1
|
Yu L, Ogawa H, Li S, Lam Cheung T, Liu W, Yan D, Matsuda Y, Kobayashi Y, Guo Z, Ikeda K, Hamlin TA, Yamazaki K, Qian PY, Nakamura H. Concise Synthesis of Cyctetryptomycin A and B Enabled by Zr-Catalyzed Dimerization. Angew Chem Int Ed Engl 2024:e202414295. [PMID: 39216012 DOI: 10.1002/anie.202414295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
A concise synthetic strategy utilizing a Zr catalyst for the construction of cyctetryptomycin A and B is reported. Cyctetryptomycin A and B are recently isolated, complex tetrameric natural products for which total synthesis has not been previously reported. This study presents a practical approach for the construction of two consecutive quaternary carbon centers with a Zr catalyst. Furthermore, the first total synthesis of cyctetryptomycin A and B was achieved by this Zr-catalyzed radical coupling. The radical dimerization reaction mediated by the Zr catalyst required 1,2-bis(diphenylphosphino)ethane (dppe) as an indispensable additive. Through both experimental and theoretical investigations into the mechanism of this Zr-catalyzed reaction, the specific role of dppe was elucidated. In addition, the synthetic approach was extended to enable the practical synthesis of other dimeric natural products, including tetratryptomycin A, dibrevianamide F, and ditryptophenaline. Finally, the synthetic mechanism of cyctetryptomycin A and B, through the oxidative macrocyclization of tetratryptomycin A by CttpC, was newly elucidated by both experimental and docking simulations.
Collapse
Affiliation(s)
- Longhui Yu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hiroshige Ogawa
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shangzhao Li
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tsoh Lam Cheung
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wenchao Liu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Dexiu Yan
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yusuke Kobayashi
- Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Zhihong Guo
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kotaro Ikeda
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Trevor A Hamlin
- Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University Tsushimanaka, Okayama, 700-8530, Japan
| | - Pei-Yuan Qian
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Hugh Nakamura
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Shikari A, Parida C, Chandra Pan S. Catalytic Asymmetric Dearomatization of 2,3-Disubstituted Indoles by a [4 + 2] Cycloaddition Reaction with In Situ Generated Vinylidene ortho-Quinone Methides: Access to Polycyclic Fused Indolines. Org Lett 2024; 26:5057-5062. [PMID: 38489515 DOI: 10.1021/acs.orglett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A protocol of enantioselective dearomatization of 2,3-disubstituted indoles by an organocatalytic intermolecular (4 + 2) cycloaddition reaction with in situ generated vinylidene ortho-quinone methide has been documented. A wide range of polycyclic 2,3-fused indolines containing vicinal quaternary carbon stereocenters was readily prepared in high yields and with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Walker KL, Loach RP, Movassaghi M. Total synthesis of complex 2,5-diketopiperazine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:159-206. [PMID: 37716796 PMCID: PMC10955524 DOI: 10.1016/bs.alkal.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.
Collapse
Affiliation(s)
- Katherine L Walker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
4
|
Hatch CE, Chain WJ. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023; 10:e202300140. [PMID: 38106361 PMCID: PMC10723087 DOI: 10.1002/celc.202300140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical techniques have helped to enable the total synthesis of natural products since the pioneering work of Kolbe in the mid 1800's. The electrochemical toolset grows every day and these new possibilities change the way chemists look at and think about natural products. This review provides a perspective on total syntheses wherein electrochemical techniques enabled the carbon─carbon bond formations in the skeletal assembly of important natural products, discussion of mechanistic details, and representative examples of the bond formations enabled over the last several decades. These bond formations are often distinctly different from those possible with conventional chemistries and allow assemblies complementary to other techniques.
Collapse
Affiliation(s)
- Chad E Hatch
- Chemical Biology, Memorial Sloan Kettering Cancer Center, 417 E. 68 St., New York, NY, 10065 (United States)
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716 (United States)
| |
Collapse
|
5
|
Abstract
Covering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp3-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years. This review highlights the recent achievements in the field of dearomative methodology, with a focus on natural product total synthesis and retrosynthetic analysis. Disconnection guidelines and a three-phase dearomative logic are described, and a spotlight is given to nature's use of dearomatization in the biosynthesis of various classes of natural products. Synthetic studies from 2011 to 2021 are reviewed, and 425 references are cited.
Collapse
Affiliation(s)
| | - Yaroslav D Boyko
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David Sarlah
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
7
|
Total Synthesis of the Four Stereoisomers of Cyclo(l-Trp-l-Arg) Raises Uncertainty of the Structures of the Natural Products and Invalidates Their Promising Antimicrobial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185913. [PMID: 36144649 PMCID: PMC9501421 DOI: 10.3390/molecules27185913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/05/2023]
Abstract
New therapeutic options to combat the growing incidence of antimicrobial resistance are urgently needed. A 2015 publication reported the isolation and biological evaluation of two diketopiperazine natural products, cyclo(l-Trp-l-Arg) (CDP 2) and cyclo(d-Trp-d-Arg) (CDP 3), from an Achromobacter sp. bacterium, finding that the latter metabolite in particular exhibited strong antibacterial activity towards a range of wound-related microorganisms and could synergize the action of ampicillin. Intrigued by these biological activities and noting inconsistencies in the structural characterization of the natural products, we synthesized the four diastereomers of cyclo(Trp-Arg) and evaluated them for antimicrobial and antibiotic enhancement properties. The detailed comparison of spectroscopic data raises uncertainty regarding the structure of CDP 2 and disproves the structure of CDP 3. In our hands, none of the four stereoisomers of cyclo(Trp-Arg) exhibited detectable intrinsic antimicrobial properties towards a range of Gram-positive and Gram-negative bacteria or fungi nor could they potentiate the action of antibiotics. These discrepancies in biological properties, compared with the activities reported in the literature, reveal that these specific cyclic dipeptides do not represent viable templates for the development of new treatments for microbial infections.
Collapse
|
8
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
9
|
Xu Q, Zhang H, Ge FB, Wang XM, Zhang P, Lu CJ, Liu RR. Cu(I)-Catalyzed Asymmetric Arylation of Pyrroles with Diaryliodonium Salts toward the Synthesis of N-N Atropisomers. Org Lett 2022; 24:3138-3143. [PMID: 35452582 DOI: 10.1021/acs.orglett.2c00812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein that copper(I) catalysis using a bis(phosphine) dioxide ligand can catalyze the desymmetric C-H arylation of prochiral bipyrroles. More than 50 nitrogen-nitrogen atropisomers were achieved in good to excellent yields with excellent enantioselectivities (≤97% yield, ≤98% ee). The reaction proceeds under mild conditions with good functional group compatibility on arenes and diaryliodonium salts. Moreover, this principle enables iterative arylation of the bipyrroles to enantioselectively arylate different positions during the catalysis of copper.
Collapse
Affiliation(s)
- Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Fang-Bei Ge
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiao-Mei Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
10
|
Wang Y, Zheng Q, Li L, Pan L, Zhu H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar Drugs 2022; 20:md20020085. [PMID: 35200615 PMCID: PMC8924889 DOI: 10.3390/md20020085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.
Collapse
|
11
|
Song H, Song J, Yan L, He W, Wang P, Xu Y, Wei H, Xie W. A concise synthesis of (-)-dihydrospirotryprostatin B via tandem Michael addition. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ma J, Luo J, Jiang K, Zhang G, Liu S, Yin B. Access to Polycyclic Thienoindolines via Formal [2+2+1] Cyclization of Alkynyl Indoles with S 8 and K 2S. Org Lett 2021; 23:8033-8038. [PMID: 34617760 DOI: 10.1021/acs.orglett.1c03035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The syntheses of polycyclic thienoindolines bearing a dihydrothiophene or tetrahydrothiophene subunit have not been reported, despite the fact that such compounds may have interesting medicinal properties. Herein, we report a protocol for accessing polycyclic dihydrothiophenes by means of formal [2+2+1] intramolecular dearomatizing cyclization of alkynyl indoles with K2S and S8 as the sources of sulfide. In addition, tetrahydrothienoindolines were stereoselectively synthesized via a one-pot, two-step protocol involving AgNO3-catalyzed alkenyl dearomatization followed by two nucleophilic addition reactions involving K2S.
Collapse
Affiliation(s)
- Jinhui Ma
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiajun Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Shubin Liu
- Research Computing Center, The University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Trammel GL, Kuniyil R, Crook PF, Liu P, Brown MK. Nickel-Catalyzed Dearomative Arylboration of Indoles: Regioselective Synthesis of C2- and C3-Borylated Indolines. J Am Chem Soc 2021; 143:16502-16511. [PMID: 34582691 PMCID: PMC8781163 DOI: 10.1021/jacs.1c05902] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Indole dearomatization is an important strategy to access indolines: a motif present in a variety of natural products and biologically active molecules. Herein, a method for transition-metal catalyzed regioselective dearomative arylboration of indoles to generate diverse indolines is presented. The method accomplishes intermolecular dearomatization of simple indoles through a migratory insertion pathway on substrates that lack activating or directing groups on the C2- or C3-positions. Synthetically useful C2- and C3-borylated indolines can be accessed through a simple change in N-protecting group in high regio- and diastereoselectivities (up to >40:1 rr and >40:1 dr) from readily available starting materials. Additionally, the origin of regioselectivity was explored experimentally and computationally to uncover the remarkable interplay between carbonyl orientation of the N-protecting group on indole, electronics of the C2-C3 π-bond, and sterics. The method enabled the first enantioselective synthesis of (-)-azamedicarpin.
Collapse
Affiliation(s)
- Grace L Trammel
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Rositha Kuniyil
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260, United States
| | - Phillip F Crook
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, Pennsylvania 15260, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
15
|
Liu F, Wang M, Qu J, Lu H, Gao H. Synthesis of non-C 2 symmetrical NOBIN-type biaryls through a cascade N-arylation and [3,3]-sigmatropic rearrangement from O-arylhydroxylamines and diaryliodonium salts. Org Biomol Chem 2021; 19:7246-7251. [PMID: 34387642 DOI: 10.1039/d1ob00636c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed herein a regioselective construction of non-C2 symmetrical NOBIN-type biaryls through a cascade N-arylation and [3,3]-sigmatropic rearrangement from O-arylhydroxylamines and diaryliodonium salts under mild conditions. The employment of copper salt could inhibit the further O-arylation of the newly formed biaryl products, otherwise, O-arylated NOBIN-type products were furnished in moderate to good isolated yields. The products of this protocol can be further converted into highly valuable functional molecules and heterocycles.
Collapse
Affiliation(s)
- Fengting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Ji'nan 250100, China.
| | | | | | | | | |
Collapse
|
16
|
Catalytic C2 prenylation of unprotected indoles: Late-stage diversification of peptides and two-step total synthesis of tryprostatin B. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63780-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Su L, Ma G, Song Y, Gong H. Nickel-Catalyzed Reductive Vinylation of Chloro-hexahydropyrroloindoline Derivatives with Vinyl Triflates. Org Lett 2021; 23:2493-2497. [PMID: 33733789 DOI: 10.1021/acs.orglett.1c00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work emphasizes facile construction of C-3a vinyl substituted hexahydropyrrolidinoindolines based upon Ni-catalyzed reductive coupling of chloro-hexahydropyrroloindoline derivatives with a wide range of alkyl-decorated vinyl triflates. The remarkable compatibility of sterically hindered branched vinyl groups is highlighted.
Collapse
Affiliation(s)
- Lei Su
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Guobin Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yanhong Song
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
18
|
Tang S, Vincent G. Natural Products Originated from the Oxidative Coupling of Tyrosine and Tryptophan: Biosynthesis and Bioinspired Synthesis. Chemistry 2021; 27:2612-2622. [PMID: 32820845 DOI: 10.1002/chem.202003459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Indexed: 12/18/2022]
Abstract
The oxidative coupling of tyrosine and tryptophan units is a pivotal step in the total synthesis of some peptide-derived marine and terrestrial natural products, such as the diazonamides, azonazine and tryptorubin A. This Minireview details the biosynthesis and bioinspired synthesis of natural products with such structures. A special focus is put on the challenges of the synthesis of these natural products and the innovative solutions adopted by synthetic chemists.
Collapse
Affiliation(s)
- Shanyu Tang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
19
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
20
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
21
|
Banerjee A, Panda G. Total synthesis of selected bioactive alkaloids, their structure–function relationships and molecular target interactions: A comparative synthetic analysis of tryptophan originated chiral pool approaches vs other synthons. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Blom AEM, Su JY, Repka LM, Reisman SE, Dougherty DA. Synthesis and Biological Evaluation of Pyrroloindolines as Positive Allosteric Modulators of the α1β2γ2 GABA A Receptor. ACS Med Chem Lett 2020; 11:2204-2211. [PMID: 33214830 DOI: 10.1021/acsmedchemlett.0c00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are key mediators of central inhibitory neurotransmission and have been implicated in several disorders of the central nervous system. Some positive allosteric modulators (PAMs) of this receptor provide great therapeutic benefits to patients. However, adverse effects remain a challenge. Selective targeting of GABAA receptors could mitigate this problem. Here, we describe the synthesis and functional evaluation of a novel series of pyrroloindolines that display significant modulation of the GABAA receptor, acting as PAMs. We found that halogen incorporation at the C5 position greatly increased the PAM potency relative to the parent ligand, while substitutions at other positions generally decreased potency. Mutagenesis studies suggest that the binding site lies at the top of the transmembrane domain.
Collapse
Affiliation(s)
- Annet E M Blom
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Justin Y Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lindsay M Repka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E Reisman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Shende VV, Khatri Y, Newmister SA, Sanders JN, Lindovska P, Yu F, Doyon TJ, Kim J, Houk KN, Movassaghi M, Sherman DH. Structure and Function of NzeB, a Versatile C-C and C-N Bond-Forming Diketopiperazine Dimerase. J Am Chem Soc 2020; 142:17413-17424. [PMID: 32786740 DOI: 10.1021/jacs.0c06312] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dimeric diketopiperazine (DKPs) alkaloids are a diverse family of natural products (NPs) whose unique structural architectures and biological activities have inspired the development of new synthetic methodologies to access these molecules. However, catalyst-controlled methods that enable the selective formation of constitutional and stereoisomeric dimers from a single monomer are lacking. To resolve this long-standing synthetic challenge, we sought to characterize the biosynthetic enzymes that assemble these NPs for application in biocatalytic syntheses. Genome mining enabled identification of the cytochrome P450, NzeB (Streptomyces sp. NRRL F-5053), which catalyzes both intermolecular carbon-carbon (C-C) and carbon-nitrogen (C-N) bond formation. To identify the molecular basis for the flexible site-selectivity, stereoselectivity, and chemoselectivity of NzeB, we obtained high-resolution crystal structures (1.5 Å) of the protein in complex with native and non-native substrates. This, to our knowledge, represents the first crystal structure of an oxidase catalyzing direct, intermolecular C-H amination. Site-directed mutagenesis was utilized to assess the role individual active-site residues play in guiding selective DKP dimerization. Finally, computational approaches were employed to evaluate plausible mechanisms regarding NzeB function and its ability to catalyze both C-C and C-N bond formation. These results provide a structural and computational rationale for the catalytic versatility of NzeB, as well as new insights into variables that control selectivity of CYP450 diketopiperazine dimerases.
Collapse
Affiliation(s)
| | | | | | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Petra Lindovska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | - Justin Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
24
|
Yuan H, Du Y, Liu F, Guo L, Sun Q, Feng L, Gao H. Tandem approach to NOBIN analogues from arylhydroxylamines and diaryliodonium salts via [3,3]-sigmatropic rearrangement. Chem Commun (Camb) 2020; 56:8226-8229. [PMID: 32555844 DOI: 10.1039/d0cc02919j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present a transition-metal free direct O-arylation of arylhydroxylamines employing diaryliodonium salts as arylation reagents to form transient N,O-diarylhydroxylamines that could subsequently undergo [3,3]-sigmatropic rearrangement and re-aromatization to afford structurally diverse NOBIN analogs in good to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Hairui Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Ji'nan 250100, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Pound SM, Underwood SJ, Douglas CJ. Studies towards the total synthesis of drimentine C. Preparation of the AB and CDEF ring fragments. European J Org Chem 2020; 2020:2448-2453. [PMID: 33071626 DOI: 10.1002/ejoc.202000158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The drimentine family is a class of hybrid isoprenoids derived from actinomycete bacteria. Members of this family display weak antitumor and antibacterial activity. Herein we report our efforts toward the total synthesis of drimentine C using three distinct approaches incorporating palladium-catalyzed cyanoamidation, reductive cross-coupling, and photoredox-catalyzed α-alkylation of an aldehyde as key steps. Our synthetic efforts use a convergent synthesis to assemble the terpenoid and alkaloid portions of drimentine C from readily available l-tryptophan, l-proline, and (+)-sclareolide.
Collapse
Affiliation(s)
- Sarah M Pound
- Department of Chemistry, University of Minnesota - Twin Cities, Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455
| | - Steven J Underwood
- Department of Chemistry, University of Minnesota - Twin Cities, Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455
| | - Christopher J Douglas
- Department of Chemistry, University of Minnesota - Twin Cities, Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455
| |
Collapse
|
26
|
Li D, Liang C, Jiang Z, Zhang J, Zhuo WT, Zou FY, Wang WP, Gao GL, Song J. Visible-Light-Promoted C2 Selective Arylation of Quinoline and Pyridine N-Oxides with Diaryliodonium Tetrafluoroborate. J Org Chem 2020; 85:2733-2742. [PMID: 31906619 DOI: 10.1021/acs.joc.9b02933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A protocol of visible-light-promoted C2 selective arylation of quinoline and pyridine N-oxides, with diaryliodonium tetrafluoroborate as an arylation reagent, using eosin Y as a photocatalyst for the construction of N-heterobiaryls was presented. This methodology provided an efficient way for the synthesis of 2-aryl-substituted quinoline and pyridine N-oxides. This strategy has the following advantages: specific regioselectivity, simple operation, good functional group tolerance, and high to moderate yields under mild conditions.
Collapse
Affiliation(s)
- Dazhi Li
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Ce Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Zaixing Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Junzheng Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Wang-Tao Zhuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Fan-Yue Zou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Wan-Peng Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Guo-Lin Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| | - Jinzhu Song
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , China
| |
Collapse
|
27
|
Li Y, Guo J, Lu X, Zhong F. One-step assembly of alkoxypyrroloindolines via iodine-catalyzed alkoxycyclization of indole derivatives. Org Biomol Chem 2019; 18:32-35. [PMID: 31761916 DOI: 10.1039/c9ob02287b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report an iodine-catalyzed alkoxycyclization of tryptamine derivatives under mild reaction conditions. This method distinguished itself by providing a catalytic, one-step assembly of diversely functionalized C3a-alkoxypyrroloindolines as well as dihydrofuran and lactone fused indolines. Mechanistic studies suggest that an ionic pathway is operative and this probably accounts for the diastereospecificity of all isolated cycloadducts.
Collapse
Affiliation(s)
- Yan Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu road, Wuhan 430074, China.
| | | | | | | |
Collapse
|
28
|
Zhou J, Zhu GD, Wang L, Tan FX, Jiang W, Ma ZG, Kang JC, Hou SH, Zhang SY. Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Org Lett 2019; 21:8662-8666. [DOI: 10.1021/acs.orglett.9b03276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Guo-Dong Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fu-Xin Tan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wei Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhi-Gang Ma
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
29
|
Yuan H, Guo L, Liu F, Miao Z, Feng L, Gao H. Copper-Catalyzed Tandem O-Vinylation of Arylhydroxylamines/[3,3]-Rearrangement/Cyclization: Synthesis of Highly Substituted Indoles and Benzoindoles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00470] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hairui Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Lirong Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Fengting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Zechen Miao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| |
Collapse
|
30
|
Zhu M, Zheng C, Zhang X, You SL. Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives. J Am Chem Soc 2019; 141:2636-2644. [PMID: 30653315 DOI: 10.1021/jacs.8b12965] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An intramolecular dearomatization of indole derivatives based on visible-light-promoted [2+2] cycloaddition was achieved via energy transfer mechanism. The highly strained cyclobutane-fused angular tetracyclic spiroindolines, which were typically unattainable under thermal conditions, could be directly accessed in high yields (up to 99%) with excellent diastereoselectivity (>20:1 dr) under mild conditions. The method was also compatible with diverse functional groups and amenable to flexible transformations. In addition, DFT calculations provided guidance on the rational design of substrates and deep understanding of the reaction pathways. This process constituted a rare example of indole functionalization by exploiting visible-light-induced reactivity at the excited states.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,School of Physical Science and Technology , ShanghaiTech University , 100 Haike Road , Shanghai 201210 , China
| |
Collapse
|
31
|
Zheng C, You SL. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat Prod Rep 2019; 36:1589-1605. [DOI: 10.1039/c8np00098k] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent enantioselective total syntheses of natural products enabled by catalytic asymmetric dearomatization reactions of indole derivatives are presented.
Collapse
Affiliation(s)
- Chao Zheng
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
32
|
Luo L, Zhai XY, Wang YW, Peng Y, Gong H. Divergent Total Syntheses of C3 a−C7′ Linked Diketopiperazine Alkaloids (+)-Asperazine and (+)-Pestalazine A Enabled by a Ni-Catalyzed Reductive Coupling of Tertiary Alkyl Chloride. Chemistry 2018; 25:989-992. [DOI: 10.1002/chem.201805682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Long Luo
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 P. R. China
| | - Xiao-Yong Zhai
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 P. R. China
| | - Ya-Wen Wang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 P. R. China
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Yu Peng
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou Gansu 730000 P. R. China
- School of Life Science and Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry; Shanghai University; 99 Shang-Da Road Shanghai 200444 P. R. China
| |
Collapse
|
33
|
Kong L, Wang M, Wang Y, Song B, Yang Y, Yao Q, Li Y. Merging base-promoted C-C bond cleavage and iron-catalyzed skeletal rearrangement involving C-C/C-H bond activation: synthesis of highly functionalized carbazoles. Chem Commun (Camb) 2018; 54:11009-11012. [PMID: 30215063 DOI: 10.1039/c8cc06074f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient and atom-economical methodology for the synthesis of multi-substituted carbazoles starting from α-aryl ketones and ynones under mild reaction conditions has been developed. This process goes through Cs2CO3 promoted C-C σ-bond activation of α-aryl ketones followed by highly selective C-H bond activations and C-C bond fragmentations in a one-pot operation.
Collapse
Affiliation(s)
- Lingkai Kong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Trost BM, Bai WJ, Hohn C, Bai Y, Cregg JJ. Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-Substituted 1H-Indoles and Tryptophan Derivatives with Vinylcyclopropanes. J Am Chem Soc 2018; 140:6710-6717. [DOI: 10.1021/jacs.8b03656] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Wen-Ju Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Christoph Hohn
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Yu Bai
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James J. Cregg
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
36
|
Gentry EC, Rono LJ, Hale ME, Matsuura R, Knowles RR. Enantioselective Synthesis of Pyrroloindolines via Noncovalent Stabilization of Indole Radical Cations and Applications to the Synthesis of Alkaloid Natural Products. J Am Chem Soc 2018; 140:3394-3402. [PMID: 29432006 PMCID: PMC5896747 DOI: 10.1021/jacs.7b13616] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While interest in the synthetic chemistry of radical cations continues to grow, controlling enantioselectivity in the reactions of these intermediates remains a challenge. Based on recent insights into the oxidation of tryptophan in enzymatic systems, we report a photocatalytic method for the generation of indole radical cations as hydrogen-bonded adducts with chiral phosphate anions. These noncovalent open-shell complexes can be intercepted by the stable nitroxyl radical TEMPO· to form alkoxyamine-substituted pyrroloindolines with high levels of enantioselectivity. Further elaboration of these optically enriched adducts can be achieved via a catalytic single-electron oxidation/mesolytic cleavage sequence to furnish transient carbocation intermediates that may be intercepted by a wide range of nucleophiles. Taken together, this two-step sequence provides a simple catalytic method to access a wide range of substituted pyrroloindolines in enantioenriched form via a standard experimental protocol from a common synthetic intermediate. The design, development, mechanistic study, and scope of this process are presented, as are applications of this method to the synthesis of several dimeric pyrroloindoline natural products.
Collapse
Affiliation(s)
- Emily C. Gentry
- Department of Chemistry, Princeton University, Princeton NJ 08544, USA
| | - Lydia J. Rono
- Department of Chemistry, Princeton University, Princeton NJ 08544, USA
| | - Martina E. Hale
- Department of Chemistry, Princeton University, Princeton NJ 08544, USA
| | - Rei Matsuura
- Department of Chemistry, Princeton University, Princeton NJ 08544, USA
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
37
|
Wu H, Wang Q, Zhu J. Copper-Catalyzed Enantioselective Arylative Desymmetrization of Prochiral Cyclopentenes with Diaryliodonium Salts. Angew Chem Int Ed Engl 2018; 57:2721-2725. [PMID: 29323768 DOI: 10.1002/anie.201713329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 01/08/2023]
Abstract
A copper-catalyzed enantioselective arylative desymmetrization of prochiral cyclopentenes with diaryliodonium salts was developed. In the presence of a catalytic amount of a chiral copper-bisoxazoline complex, which was generated in situ, the reaction of 4-substituted or 4,4-disubstituted cyclopent-1-enes with diaryliodonium hexafluoroarsenates afforded the chiral arylated products in good yields with excellent enantioselectivity. A cyclohexyl-containing Box ligand was essential for the high enantioselectivity. Transformation of the enantiomerically enriched adducts into other chiral building blocks is also documented.
Collapse
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|
38
|
Wu H, Wang Q, Zhu J. Copper-Catalyzed Enantioselective Arylative Desymmetrization of Prochiral Cyclopentenes with Diaryliodonium Salts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015; Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015; Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015; Lausanne Switzerland
| |
Collapse
|
39
|
Ma Z, Chen C. Natural products as inspiration for the development of new synthetic methods. J CHIN CHEM SOC-TAIP 2018; 65:43-59. [PMID: 29430058 PMCID: PMC5800783 DOI: 10.1002/jccs.201700134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural products have played an important role in shaping modern synthetic organic chemistry. In particular, their complex molecular skeletons have stimulated the development of many new synthetic methods. We highlight in this article some recent examples of synthetic design inspired by the biosynthesis of natural products.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| |
Collapse
|
40
|
Zhou Y, Li D, Tang S, Sun H, Huang J, Zhu Q. PhI(OAc)2-mediated dearomative C–N coupling: facile construction of the spiro[indoline-3,2′-pyrrolidine] skeleton. Org Biomol Chem 2018; 16:2039-2042. [DOI: 10.1039/c8ob00343b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile construction of the spiro[indole-3,2′-pyrrolidine] skeleton, through diacetoxyiodobenzene (PIDA) mediated C–N bond-forming dearomatization of C3 sulfonamide linked indole derivatives, has been developed.
Collapse
Affiliation(s)
- Yali Zhou
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Dengke Li
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Shi Tang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Hongwei Sun
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Jinbo Huang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Guangzhou 510530
| |
Collapse
|
41
|
Lindovska P, Movassaghi M. Concise Synthesis of (-)-Hodgkinsine, (-)-Calycosidine, (-)-Hodgkinsine B, (-)-Quadrigemine C, and (-)-Psycholeine via Convergent and Directed Modular Assembly of Cyclotryptamines. J Am Chem Soc 2017; 139:17590-17596. [PMID: 29058431 PMCID: PMC5733798 DOI: 10.1021/jacs.7b09929] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.
Collapse
Affiliation(s)
- Petra Lindovska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Horibe T, Ohmura S, Ishihara K. Selenium-Iodine Cooperative Catalyst for Chlorocyclization of Tryptamine Derivatives. Org Lett 2017; 19:5525-5528. [PMID: 28956932 DOI: 10.1021/acs.orglett.7b02613] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorocyclization of tryptamine derivatives has been developed with the use of a diphenyl diselenide-iodine cooperative catalyst. Various tryptamine derivatives can be smoothly converted to the corresponding C3a-chlorohexahydropyrrolo[2,3-b]indoles. Additionally, we demonstrate the formal total syntheses of (-)-psychotriasine and (-)-acetylardeemin by introducing nucleophiles to the C3a position of the products.
Collapse
Affiliation(s)
- Takahiro Horibe
- Graduate School of Engineering, Nagoya University , B2-3(611), Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Shuhei Ohmura
- Graduate School of Engineering, Nagoya University , B2-3(611), Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University , B2-3(611), Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
43
|
Modha SG, Popescu MV, Greaney MF. Synthesis of Triarylamines via Sequential C–N Bond Formation. J Org Chem 2017; 82:11933-11938. [DOI: 10.1021/acs.joc.7b01778] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sachin G. Modha
- School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, U.K
| | - Mihai V. Popescu
- School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, U.K
| | - Michael F. Greaney
- School of Chemistry, University of Manchester, Oxford Rd, Manchester M13 9PL, U.K
| |
Collapse
|
44
|
Wu H, Wang Q, Zhu J. Copper-Catalyzed Enantioselective Domino Arylation/Semipinacol Rearrangement of Allylic Alcohols with Diaryliodonium Salts. Chemistry 2017; 23:13037-13041. [DOI: 10.1002/chem.201703563] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Hua Wu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304; 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304; 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products; Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304; 1015 Lausanne Switzerland
| |
Collapse
|
45
|
Lukamto DH, Gaunt MJ. Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b05340] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel H. Lukamto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Laugeois M, Ling J, Férard C, Michelet V, Ratovelomanana-Vidal V, Vitale MR. Palladium(0)-Catalyzed Dearomative [3 + 2] Cycloaddition of 3-Nitroindoles with Vinylcyclopropanes: An Entry to Stereodefined 2,3-Fused Cyclopentannulated Indoline Derivatives. Org Lett 2017; 19:2266-2269. [DOI: 10.1021/acs.orglett.7b00784] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Laugeois
- PSL Research University, Chimie ParisTech,
CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| | - Johanne Ling
- PSL Research University, Chimie ParisTech,
CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| | - Charlène Férard
- PSL Research University, Chimie ParisTech,
CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| | - Véronique Michelet
- PSL Research University, Chimie ParisTech,
CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| | | | - Maxime R. Vitale
- PSL Research University, Chimie ParisTech,
CNRS, Institut de Recherche de Chimie Paris, Paris 75005, France
| |
Collapse
|
47
|
Yang Y, Gao P, Zhao Y, Shi Z. Regiocontrolled Direct C−H Arylation of Indoles at the C4 and C5 Positions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Youqing Yang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Pan Gao
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|
48
|
Yang Y, Gao P, Zhao Y, Shi Z. Regiocontrolled Direct C−H Arylation of Indoles at the C4 and C5 Positions. Angew Chem Int Ed Engl 2017; 56:3966-3971. [DOI: 10.1002/anie.201612599] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Youqing Yang
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Pan Gao
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 China
| |
Collapse
|
49
|
Abstract
This review defines symmetric molecules from a synthetic perspective and shows various strategies that take advantage of molecular symmetry to construct them.
Collapse
Affiliation(s)
- Wen-Ju Bai
- Department of Chemistry
- Stanford University
- Stanford
- USA
| | - Xiqing Wang
- College of Bioscience and Biotechnology
- Yangzhou University
- Yangzhou
- China
| |
Collapse
|
50
|
Tokuyama H, Sato S, Hirayama A, Adachi T, Kawauchi D, Ueda H. AgNTf2-Mediated Arylation of Bromopyrroloindolines. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|