo on the solution pH and the chemical exchange rate are discussed. The modulation of Hahn echo intensity in solutions due to chemical exchange is observed in pulse EPR experiments. An analysis of the Hahn echo intensity decay allows for the quantitative determination of the chemical exchange rate and solution pH value.
Collapse
Affiliation(s)
- Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
28
|
Canarie ER, Jahn SM, Stoll S. Quantitative Structure-Based Prediction of Electron Spin Decoherence in Organic Radicals. J Phys Chem Lett 2020; 11:3396-3400. [PMID: 32282218 PMCID: PMC7654569 DOI: 10.1021/acs.jpclett.0c00768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The decoherence, or dephasing, of electron spins in paramagnetic molecules limits sensitivity and resolution in electron paramagnetic resonance spectroscopy, and it represents a challenge for utilizing paramagnetic molecules as qubit units in quantum information devices. For organic radicals in dilute frozen aqueous solution at cryogenic temperatures, electron spin decoherence is driven by neighboring nuclear spins. Here, we show that this nuclear-spin-driven decoherence can be quantitatively predicted from the molecular structure and solvation geometry of the radicals. We use a fully deterministic quantum model of the electron spin and up to 2000 neighboring protons with a static spin Hamiltonian that includes nucleus-nucleus couplings. We present experiments and simulations of two nitroxide radicals and one trityl radical, which have decoherence time scales of 4-5 μs below 60 K. We show that nuclei within 12 Å of the electron spin contribute to decoherence, with the strongest impact from protons 4-8 Å away.
Collapse
|
29
|
Taguchi A, DeVience S, Driesschaert B, Khramtsov VV, Hirata H. In vitro simultaneous mapping of the partial pressure of oxygen, pH and inorganic phosphate using electron paramagnetic resonance. Analyst 2020; 145:3236-3244. [PMID: 32134072 DOI: 10.1039/d0an00168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The partial pressure of oxygen (pO2) and the extracellular pH in the tumour microenvironment are essential parameters for understanding the physiological state of a solid tumour. Also, phosphate-containing metabolites are involved in energy metabolism, and interstitial inorganic phosphate (Pi) is an informative marker for tumour growth. This article describes the simultaneous mapping of pO2, pH and Pi using 750 MHz continuous-wave (CW) electron paramagnetic resonance (EPR) and a multifunctional probe, monophosphonated trityl radical p1TAM-D. The concept was demonstrated by acquiring three-dimensional (3D) maps of pO2, pH and Pi for multiple solution samples. This was made possible by combining a multifunctional radical probe, fast CW-EPR spectral acquisition, four-dimensional (4D) spectral-spatial image reconstruction, and spectral fitting. The experimental results of mapping pO2, pH and Pi suggest that the concept of simultaneous mapping using EPR is potentially applicable for the multifunctional measurements of a mouse tumour model.
Collapse
Affiliation(s)
- Akihiro Taguchi
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, North 14, West 9, Kita-ku, Sapporo, 060-0814, Japan
| | | | | | | | | |
Collapse
|
30
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Frederick A. Villamena
- Department of Biological Chemistry and PharmacologyCollege of MedicineThe Ohio State University Columbus OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and ImagingThe Davis Heart and Lung Research Institutethe Division of Cardiovascular MedicineDepartment of Internal MedicineThe Ohio State University Columbus OH 43210 USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences 1117 Budapest Hungary
- Department of PhysicsBudapest University of Technology and Economics Budafoki ut 8 1111 Budapest Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical University Tianjin 300070 P. R. China
| |
Collapse
|
31
|
Tan X, Ji K, Wang X, Yao R, Han G, Villamena FA, Zweier JL, Song Y, Rockenbauer A, Liu Y. Discriminative Detection of Biothiols by Electron Paramagnetic Resonance Spectroscopy using a Methanethiosulfonate Trityl Probe. Angew Chem Int Ed Engl 2019; 59:928-934. [PMID: 31657108 DOI: 10.1002/anie.201912832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Biothiols, such as glutathione (GSH), homocysteine (Hcy), and cysteine (Cys), coexist in biological systems with diverse biological roles. Thus, analytical techniques that can detect, quantify, and distinguish between multiple biothiols are desirable but challenging. Herein, we demonstrate the simultaneous detection and quantitation of multiple biothiols, including up to three different biothiols in a single sample, using electron paramagnetic resonance (EPR) spectroscopy and a trityl-radical-based probe (MTST). We term this technique EPR thiol-trapping. MTST could trap thiols through its methanethiosulfonate group to form the corresponding disulfide conjugate with an EPR spectrum characteristic of the trapped thiol. MTST was used to investigate effects of l-buthionine sulfoximine (BSO) and pyrrolidine dithiocarbamate (PDTC) on the efflux of GSH and Cys from HepG2 cells.
Collapse
Affiliation(s)
- Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest, Hungary
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
32
|
Poncelet M, Huffman JL, Khramtsov VV, Dhimitruka I, Driesschaert B. Synthesis of hydroxyethyl tetrathiatriarylmethyl radicals OX063 and OX071. RSC Adv 2019; 9:35073-35076. [PMID: 32483485 PMCID: PMC7263632 DOI: 10.1039/c9ra08633a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the synthesis of hydroxyethyl tetrathiatriarylmethyl radical OX063 and its deuterated analogue OX071 for biomedical EPR applications. Synthesis of OX063 and OX063-d24 spin probes and DNP agents.![]()
Collapse
Affiliation(s)
- Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Justin L Huffman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Ilirian Dhimitruka
- School of Health and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.,In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
33
|
Li Y, Zhai W, Liao Y, Nie J, Han G, Song Y, Li S, Hou J, Liu Y. Synthesis of Central Chirality-Containing Triarylmethanols and Triarylmethyl Radicals with Extraordinarily Stable Configurations. J Org Chem 2019; 84:11774-11782. [PMID: 31454244 DOI: 10.1021/acs.joc.9b01675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylmethanol adopts a propeller-shaped conformation with either right-handed (P) or left-handed (M) configuration. Herein, new triarylmethanols with two chiral centers were obtained via introduction of two cis-hydroxyl groups on the side chains, affording four stereoisomers. These four stereoisomers were easily separated by silica gel column chromatography into two pairs of propeller-shaped enantiomers, as shown by NMR and X-ray crystallographic studies. High-performance liquid chromatography (HPLC) studies showed that the configurations of the hydroxyl-bearing triarylmethanols are much more stable than those of the bulky tert-butyldimethylsilyl-protected precursors, inconsistent with the general strategy in which the steric repulsion is largely responsible for the configurational stability. Similarly, two hydroxyl-bearing tetrathiatriarylmethyl (TAM) radicals also exhibit excellent configurational stability and are thus separable by CS-HPLC into four stereoisomers. Interestingly, both helical chirality from triaryl group (M or P) and central chirality (R and S) on the side chain have little effect on their electron paramagnetic resonance properties. Our present study provides a new strategy to construct configurationally stable triaryl compounds and demonstrates that the side chain on TAM radicals is a new site for their structural modifications.
Collapse
Affiliation(s)
- Yingchun Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yongfang Liao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Jiangping Nie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Shaoyong Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , P. R. China
| |
Collapse
|
34
|
Guo H, Peng Q, Chen XK, Gu Q, Dong S, Evans EW, Gillett AJ, Ai X, Zhang M, Credgington D, Coropceanu V, Friend RH, Brédas JL, Li F. High stability and luminescence efficiency in donor-acceptor neutral radicals not following the Aufbau principle. NATURE MATERIALS 2019; 18:977-984. [PMID: 31332338 DOI: 10.1038/s41563-019-0433-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
With their unusual electronic structures, organic radical molecules display luminescence properties potentially relevant to lighting applications; yet, their luminescence quantum yield and stability lag behind those of other organic emitters. Here, we designed donor-acceptor neutral radicals based on an electron-poor perchlorotriphenylmethyl or tris(2,4,6-trichlorophenyl)methyl radical moiety combined with different electron-rich groups. Experimental and quantum-chemical studies demonstrate that the molecules do not follow the Aufbau principle: the singly occupied molecular orbital is found to lie below the highest (doubly) occupied molecular orbital. These donor-acceptor radicals have a strong emission yield (up to 54%) and high photostability, with estimated half-lives reaching up to several months under pulsed ultraviolet laser irradiation. Organic light-emitting diodes based on such a radical emitter show deep-red/near-infrared emission with a maximal external quantum efficiency of 5.3%. Our results provide a simple molecular-design strategy for stable, highly luminescent radicals with non-Aufbau electronic structures.
Collapse
Affiliation(s)
- Haoqing Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Qiming Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xian-Kai Chen
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qinying Gu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Shengzhi Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Xin Ai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Dan Credgington
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Veaceslav Coropceanu
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Jean-Luc Brédas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Development of multifunctional Overhauser-enhanced magnetic resonance imaging for concurrent in vivo mapping of tumor interstitial oxygenation, acidosis and inorganic phosphate concentration. Sci Rep 2019; 9:12093. [PMID: 31431629 PMCID: PMC6702349 DOI: 10.1038/s41598-019-48524-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor oxygenation (pO2), acidosis (pH) and interstitial inorganic phosphate concentration (Pi) are important parameters of the malignant behavior of cancer. A noninvasive procedure that enables visualization of these parameters may provide unique information about mechanisms of tumor pathophysiology and provide clues to new treatment targets. In this research, we present a multiparametric imaging method allowing for concurrent mapping of pH, spin probe concentration, pO2, and Pi using a single contrast agent and Overhauser-enhanced magnetic resonance imaging technique. The developed approach was applied to concurrent multifunctional imaging in phantom samples and in vivo in a mouse model of breast cancer. Tumor tissues showed higher heterogeneity of the distributions of the parameters compared with normal mammary gland and demonstrated the areas of significant acidosis, hypoxia, and elevated Pi content.
Collapse
|
36
|
Li C, Huang Z, Gao N, Zheng J, Guan J. Injectable, thermosensitive, fast gelation, bioeliminable, and oxygen sensitive hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1191-1198. [PMID: 30889653 PMCID: PMC7368179 DOI: 10.1016/j.msec.2019.02.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023]
Abstract
The decrease of tissue oxygen content due to pathological conditions leads to severe cell death and tissue damage. Restoration of tissue oxygen content is the primary treatment goal. To accurately and efficiently assess efficacy of a treatment, minimally invasive, and long-term detection of oxygen concentration in the same tissue location represents a clinically attractive strategy. Among the different oxygen concentration measurement approaches, electron paramagnetic resonance (EPR) has the potential to accomplish this. Yet there lacks injectable EPR probes that can maintain a consistent concentration at the same tissue location during treatment period to acquire a stable EPR signal, and can finally be eliminated from body without retrieval. Herein, we developed injectable and bioeliminable hydrogel-based polymeric EPR probes that exhibited fast gelation rate, slow weight loss rate, and high oxygen sensitivity. The probe was based on N-Isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), dimethyl-γ-butyrolactone acrylate (DBA), and tetrathiatriarylmethyl (TAM) radical. The injectable probes can be implanted into tissues using a minimally invasive injection approach. The high gelation rate (~10 s) allowed the probes to quickly solidify upon injection to have a high retention in tissues. The polymeric probes overcame the toxicity issue of current small molecule EPR probes. The probes can be gradually hydrolyzed. Upon complete hydrolysis, the probes became water soluble at 37 °C, thus having the potential to be removed from the body by urinary system. The probes showed slow weight loss rate so as to maintain EPR signal intensity for extended periods while retaining in a certain tissue location. The probes remained their high oxygen sensitivity after in vitro hydrolysis and in vivo implantation for 4 weeks. These hydrogel-based EPR probes have attractive properties for in vivo oxygen detection.
Collapse
Affiliation(s)
- Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zheng Huang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
37
|
Qu Y, Li Y, Tan X, Zhai W, Han G, Hou J, Liu G, Song Y, Liu Y. Synthesis and Characterization of Hydrophilic Trityl Radical TFO for Biomedical and Biophysical Applications. Chemistry 2019; 25:7888-7895. [PMID: 30972843 DOI: 10.1002/chem.201900262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/18/2022]
Abstract
Tetrathiatriarylmethyl (TAM, trityl) radicals have found wide applications as spin probes/labels for EPR spectroscopy and imaging, and as polarizing agents for dynamic nuclear polarization. The high hydrophilicity of TAM radicals is essential for their biomedical applications. However, the synthesis of hydrophilic TAM radicals (e.g., OX063) is extremely challenging and has only been reported in the patent literature, to date. Herein, an efficient synthesis of a highly water-soluble TAM radical bis(8-carboxyl-2,2,6,6-tetramethylbenzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)-mono-(8-carboxyl-2,2,6,6-tetrakis(2-hydroxyethyl)benzo[1,2-d:4,5-d']bis([1,3]dithiol-4-yl)methyl (TFO), which contains four additional hydroxylethyl groups, relative to the Finland trityl radical CT-03, is reported. Similar to OX063, TFO exhibits excellent properties, including high water solubility in phosphate buffer, low log P, low pKa , long relaxation times, and negligible binding with bovine serum albumin. On the other hand, TFO has a sharper EPR line and higher O2 sensitivity than those of OX063. Therefore, in combination with its facile synthesis, TFO should find wide applications in magnetic resonance related fields and this synthetic approach would shed new light on the synthesis of other hydrophilic TAM radicals.
Collapse
Affiliation(s)
- Yuying Qu
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Yingchun Li
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, P.R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P.R. China
| |
Collapse
|
38
|
Dextran-conjugated tetrathiatriarylmethyl radicals as biocompatible spin probes for EPR spectroscopy and imaging. Bioorg Med Chem Lett 2019; 29:1756-1760. [PMID: 31129052 DOI: 10.1016/j.bmcl.2019.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/28/2022]
Abstract
Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing demand in the development of multifunctional, biocompatible and targeted trityl probes hampered by the difficulties in derivatization of the TAM structure. We proposed a new straightforward synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for preclinical oximetric applications.
Collapse
|
39
|
Hintz H, Vanas A, Klose D, Jeschke G, Godt A. Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. J Org Chem 2019; 84:3304-3320. [DOI: 10.1021/acs.joc.8b03234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
40
|
Jugniot N, Duttagupta I, Rivot A, Massot P, Cardiet C, Pizzoccaro A, Jean M, Vanthuyne N, Franconi JM, Voisin P, Devouassoux G, Parzy E, Thiaudiere E, Marque SRA, Bentaher A, Audran G, Mellet P. An elastase activity reporter for Electronic Paramagnetic Resonance (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI) as a line-shifting nitroxide. Free Radic Biol Med 2018; 126:101-112. [PMID: 30092349 DOI: 10.1016/j.freeradbiomed.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary inflammatory diseases are a major burden worldwide. They have in common an influx of neutrophils. Neutrophils secrete unchecked proteases at inflammation sites consequently leading to a protease/inhibitor imbalance. Among these proteases, neutrophil elastase is responsible for the degradation of the lung structure via elastin fragmentation. Therefore, monitoring the protease/inhibitor status in lungs non-invasively would be an important diagnostic tool. Herein we present the synthesis of a MeO-Suc-(Ala)2-Pro-Val-nitroxide, a line-shifting elastase activity probe suitable for Electron Paramagnetic Resonance spectroscopy (EPR) and Overhauser-enhanced Magnetic Resonance Imaging (OMRI). It is a fast and sensitive neutrophil elastase substrate with Km = 15 ± 2.9 µM, kcat/Km = 930,000 s-1 M-1 and Km = 25 ± 5.4 µM, kcat/Km = 640,000 s-1 M-1 for the R and S isomers, respectively. These properties are suitable to detect accurately concentrations of neutrophil elastase as low as 1 nM. The substrate was assessed with broncho-alveolar lavages samples derived from a mouse model of Pseudomonas pneumonia. Using EPR spectroscopy we observed a clear-cut difference between wild type animals and animals deficient in neutrophil elastase or deprived of neutrophil Elastase, Cathepsin G and Proteinase 3 or non-infected animals. These results provide new preclinical ex vivo and in vivo diagnostic methods. They can lead to clinical methods to promote in time lung protection.
Collapse
Affiliation(s)
- Natacha Jugniot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Indranil Duttagupta
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Angélique Rivot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Colleen Cardiet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Anne Pizzoccaro
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Marion Jean
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Gilles Devouassoux
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France
| | - Elodie Parzy
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France
| | - Eric Thiaudiere
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France.
| | - Sylvain R A Marque
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France; Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia.
| | - Abderrazzak Bentaher
- Equipe "Inflammation et Immunité de l'Epithélium Respiratoire" - EA7426 Faculté de Médecine Lyon Sud, 165, Chemin du Grand Revoyet, 69495 Pierre Bénite, France.
| | - Gérard Audran
- Aix Marseille Univ., CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Philippe Mellet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, Université de Bordeaux, F-33076 Bordeaux, France; INSERM, 33076 Bordeaux Cedex, France.
| |
Collapse
|
41
|
Duttagupta I, Jugniot N, Audran G, Franconi JM, Marque SRA, Massot P, Mellet P, Parzy E, Thiaudière E, Vanthuyne N. Selective On/Off-Nitroxides as Radical Probes to Investigate Non-radical Enzymatic Activity by Electron Paramagnetic Resonance. Chemistry 2018; 24:7615-7619. [PMID: 29722459 DOI: 10.1002/chem.201800866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 12/13/2022]
Abstract
A nitroxide carrying a peptide specific to the binding pocket of the serine proteases chymotrypsin and cathepsin G is prepared. This peptide is attached as an enol ester to the nitroxide. Upon enzymatic hydrolysis of the peptide, the enol ester moiety is transformed into a ketone moiety. This transformation affords a difference of 5 G in phosphorus hyperfine coupling constant between the electronic paramagnetic resonance (EPR) signals of each nitroxide. This property is used to monitor the enzymatic activity of chymotrypsin and cathepsin G by EPR. Michaelis constants were determined and match those reported for conventional optical probes.
Collapse
Affiliation(s)
- Indranil Duttagupta
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| | - Natacha Jugniot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Gérard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Pr. Laurentjeva 9, Novosibirsk, 630090, Russia
| | - Philippe Massot
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Philippe Mellet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France.,INSERM, 33076, Bordeaux Cedex, France
| | - Elodie Parzy
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Eric Thiaudière
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University Bordeaux Segalen, 146 rue Leo Saignat, 33076, Bordeaux Cedex, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ., CNRS, ISM2, UMR 7313, Avenue Escadrille Normandie-Niemen, 13397, Marseille Cedex 20, France
| |
Collapse
|
42
|
Khramtsov VV. In Vivo Molecular Electron Paramagnetic Resonance-Based Spectroscopy and Imaging of Tumor Microenvironment and Redox Using Functional Paramagnetic Probes. Antioxid Redox Signal 2018; 28:1365-1377. [PMID: 29132215 PMCID: PMC5910053 DOI: 10.1089/ars.2017.7329] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE A key role of the tumor microenvironment (TME) in cancer progression, treatment resistance, and as a target for therapeutic intervention is increasingly appreciated. Among important physiological components of the TME are tissue hypoxia, acidosis, high reducing capacity, elevated concentrations of intracellular glutathione (GSH), and interstitial inorganic phosphate (Pi). Noninvasive in vivo pO2, pH, GSH, Pi, and redox assessment provide unique insights into biological processes in the TME, and may serve as a tool for preclinical screening of anticancer drugs and optimizing TME-targeted therapeutic strategies. Recent Advances: A reasonable radiofrequency penetration depth in living tissues and progress in development of functional paramagnetic probes make low-field electron paramagnetic resonance (EPR)-based spectroscopy and imaging the most appropriate approaches for noninvasive assessment of the TME parameters. CRITICAL ISSUES Here we overview the current status of EPR approaches used in combination with functional paramagnetic probes that provide quantitative information on chemical TME and redox (pO2, pH, redox status, Pi, and GSH). In particular, an application of a recently developed dual-function pH and redox nitroxide probe and multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of several TME parameters in preclinical studies. The measurements of several parameters using a single probe allow for their correlation analyses independent of probe distribution and time of measurements. FUTURE DIRECTIONS The recent progress in clinical EPR instrumentation and development of biocompatible paramagnetic probes for in vivo multifunctional TME profiling eventually will make possible translation of these EPR techniques into clinical settings to improve prediction power of early diagnostics for the malignant transition and for future rational design of TME-targeted anticancer therapeutics. Antioxid. Redox Signal. 28, 1365-1377.
Collapse
Affiliation(s)
- Valery V Khramtsov
- 1 In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University , Morgantown, West Virginia.,2 Department of Biochemistry, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
43
|
Kishimoto S, Krishna MC, Khramtsov VV, Utsumi H, Lurie DJ. In Vivo Application of Proton-Electron Double-Resonance Imaging. Antioxid Redox Signal 2018; 28:1345-1364. [PMID: 28990406 PMCID: PMC5910041 DOI: 10.1089/ars.2017.7341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. CRITICAL ISSUES High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. FUTURE DIRECTIONS PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345-1364.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia
| | - Hideo Utsumi
- School of Pharmaceutical Sciences, The University of Shizuoka, Shizuoka, Japan
| | - David J. Lurie
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
44
|
Bobko AA, Eubank TD, Driesschaert B, Khramtsov VV. In Vivo EPR Assessment of pH, pO2, Redox Status, and Concentrations of Phosphate and Glutathione in the Tumor Microenvironment. J Vis Exp 2018. [PMID: 29608148 DOI: 10.3791/56624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This protocol demonstrates the capability of low-field electron paramagnetic resonance (EPR)-based techniques in combination with functional paramagnetic probes to provide quantitative information on the chemical tumor microenvironment (TME), including pO2, pH, redox status, concentrations of interstitial inorganic phosphate (Pi), and intracellular glutathione (GSH). In particular, an application of a recently developed soluble multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of pH, pO2 and Pi in Extracellular space (HOPE probe). The measurements of three parameters using a single probe allow for their correlation analyses independent of probe distribution and time of the measurements.
Collapse
Affiliation(s)
- Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University; Department of Biochemistry, West Virginia University School of Medicine
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University; Department of Biochemistry, West Virginia University School of Medicine
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University; Department of Biochemistry, West Virginia University School of Medicine;
| |
Collapse
|
45
|
Shevelev GY, Gulyak EL, Lomzov AA, Kuzhelev AA, Krumkacheva OA, Kupryushkin MS, Tormyshev VM, Fedin MV, Bagryanskaya EG, Pyshnyi DV. A Versatile Approach to Attachment of Triarylmethyl Labels to DNA for Nanoscale Structural EPR Studies at Physiological Temperatures. J Phys Chem B 2017; 122:137-143. [PMID: 29206458 DOI: 10.1021/acs.jpcb.7b10689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylmethyl (trityl, TAM) radicals are a promising class of spin labels for nanometer-scale distance measurements in biomolecules at physiological temperatures. However, to date, existing approaches to site-directed TAM labeling of DNA have been limited to label attachment at the termini of oligonucleotides, thus hindering a majority of demanded applications. Herein, we report a new versatile strategy for TAM attachment at arbitrary sites of nucleic acids. It utilizes an achiral non-nucleoside phosphoramidite monomer for automated solid-phase synthesis of oligonucleotides, which are then postsynthetically functionalized with TAM. We demonstrate a synthesis of a set of oligonucleotide complexes that are TAM-labeled at internal or terminal sites, as well as the possibility of measuring interspin distances up to ∼5-6 nm at 298 K using double quantum coherence electron paramagnetic resonance (EPR). Implementation of the developed approach strongly broadens the scope of nucleic acids and nucleoprotein complexes available for nanoscale structural EPR studies at room temperatures.
Collapse
Affiliation(s)
- Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Evgeny L Gulyak
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- Novosibirsk State University , Novosibirsk 630090, Russia.,N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- Novosibirsk State University , Novosibirsk 630090, Russia.,International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- Novosibirsk State University , Novosibirsk 630090, Russia.,N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Matvey V Fedin
- Novosibirsk State University , Novosibirsk 630090, Russia.,International Tomography Center SB RAS , Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- Novosibirsk State University , Novosibirsk 630090, Russia.,International Tomography Center SB RAS , Novosibirsk 630090, Russia.,N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
46
|
Khramtsov VV, Bobko AA, Tseytlin M, Driesschaert B. Exchange Phenomena in the Electron Paramagnetic Resonance Spectra of the Nitroxyl and Trityl Radicals: Multifunctional Spectroscopy and Imaging of Local Chemical Microenvironment. Anal Chem 2017; 89:4758-4771. [PMID: 28363027 PMCID: PMC5513151 DOI: 10.1021/acs.analchem.6b03796] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.
Collapse
Affiliation(s)
- Valery V. Khramtsov
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Andrey A. Bobko
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Mark Tseytlin
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| | - Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia 26506, United States
| |
Collapse
|
47
|
Kuzhelev AA, Tormyshev VM, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Strizhakov RK, Krumkacheva OA, Fedin MV, Bagryanskaya EG. Triarylmethyl Radicals: EPR Study of 13C Hyperfine Coupling Constants. Z PHYS CHEM 2017; 231:777-794. [PMID: 28539703 PMCID: PMC5439964 DOI: 10.1515/zpch-2016-0811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triarylmethyl (TAM) radicals are widely used in Electron Paramagnetic Resonance (EPR) spectroscopy as spin labels and in EPR imaging as spin probes for in vivo oxymetry. One of the key advantages of TAMs is extremely narrow EPR line, especially in case of deuterated analogues (~5 μT). Another advantage is their slow spin relaxation even at physiological temperatures allowing, in particular, application of pulsed dipolar EPR methods for distance measurements in biomolecules. In this paper a large series of TAM radicals and their deuterated analogues is synthesized, and corresponding spectroscopic parameters including 13C hyperfine constants are obtained for the first time. The negligible dependence of 13C hyperfine constants on solvent, as well as on structure and number of substituents at para-C atoms of aromatic rings, has been found. In addition, we have demonstrated that 13C signals at natural abundance can be employed for successful room-temperature distance measurements using Pulsed Electron Double Resonance (PELDOR or DEER).
Collapse
Affiliation(s)
- Andrey A. Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M. Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga Yu. Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry V. Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana I. Troitskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rodion K. Strizhakov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
48
|
Interstitial Inorganic Phosphate as a Tumor Microenvironment Marker for Tumor Progression. Sci Rep 2017; 7:41233. [PMID: 28117423 PMCID: PMC5259743 DOI: 10.1038/srep41233] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 11/26/2022] Open
Abstract
Noninvasive in vivo assessment of chemical tumor microenvironment (TME) parameters such as oxygen (pO2), extracellular acidosis (pHe), and concentration of interstitial inorganic phosphate (Pi) may provide unique insights into biological processes in solid tumors. In this work, we employ a recently developed multifunctional trityl paramagnetic probe and electron paramagnetic resonance (EPR) technique for in vivo concurrent assessment of these TME parameters in various mouse models of cancer. While the data support the existence of hypoxic and acidic regions in TME, the most dramatic differences, about 2-fold higher concentrations in tumors vs. normal tissues, were observed for interstitial Pi - the only parameter that also allowed for discrimination between non-metastatic and highly metastatic tumors. Correlation analysis between [Pi], pO2, pHe and tumor volumes reveal an association of high [Pi] with changes in tumor metabolism and supports different mechanisms of protons and Pi accumulation in TME. Our data identifies interstitial inorganic phosphate as a new TME marker for tumor progression. Pi association with tumor metabolism, buffer-mediated proton transport, and a requirement of high phosphorus content for the rapid growth in the “growth rate hypothesis” may underline its potential role in tumorigenesis and tumor progression.
Collapse
|
49
|
Liu W, Nie J, Tan X, Liu H, Yu N, Han G, Zhu Y, Villamena FA, Song Y, Zweier JL, Liu Y. Synthesis and Characterization of PEGylated Trityl Radicals: Effect of PEGylation on Physicochemical Properties. J Org Chem 2016; 82:588-596. [DOI: 10.1021/acs.joc.6b02590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wenbo Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jiangping Nie
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Xiaoli Tan
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Huiqiang Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Nannan Yu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Guifang Han
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Yutian Zhu
- State
Key
Laboratory of Polymer Physics and Chemistry, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Frederick A. Villamena
- Department
of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuguang Song
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Jay L. Zweier
- Center
for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung
Research Institute, the Division of Cardiovascular Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yangping Liu
- Tianjin
Key Laboratory on Technologies Enabling Development of Clinical Therapeutics
and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
- Center
for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung
Research Institute, the Division of Cardiovascular Medicine, Department
of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Shi Y, Quine RW, Rinard GA, Buchanan L, Eaton SS, Eaton GR, Epel B, Seagle SW, Halpern HJ. Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency. ACTA ACUST UNITED AC 2016; 231:923-937. [PMID: 28392627 DOI: 10.1515/zpch-2016-0813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vivo oximetry by pulsed electron paramagnetic resonance is based on measurements of changes in electron spin relaxation rates of probe molecules, such as the triarylmethyl radicals. A series of experiments was performed at frequencies between 250 MHz and 1.5 GHz to assist in the selection of an optimum frequency for oximetry. Electron spin relaxation rates for the triarylmethyl radical OX063 as a function of radical concentration, salt concentration, and resonance frequency were measured by electron spin echo 2-pulse decay and 3-pulse inversion recovery in the frequency range of 250 MHz-1.5 GHz. At constant OX063 concentration, 1/T1 decreases with increasing frequency because the tumbling dependent processes that dominate relaxation at 250 MHz are less effective at higher frequency. 1/T2 also decreases with increasing frequency because 1/T1 is a significant contribution to 1/T2 for trityl radicals in fluid solution. 1/T2-1/T1, the incomplete motional averaging contribution to 1/T2, increases with increasing frequency. At constant frequency, relaxation rates increase with increasing radical concentration due to contributions from collisions that are more effective for 1/T2 than 1/T1. The collisional contribution to relaxation increases as the concentration of counter-ions in solution increases, which is attributed to interactions of cations with the negatively charged radicals that decrease repulsion between trityl radicals. The Signal-to-Noise ratio (S/N) of field-swept echo-detected spectra of OX063 were measured in the frequency range of 400 MHz-1 GHz. S/N values, normalized by √Q, increase as frequency increases. Adding salt to the radical solution decreased S/N because salt lowers the resonator Q. Changing the temperature from 19 to 37 °C caused little change in S/N at 700 MHz. Both slower relaxation rates and higher S/N at higher frequencies are advantageous for oximetry. The potential disadvantage of higher frequencies is the decreased depth of penetration into tissue.
Collapse
Affiliation(s)
- Yilin Shi
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - Richard W Quine
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - George A Rinard
- School of Engineering and Computer Science and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - Laura Buchanan
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - Gareth R Eaton
- Gareth R. Eaton, Department of Chemistry and Biochemistry and Center for EPR Imaging In Vivo Physiology, University of Denver, Denver, CO 80210, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Simone Wanless Seagle
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Howard J Halpern
- Department of Radiation and Cellular Oncology and Center for EPR Imaging In Vivo Physiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|