1
|
Jana D, Premanand G, Chandran D, Tripuramallu BK, Das SK. A Proton-Conductive Co(II)-Polyoxometalate Acts as a Precatalyst for Efficient Electrocatalytic Water Oxidation. Inorg Chem 2024; 63:18797-18808. [PMID: 39315947 DOI: 10.1021/acs.inorgchem.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A cobalt(II)-containing polyoxometalate, [H3O]5[{Co(H2O)4}3{Na(H2O)4}W12O42]·3H2O (Co-POM), has been isolated in a one-step facile aqueous synthesis and characterized unambiguously using single-crystal X-ray crystallography along with routine spectral analysis. The paratungstate cluster anion [W12O42]12- coordinates with {CoII(H2O)4}2+ and {Na(H2O)4}+ complex cations resulting in the formation of the water-insoluble Co-POM compound having three-dimensional (3-D) extended structure. Motivated by the protonated water molecules existing as the counter cations in Co-POM, herein, we demonstrate the detailed proton conductivity studies of the Co-POM, reaching a value of 1.04 × 10-2 S cm-1 at 80 °C and 98% relative humidity (RH). The temperature- and humidity-dependent proton conductivity in Co-POM is governed by Grotthus mechanism with Ea = 0.25 eV. In addition, we examined the electrochemical behavior of Co-POM, in an alkaline borate buffer where it is found to be electrochemically unstable and acts as a precatalyst (and not a true catalyst) for oxygen evolution reaction (OER). We also discuss the "post-mortem" analysis of the postelectrolysis sample to identify the active species which turns out to be a cobalt oxide material (Co3O4) incorporating small amounts of tungsten. Thus, in the present electrocatalysis work, the Co-POM molecule transforms into an efficient water oxidation catalyst (WOC).
Collapse
Affiliation(s)
- Debu Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Gopika Premanand
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Devika Chandran
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Bharat Kumar Tripuramallu
- Department of Chemistry, SASH, Vignan Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Quirós-Huerta J, Troya J, Clemente-León M, Clemente-Juan JM, Coronado E, Soriano-López J. A Novel Banana-Shaped Mixed-Metal Co/Fe Polyoxometalate Cluster. Chempluschem 2024:e202400473. [PMID: 39315671 DOI: 10.1002/cplu.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
The synthesis and characterization of a Co/Fe mixed-metal banana-shaped polyoxometalate with the formula [(Co2.5Fe0.5(H2O)PW9O34)2(PW6O26)]16- (Co5Fe) is reported. This transition-metal-substituted polyoxometalate readily assembles from its components in a one-pot reaction and crystallizes in the monoclinic space group P21/c. The structure of Co5Fe can be considered a double sandwich composed by two B-α-{Co2.5Fe0.5PW9O40} Keggin units, in which one coordinatively saturated octahedral metal position is equally occupied by Co(II) and Fe(III) ions with a 50 % of site occupancy. These Keggin units are linked via a hexalacunary Keggin unit {PW6O26}. Single crystal X-ray diffraction and magnetic measurements support the proposed atom arrangement within the crystal structure. Magnetic measurements of these double trimeric unit {Co2.5Fe0.5O13}2 show a combination of antiferromagnetic interactions, the presence of spin frustration, and the first-order spin-orbit coupling of Co(II) ions. Electrocatalytic water oxidation measurements show that Co5Fe displays low stability in both homogeneous and heterogeneous conditions. This is evidenced by the constant increase on the catalytic currents over time together with the appearance of polyoxometalate-derived electrode-bound species that can be responsible for the observed catalytic activity.
Collapse
Affiliation(s)
- Javier Quirós-Huerta
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - José Troya
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Miguel Clemente-León
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Juan Modesto Clemente-Juan
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Joaquín Soriano-López
- Institut de Ciència Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| |
Collapse
|
3
|
Liu ZZ, Huang SL, Yang GY. High-Nuclear Co-Added Polyoxometalate-Based Chain: Electrocatalytic Oxygen Production. Inorg Chem 2024; 63:12803-12809. [PMID: 38957131 DOI: 10.1021/acs.inorgchem.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A high-nuclear Co-added polyoxometalate (CoAP) was synthesized via a hydrothermal reaction: H14.5K9Na7.5-{[Co8(μ2-OH)(μ3-OH)2(H2O)2(Co(H2O)GeW6O26)(B-α-GeW9O34)2][BO(OH)2][Co12(μ2-OH)(μ3-OH)5(H2O)3(Co(H2O)GeW6O26)(GeW6O26)(B-α-GeW9O34)]}·46H2O (1). The polyoxoanion of 1 contains a large Co20 cluster gathered by lacunary GeW6O26 and GeW9O34 subunits. 1 represents a one-dimensional (1D) chain formed by adjacent polyoxoanions coupling through a CoO6 double bridge, showing the first example of a high-nuclear CoAP-based inorganic chain. 1 served as an efficient electrocatalyst in oxygen evolution reactions (OERs).
Collapse
Affiliation(s)
- Zheng-Zheng Liu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
4
|
Li X, Ng BKY, Ho PL, Jia C, Shang J, Yoskamtorn T, Pan X, Li Y, Li G, Wu TS, Soo YL, He H, Yue B, Tsang SCE. Stabilization of Ni-containing Keggin-type polyoxometalates with variable oxidation states as novel catalysts for electrochemical water oxidation. Chem Sci 2024; 15:9201-9215. [PMID: 38903226 PMCID: PMC11186315 DOI: 10.1039/d4sc01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
The development of new recyclable and inexpensive electrochemically active species for water oxidation catalysis is the most crucial step for future utilization of renewables. Particularly, transition metal complexes containing internal multiple, cooperative metal centers to couple with redox catalysts in the inorganic Keggin-type polyoxometalate (POM) framework at high potential or under extreme pH conditions would be promising candidates. However, most reported Ni-containing POMs have been highly unstable towards hydrolytic decomposition, which precludes them from application as water oxidation catalysts (WOCs). Here, we have prepared new tri-Ni-containing POMs with variable oxidation states by charge tailored synthetic strategies for the first time and developed them as recyclable POMs for water oxidation catalysts. In addition, by implanting corresponding POM anions into the positively charged MIL-101(Cr) metal-organic framework (MOF), the entrapped Ni2+/Ni3+ species can show complete recyclability for water oxidation catalysis without encountering uncontrolled hydrolysis of the POM framework. As a result, a low onset potential of approximately 1.46 V vs. NHE for water oxidation with stable WOC performance is recorded. Based on this study, rational design and stabilization of other POM-electrocatalysts containing different multiple transition metal centres could be made possible.
Collapse
Affiliation(s)
- Xiang Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | | | - Ping-Luen Ho
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Chunbo Jia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Jining Shang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | | | - Xuelei Pan
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Yiyang Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Guangchao Li
- Department of Chemistry, University of Oxford Oxford OX1 3QR UK
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Yun-Liang Soo
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Heyong He
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Bin Yue
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | | |
Collapse
|
5
|
Zhao F, Cheng T, Lu X, Ghorai N, Yang Y, Geletii YV, Musaev DG, Hill CL, Lian T. Charge Transfer Mechanism on a Cobalt-Polyoxometalate-TiO 2 Photoanode for Water Oxidation in Acid. J Am Chem Soc 2024; 146:14600-14609. [PMID: 38748814 PMCID: PMC11140742 DOI: 10.1021/jacs.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
We constructed a photoanode comprising the homogeneous water oxidation catalyst (WOC) Na8K8[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3] (Co9POM) and nanoporous n-type TiO2 photoelectrodes (henceforth "TiO2-Co9POM") by first anchoring the cationic 3-aminopropyltrimethoxysilane (APS) ligand on a metal oxide light absorber, followed by treatment of the metal oxide-APS with a solution of the polyoxometalate WOC. The resulting TiO2-Co9POM photoelectrode exhibits a 3-fold oxygen evolution photocurrent enhancement compared to bare TiO2 in aqueous acidic conditions. Three-element (Co 2p, W 4f, and O 1s) X-ray photoelectron spectroscopy and Raman spectroscopy studies before and after use indicate that surface-bound Co9POM retains its structural integrity throughout all photoelectrochemical water oxidation studies reported here. Extensive charge-transfer mechanistic studies by photoelectrochemical techniques and transient absorption spectroscopy elucidate that Co9POM serves as an efficient WOC, extracting photogenerated holes from TiO2 on the picosecond time scale. This is the first comprehensive mechanistic investigation elucidating the roles of polyoxometalates in POM-photoelectrode hybrid oxygen evolution reaction systems.
Collapse
Affiliation(s)
- Fengyi Zhao
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yiwei Yang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yurii V. Geletii
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry
L. Emerson Centre for Scientific Computation, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Craig L. Hill
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Singh C, Meyerstein D, Shamish Z, Shamir D, Burg A. Unique activity of a Keggin POM for efficient heterogeneous electrocatalytic OER. iScience 2024; 27:109551. [PMID: 38595799 PMCID: PMC11001645 DOI: 10.1016/j.isci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Polyoxometalates (POMs) have been well studied and explored in electro/photochemical water oxidation catalysis for over a decade. The high solubility of POMs in water has limited its use in homogeneous conditions. Over the last decade, different approaches have been used for the heterogenization of POMs to exploit their catalytic properties. This study focused on a Keggin POM, K6[CoW12O40], which was entrapped in a sol-gel matrix for heterogeneous electrochemical water oxidation. Its entrapment in the sol-gel matrix enables it to catalyze the oxygen evolution reaction at acidic pH, pH 2.0. Heterogenization of POMs using the sol-gel method aids in POM's recyclability and structural stability under electrochemical conditions. The prepared sol-gel electrode is robust and stable. It achieved electrochemical water oxidation at a current density of 2 mA/cm2 at a low overpotential of 300 mV with a high turnover frequency (TOF) of 1.76 [mol O2 (mol Co)-1s-1]. A plausible mechanism of the electrocatalytic process is presented.
Collapse
Affiliation(s)
- Chandani Singh
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Meyerstein
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Zorik Shamish
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Dror Shamir
- Analytical Chemistry Department, Nuclear Research Center Negev, Beer-Sheva, Israel
| | - Ariela Burg
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| |
Collapse
|
7
|
Lu Z, Mitra D, Narayan SR, Williams TJ. An Immobilized (Carbene)Nickel Catalyst for Water Oxidation. Polyhedron 2024; 252:116880. [PMID: 38435834 PMCID: PMC10907011 DOI: 10.1016/j.poly.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The oxygen evolution reaction (OER) of water splitting is essential to electrochemical energy storage applications. While nickel electrodes are widely available heterogeneous OER catalysts, homogeneous nickel catalysts for OER are underexplored. Here we report two carbene-ligated nickel(II) complexes that are exceptionally robust and efficient homogeneous water oxidation catalysts. Remarkably, these novel nickel complexes can assemble a stable thin film onto a metal electrode through poly-imidazole bridges, making them supported heterogeneous electrochemical catalysts that are resilient to leaching and stripping. Unlike molecular catalysts and nanoparticle catalysts, such electrode-supported metal-complex catalysts for OER are rare and have the potential to inspire new designs. The electrochemical OER with our nickel-carbene catalysts exhibits excellent current densities with high efficiency, low Tafel slope, and useful longevity for a base metal catalyst. Our data show that imidazole carbene ligands stay bonded to the nickel(II) centers throughout the catalysis, which allows the facile oxygen evolution.
Collapse
Affiliation(s)
- Zhiyao Lu
- Donald P. and Katherine B. Loker Hydrocarbon Institute, Wrigley Institute for Environment and Sustainability, and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Debanjan Mitra
- Donald P. and Katherine B. Loker Hydrocarbon Institute, Wrigley Institute for Environment and Sustainability, and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Sri R. Narayan
- Donald P. and Katherine B. Loker Hydrocarbon Institute, Wrigley Institute for Environment and Sustainability, and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| | - Travis J. Williams
- Donald P. and Katherine B. Loker Hydrocarbon Institute, Wrigley Institute for Environment and Sustainability, and Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1661, United States
| |
Collapse
|
8
|
Çeper T, Langer M, Vashistha N, Dietzek-Ivanšić B, Streb C, Rau S, Schacher FH. Poly(dehydroalanine)-Based Hydrogels as Efficient Soft Matter Matrices for Light-Driven Catalysis. Macromol Rapid Commun 2024; 45:e2300448. [PMID: 38232973 DOI: 10.1002/marc.202300448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Indexed: 01/19/2024]
Abstract
Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.
Collapse
Affiliation(s)
- Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Marcel Langer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nikita Vashistha
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Helmholtzweg 4, D-07743, Jena, Germany
- Leibniz Institute of Photonic Technology Jena, Department of Functional Interfaces, Albert Einstein Allee 9, D-07745, Jena, Germany
| | - Carsten Streb
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
9
|
Yang MY, Zhang SB, Zhang M, Li ZH, Liu YF, Liao X, Lu M, Li SL, Lan YQ. Three-Motif Molecular Junction Type Covalent Organic Frameworks for Efficient Photocatalytic Aerobic Oxidation. J Am Chem Soc 2024; 146:3396-3404. [PMID: 38266485 DOI: 10.1021/jacs.3c12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.
Collapse
Affiliation(s)
- Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ze-Hui Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yu-Fei Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xing Liao
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Taira N, Yamauchi K, Sakai K. Intracluster O–O Coupling Pathway Evidenced for an Anderson-Type Single-Cobalt Polymolybdate Water Oxidation Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Natsuki Taira
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Somasundaram JD, Ebrahimi A, Nandan SP, Cherevan A, Eder D, Šupolíková M, Nováková E, Gyepes R, Krivosudský L. Functionalization of decavanadate anion by coordination to cobalt(II): Binding to proteins, cytotoxicity, and water oxidation catalysis. J Inorg Biochem 2023; 239:112067. [PMID: 36423394 DOI: 10.1016/j.jinorgbio.2022.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
A series of five decavanadates (V10) using a simple, one-pot synthesis, adhering to the model template: transition metal ion - decavanadate - ligands:(Hnicotinamide)2{[Co(H2O)3(nicotinamide)2]2[μ-V10O28]}.6H2O (1), {[Co(H2O)4(isonicotinamide)2]3}V10O28·4H2O (2), {[Co(H2O)4]2[Co(H2O)2(μ-pyrazinamide)2][μ-V10O28]}·4H2O (3) {[Co(H2O)4(μ-pyrazinamide)]3.V10O28}·4H2O (4), and (NH4)2{[Ni(H2O)4(2-hydroxyethylpyridine)]2}V10O28·2H2O (5) was synthesized. X-ray analysis reveals that 1 and 3 are decavanadato complexes, while 2, 4 and 5 are decavanadate complex salts. Moreover, 3 is the first example of a polymeric decavanadato complex, employing direct coordination with the metal center and the organic ligand, in toto. From the solution studies using 51V NMR spectroscopy, it was decoded that 1 and 3 stay stable in the model buffer solution and aqueous media. Binding to model proteins, cytotoxicity and water oxidation catalysis (WOC) was studied primarily for 1 and 3 and concluded that neither 1 nor 3 have an interaction with the model proteins thaumatin, lysozyme and proteinase K, because of the presence of the organic ligands in the Co(II) center, any further interplay with the proteins was blocked. Cytotoxicity studies reveal that 1 is 40% less toxic (0.05 mM) and 26% less toxic (0.1 mM) than the uncoordinated V10 with human cell lines A549 and HeLa respectively. In WOC, 1 performed superior activity, by evolving 143.37 nmol of O2 which is 700% (9-fold) increase than the uncoordinated V10.
Collapse
Affiliation(s)
- Janaki Devi Somasundaram
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia
| | - Arash Ebrahimi
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia
| | - Sreejith P Nandan
- Institute of Materials Chemistry, Technische Universität Wien, 1060 Vienna, Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien, 1060 Vienna, Austria
| | - Miroslava Šupolíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia
| | - Eva Nováková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 128 00, Czech Republic
| | - Lukáš Krivosudský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava, Slovakia.
| |
Collapse
|
12
|
Polyoxometalate-Encapsulated Metal-Organic Frameworks with Diverse Cages for the C–H Bond Oxidation of Alkylbenzenes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Khosravi M, Mohammadi MR. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. PHOTOSYNTHESIS RESEARCH 2022; 154:329-352. [PMID: 36195743 DOI: 10.1007/s11120-022-00965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
There has been a growing interest in water oxidation in recent two decades. Along with that, remarkable discovery of formation of a mysterious catalyst layer upon application of an anodic potential of 1.13 V vs. standard hydrogen electrode (SHE) to an inert indium tin oxide electrode immersed in phosphate buffer containing Co(II) ions by Nocera et.al, has greatly attracted researchers interest. These researches have oriented in two directions; one focuses on obtaining better understanding of the reported mysterious catalyst layer, further modification, and improved performance, and the second approach is about designing coordination complexes of cobalt and investigating their properties toward the application in water splitting. Although there have been critical debates on true catalysts that are responsible for water oxidation in homogeneous systems of coordination complexes of cobalt, and the case is not totally closed, in this short review, our focus will be mainly on recent major progress and developments in the design and the application of cobalt oxide-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water oxidation reaction, which have been reported since pioneering report of Nocera in 2008 (Kanan Matthew and Nocera Daniel in Science 321:1072-1075, 2008).
Collapse
Affiliation(s)
- Mehdi Khosravi
- Department of Physics, University of Sistan and Baluchestan, Zahedan, 98167-45845, Iran
| | | |
Collapse
|
14
|
Grafting of Anionic Decahydro- Closo-Decaborate Clusters on Keggin and Dawson-Type Polyoxometalates: Syntheses, Studies in Solution, DFT Calculations and Electrochemical Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227663. [PMID: 36431764 PMCID: PMC9694426 DOI: 10.3390/molecules27227663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Herein we report the synthesis of a new class of compounds associating Keggin and Dawson-type Polyoxometalates (POMs) with a derivative of the anionic decahydro-closo-decaborate cluster [B10H10]2- through aminopropylsilyl ligand (APTES) acting as both a linker and a spacer between the two negatively charged species. Three new adducts were isolated and fully characterized by various NMR techniques and MALDI-TOF mass spectrometry, notably revealing the isolation of an unprecedented monofunctionalized SiW10 derivative stabilized through intramolecular H-H dihydrogen contacts. DFT as well as electrochemical studies allowed studying the electronic effect of grafting the decaborate cluster on the POM moiety and its consequences on the hydrogen evolution reaction (HER) properties.
Collapse
|
15
|
Surface Reconstruction of Cobalt-Based Polyoxometalate and CNT Fiber Composite for Efficient Oxygen Evolution Reaction. Catalysts 2022. [DOI: 10.3390/catal12101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Polyoxometalates (POMs), as carbon-free metal-oxo-clusters with unique structural properties, are emerging water-splitting electrocatalysts. Herein, we explore the development of cobalt-containing polyoxometalate immobilized over the carbon nanotube fiber (CNTF) (Co4POM@CNTF) towards efficient electrochemical oxygen evolution reaction (OER). CNTF serves as an excellent electron mediator and highly conductive support, while the self-activation of the part of Co4POM through restructuring in basic media generates cobalt oxides and/or hydroxides that serve as catalytic sites for OER. A modified electrode fabricated through the drop-casting method followed by thermal treatment showed higher OER activity and enhanced stability in alkaline media. Furthermore, advanced physical characterization and electrochemical results demonstrate efficient charge transfer kinetics and high OER performance in terms of low overpotential, small Tafel slope, and good stability over an extended reaction time. The significantly high activity and stability achieved can be ascribed to the efficient electron transfer and highly electrochemically active surface area (ECSA) of the self-activated electrocatalyst immobilized over the highly conductive CNTF. This research is expected to pave the way for developing POM-based electrocatalysts for oxygen electrocatalysis.
Collapse
|
16
|
Liu Y, Ji K, Wang J, Li H, Zhu X, Ma P, Niu J, Wang J. Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal-Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27882-27890. [PMID: 35675907 DOI: 10.1021/acsami.2c05654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology is widely studied, while it comes with drawbacks such as low sunlight utilization efficiency and high carrier recombination rates. Herein, for the first time, we present two crystalline polyoxometalate (POM)-based metal-organic frameworks (POMOFs), {[Cd(DMF)2Ru(bpy)2(dcbpy)]2(POMs)(DMF)2} xDMF (PMo-1, POMs = [PMoVI11MoVO40]4-, x = 5; SiW-2, POMs = [SiW12O40]4-, x = 4) through assembling the photosensitizer [Ru(bpy)2(H2dcbpy)]Cl2 and POMs into a single framework. The assembly not only enhances light absorption in the visible light regime but also improves carrier separation efficiency; atop of that, both POMOFs demonstrate activities in the photocatalytic oxidative coupling of amines. Particularly, PMo-1 enables the quantitative completion of oxidative coupling of benzylamine reaction within 30 min (yield = 99.6%) with a high turnover frequency (TOF = 6631.6 h-1). To our knowledge, the PMo-1 catalyst outperforms any other photocatalysts previously reported in similar use cases where TOF values were usually obtained <2000 h-1.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Kaihui Ji
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Xueyu Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| |
Collapse
|
17
|
Boer DD, Siberie Q, Siegler MA, Ferber TH, Moritz DC, Hofmann JP, Hetterscheid DGH. On the Homogeneity of a Cobalt-Based Water Oxidation Catalyst. ACS Catal 2022; 12:4597-4607. [PMID: 35465245 PMCID: PMC9016703 DOI: 10.1021/acscatal.2c01299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Indexed: 01/01/2023]
Abstract
![]()
The homogeneity of
molecular Co-based water oxidation catalysts
(WOCs) has been a subject of debate over the last 10 years as assumed
various homogeneous Co-based WOCs were found to actually form CoOx under operating conditions. The homogeneity
of the Co(HL) (HL = N,N-bis(2,2′-bipyrid-6-yl)amine) system was investigated
with cyclic voltammetry, electrochemical quartz crystal microbalance,
and X-ray photoelectron spectroscopy. The obtained experimental results
were compared with heterogeneous CoOx.
Although it is shown that Co(HL) interacts with the electrode
during electrocatalysis, the formation of CoOx was not observed. Instead, a molecular deposit of Co(HL) was found to be formed on the electrode surface. This study
shows that deposition of catalytic material is not necessarily linked
to the decomposition of homogeneous cobalt-based water oxidation catalysts.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Quentin Siberie
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore 21218 Maryland, United States
| | - Thimo H. Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Dominik C. Moritz
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jan P. Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | | |
Collapse
|
18
|
Tao M, Yin Q, Kaledin AL, Uhlikova N, Lu X, Cheng T, Chen YS, Lian T, Geletii YV, Musaev DG, Bacsa J, Hill CL. Structurally Precise Two-Transition-Metal Water Oxidation Catalysts: Quantifying Adjacent 3d Metals by Synchrotron X-Radiation Anomalous Dispersion Scattering. Inorg Chem 2022; 61:6252-6262. [PMID: 35416667 DOI: 10.1021/acs.inorgchem.2c00446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed 3d metal oxides are some of the most promising water oxidation catalysts (WOCs), but it is very difficult to know the locations and percent occupancies of different 3d metals in these heterogeneous catalysts. Without such information, it is hard to quantify catalysis, stability, and other properties of the WOC as a function of the catalyst active site structure. This study combines the site selective synthesis of a homogeneous WOC with two adjacent 3d metals, [Co2Ni2(PW9O34)2]10- (Co2Ni2P2) as a tractable molecular model for CoNi oxide, with the use of multiwavelength synchrotron X-radiation anomalous dispersion scattering (synchrotron XRAS) that quantifies both the location and percent occupancy of Co (∼97% outer-central-belt positions only) and Ni (∼97% inner-central-belt positions only) in Co2Ni2P2. This mixed-3d-metal complex catalyzes water oxidation an order of magnitude faster than its isostructural analogue, [Co4(PW9O34)2]10- (Co4P2). Four independent and complementary lines of evidence confirm that Co2Ni2P2 and Co4P2 are the principal WOCs and that Co2+(aq) is not. Density functional theory (DFT) studies revealed that Co4P2 and Co2Ni2P2 have similar frontier orbitals, while stopped-flow kinetic studies and DFT calculations indicate that water oxidation by both complexes follows analogous multistep mechanisms, including likely Co-OOH formation, with the energetics of most steps being lower for Co2Ni2P2 than for Co4P2. Synchrotron XRAS should be generally applicable to active-site-structure-reactivity studies of multi-metal heterogeneous and homogeneous catalysts.
Collapse
Affiliation(s)
- Meilin Tao
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Qiushi Yin
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Alexey L Kaledin
- Emerson Center for Scientific Computation, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Natalie Uhlikova
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Xinlin Lu
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Ting Cheng
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Yu-Sheng Chen
- ChemMatCARS/The University of Chicago, 9700 S. Cass Ave, Lemont, Illinois 60439, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Djamaladdin G Musaev
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States.,Emerson Center for Scientific Computation, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Cobalt Phosphotungstate-Based Composites as Bifunctional
Electrocatalysts for Oxygen Reactions. Catalysts 2022. [DOI: 10.3390/catal12040357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key reactions in energy-converting systems, such as fuel cells (FCs) and water-splitting (WS) devices. However, the current use of expensive Pt-based electrocatalysts for ORR and IrO2 and RuO2 for OER is still a major drawback for the economic viability of these clean energy technologies. Thus, there is an incessant search for low-cost and efficient electrocatalysts (ECs). Hence, herein, we report the preparation, characterization (Raman, XPS, and SEM), and application of four composites based on doped-carbon materials (CM) and cobalt phosphotungstate (MWCNT_N8_Co4, GF_N8_Co4, GF_ND8_Co4, and GF_NS8_Co4) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Structural characterization confirmed the successful carbon materials doping with N and/or N, S, and the incorporation of the cobalt phosphotungstate. Overall, all composites showed good ORR performance with onset potentials ranging from 0.83 to 0.85 V vs. RHE, excellent tolerance to methanol crossover with current retentions between 88 and 90%, and good stability after 20,000 s at E = 0.55 V vs. RHE (73% to 82% of initial current). In addition, the number of electrons transferred per O2 molecule was close to four, suggesting selectivity to the direct process. Moreover, these composites also presented excellent OER performance with GF_N8_Co4 showing an overpotential of 0.34 V vs. RHE (for j = 10 mA cm−2) and jmax close to 70 mA cm−2. More importantly, this electrocatalyst outperformed state-of-the-art IrO2 electrocatalyst. Thus, this work represents a step forward toward bifunctional electrocatalysts using less expensive materials.
Collapse
|
20
|
Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63840-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Cárdenas G, Trentin I, Schwiedrzik L, Hernández-Castillo D, Lowe GA, Kund J, Kranz C, Klingler S, Stach R, Mizaikoff B, Marquetand P, Nogueira JJ, Streb C, González L. Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst. Chem Sci 2021; 12:12918-12927. [PMID: 34745522 PMCID: PMC8513927 DOI: 10.1039/d1sc03239a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Despite their technological importance for water splitting, the reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. This paper combines theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular manganese vanadium oxide WOC [Mn4V4O17(OAc)3]3- in aqueous acetonitrile solutions. Using density functional theory together with electrochemistry and IR-spectroscopy, we propose a sequential three-step activation mechanism including a one-electron oxidation of the catalyst from [Mn2 3+Mn2 4+] to [Mn3+Mn3 4+], acetate-to-water ligand exchange, and a second one-electron oxidation from [Mn3+Mn3 4+] to [Mn4 4+]. Analysis of several plausible ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of the Mn3+ centers leads to significantly lower activation barriers compared with attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to the formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]- featuring one H2O and one OH ligand. Redox potentials based on the computed intermediates are in excellent agreement with electrochemical measurements at various solvent compositions. This intricate interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts.
Collapse
Affiliation(s)
- Gustavo Cárdenas
- Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
- Chemistry Department, Universidad Autónoma de Madrid Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
| | - Ivan Trentin
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Ludwig Schwiedrzik
- Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
| | | | - Grace A Lowe
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Julian Kund
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sarah Klingler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Robert Stach
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid Madrid Spain
| | - Juan J Nogueira
- Chemistry Department, Universidad Autónoma de Madrid Calle Francisco Tomás y Valiente, 7 28049 Madrid Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid Madrid Spain
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna Währinger Str. 17 1090 Vienna Austria
- Vienna Research Platform on Accelerating Reaction Discovery, University of Vienna Währinger Str. 17 1090 Vienna Austria
| |
Collapse
|
22
|
Chen ZY, Long ZH, Wang XZ, Zhou JY, Wang XS, Zhou XP, Li D. Cobalt-Based Metal-Organic Cages for Visible-Light-Driven Water Oxidation. Inorg Chem 2021; 60:10380-10386. [PMID: 34171190 DOI: 10.1021/acs.inorgchem.1c00907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation to molecular oxygen is indispensable but a challenge for splitting H2O. In this work, a series of Co-based metal-organic cages (MOCs) for photoinduced water oxidation were prepared. MOC-1 with both bis(μ-oxo) bridged dicobalt and Co-O (O from H2O) displays catalytic activity with an initial oxygen evolution rate of 80.4 mmol/g/h and a TOF of 7.49 × 10-3 s-1 in 10 min. In contrast, MOC-2 containing only Co-O (O from H2O) in the structure results in a lower oxygen evolution rate (40.8 mmol/g/h, 4.78 × 10-3 s-1), while the amount of oxygen evolved from the solution of MOC-4 without both active sites is undetectable. Isotope experiments with or without H218O as the reactant successfully demonstrate that the molecular oxygen was produced from water oxidation. Photophysical and electrochemical studies reveal that photoinduced water oxidation initializes via electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the cobalt active sites further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation. This proof-of-concept study indicates that MOCs can work as potential efficient catalysts for photoinduced water oxidation.
Collapse
Affiliation(s)
- Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zi-Hao Long
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xu-Sheng Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
23
|
Ishaq MW, Nawaz R, Jalil A, Hashmi MA, Zheng T, Li L. Ligand Exchange Reaction in [Co4O4]-Cobalt Cubane: A Versatile Strategy Towards the Preparation of Cobalt Cubane-based Functional Small Molecules and Polymeric Materials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Al‐Sayed E, Nandan SP, Tanuhadi E, Giester G, Arrigoni M, Madsen GKH, Cherevan A, Eder D, Rompel A. Phosphate-Templated Encapsulation of a {Co II 4 O 4 } Cubane in Germanotungstates as Carbon-Free Homogeneous Water Oxidation Photocatalysts. CHEMSUSCHEM 2021; 14:2529-2536. [PMID: 33835713 PMCID: PMC8251812 DOI: 10.1002/cssc.202100506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The ever-growing interest in sustainable energy sources leads to a search for an efficient, stable, and inexpensive homogeneous water oxidation catalyst (WOC). Herein, the PO4 3- templated synthesis of three abundant-metal-based germanotungstate (GT) clusters Na15 [Ge4 PCo4 (H2 O)2 W24 O94 ] ⋅ 38H2 O (Co4 ), Na2.5 K17.5 [Ge3 PCo9 (OH)5 (H2 O)4 W30 O115 ] ⋅ 45H2 O (Co9 ), Na6 K16 [Ge4 P4 Co20 (OH)14 (H2 O)18 W36 O150 ] ⋅ 61H2 O (Co20 ) with non-, quasi-, or full cubane motifs structurally strongly reminiscent of the naturally occurring {Mn4 Ca} oxygen evolving complex (OEC) in photosystem II was achieved. Under the conditions tested, all three GT-scaffolds were active molecular WOCs, with Co9 and Co20 outperforming the well-known Na10 [Co4 (H2 O)2 (PW9 O34 )2 ] {Co4 P2 W18 } by a factor of 2 as shown by a direct comparison of their turnover numbers (TONs). With TONs up to 159.9 and a turnover frequency of 0.608 s-1 Co9 currently represents the fastest Co-GT-based WOC, and photoluminescence emission spectroscopy provided insights into its photocatalytic WOC mechanism. Cyclic voltammetry, dynamic light scattering, UV/Vis and IR spectroscopy showed recyclability and integrity of the catalysts under the applied conditions. The experimental results were supported by computational studies, which highlighted that the facilitated oxidation of Co9 was due to the higher energy of its highest occupied molecular orbital electrons as compared to Co4 .
Collapse
Affiliation(s)
- Emir Al‐Sayed
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| | | | - Elias Tanuhadi
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| | - Gerald Giester
- Fakultät für GeowissenschaftenGeographie und AstronomieInstitut für Mineralogie und KristallographieUniversität WienAlthanstraße 141090WienAustria
| | - Marco Arrigoni
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | | | - Alexey Cherevan
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | - Dominik Eder
- Institute of Materials ChemistryTU WienGetreidemarkt 9Vienna1060Austria
| | - Annette Rompel
- Fakultät für ChemieInstitut für Biophysikalische ChemieUniversität WienAlthanstraße 141090WienAustria
| |
Collapse
|
26
|
Zhong R, Cui L, Yu K, Lv J, Guo Y, Zhang E, Zhou B. Wells-Dawson Arsenotungstate Porous Derivatives for Electrochemical Supercapacitor Electrodes and Electrocatalytically Active Materials. Inorg Chem 2021; 60:9869-9879. [PMID: 34121406 DOI: 10.1021/acs.inorgchem.1c01136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two Wells-Dawson arsenotungstate coordination polymers, [{CuII(bim)2}3(As2W18O62)] (1) and [(CuI10pz10Cl4)(As2W18O62)] (bim = 2,2'-biimidazole; pz = pyrazine), have been assembled via a hydrothermal method and fully characterized. Compound 1 exhibits a 2,6-connected two-dimensional hybrid layer based on asymmetrically modified {As2W18} anions and {Cu(bim)2} linkers, which is extended to a three-dimensional network with a special interlayer structure and a one-dimensional tunnel. Compound 2 is a host-guest framework that consists of a Cu-pz-Cl network with 20-member square rings, 16-member irregular rings, and embedded eight-node {As2W18} guest molecules. Compounds 1 and 2 show uncommon specific capacitance (834.8 and 960.1 F g-1, respectively, at a current density of 2.4 A g-1), enduring cycling stability (capacitance retention rates of 89.3% and 91.9%, respectively, after 5000 cycles), and good electrical conductivity, which are superior to those of the unmodified zero-dimensional Dawson arsenotungstate compound and most reported electrode materials in terms of their stable structure, special layer spacing, and orderly channels. Moreover, the title compounds exhibit excellent electrocatalytic activity for oxidizing ascorbic acid and reducing nitrite.
Collapse
Affiliation(s)
- Rui Zhong
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Liping Cui
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Yuhang Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Enmin Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|
27
|
Abstract
This review aims to give a general overview of the recent use of tungsten-based catalysts for wide environmental applications, with first some useful background information about tungsten oxides. Tungsten oxide materials exhibit suitable behaviors for surface reactions and catalysis such as acidic properties (mainly Brønsted sites), redox and adsorption properties (due to the presence of oxygen vacancies) and a photostimulation response under visible light (2.6–2.8 eV bandgap). Depending on the operating condition of the catalytic process, each of these behaviors is tunable by controlling structure and morphology (e.g., nanoplates, nanosheets, nanorods, nanowires, nanomesh, microflowers, hollow nanospheres) and/or interactions with other compounds such as conductors (carbon), semiconductors or other oxides (e.g., TiO2) and precious metals. WOx particles can be also dispersed on high specific surface area supports. Based on these behaviors, WO3-based catalysts were developed for numerous environmental applications. This review is divided into five main parts: structure of tungsten-based catalysts, acidity of supported tungsten oxide catalysts, WO3 catalysts for DeNOx applications, total oxidation of volatile organic compounds in gas phase and gas sensors and pollutant remediation in liquid phase (photocatalysis).
Collapse
|
28
|
Cui T, Qin L, Fu F, Xin X, Li H, Fang X, Lv H. Pentadecanuclear Fe-Containing Polyoxometalate Catalyst for Visible-Light-Driven Generation of Hydrogen. Inorg Chem 2021; 60:4124-4132. [PMID: 33621075 DOI: 10.1021/acs.inorgchem.1c00267] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The structurally new, carbon-free pentadecanuclear Fe-containing polyoxometalate, Na21[NaFe15(OH)12(PO4)4(A-α-SiW9O34)4]·85H2O (Na21-Fe15P4(SiW9)4), was synthesized using a facile one-pot, solution-based synthetic approach and systematically characterized by various spectroscopic techniques. Single-crystal X-ray diffraction reveals that the title complex is composed of two [Fe4(A-α-SiW9O34)] fragments and two [Fe3.5(A-α-SiW9O34)] fragments stabilized by four PO4 linkers in a tetrameric style with idealized Td point group symmetry. When coupling with (4,4'-ditert-butyl-2,2'-dipyridyl)-bis(coumarin)-iridium(III) hexafluorophosphate ([Ir(coumarin)2(dtbbpy)][PF6]) photosensitizer and triethanolamine (TEOA) sacrificial electron donor, polyoxoanion Fe15P4(SiW9)4 effectively catalyzed hydrogen production with a minimally optimized TON of 986, which represents, to our knowledge, one of the highest values among known Fe-substituted POM-catalyzed hydrogen production systems. Both a mercury-poisoning test and FT-IR characterizations proved the structural stability of Fe15P4(SiW9)4 catalyst under photocatalytic conditions. The photocatalytic mechanism of the present hydrogen-evolving system was investigated by time-solved luminescence and static emission quenching measurements.
Collapse
Affiliation(s)
- Tingting Cui
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Lin Qin
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Fangyu Fu
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Huijie Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xikui Fang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
29
|
Kemmegne-Mbouguen JC, Floquet S, Cadot E. Electrochemical properties of the [SiW 10 O 36 (M 2 O 2 E 2 )] 6- Polyoxometalates series (M = Mo(V) or W(V); E = S or O) in aqueous medium: application to the electroanalysis of iodates. CR CHIM 2021. [DOI: 10.5802/crchim.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Kang RK, Dong YY, Cao JP, Luo XM, Du ZY, Zhu D, Xu Y. An Unprecedented Bird Nest Molybdenum(V) Cobalto-Phosphate Nanosized Wheel Constructed from the [H 55 (Mo 24 O 48 )(Co 4 O) 2 Co 16 (PO 4 ) 42 (py) 6 (EtOH) 2 (H 2 O) 11 ] 3- Anion. Chemistry 2021; 27:1301-1305. [PMID: 32915481 DOI: 10.1002/chem.202004083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 01/06/2023]
Abstract
An unprecedented bird-nest high-nuclear molybdenum(V) cobalto-phosphate nanosized wheel modified by imidazole (im) and pyridine (py), {[H55 (Mo24 O48 )(Co4 O)2 Co16 (PO4 )42 (py)6 (EtOH)2 (H2 O)11 ]- @[(Him)2 (Hpy)]}(N-Et-py)(H2 PO4 )(py)7 (EtOH)⋅12 H2 O (1), has been successfully synthesized by self-assembly. The anionic huge wheel consists of two rare {Co4 O} squares, four {Co4 } tetramers, four {Mo4 } tetramers and four {Mo2 } dimers, linked by bridging oxygen atoms and [PO4 ] groups and encloses two imidazolium cations and a protonated pyridium for charge balance. Surprisingly, 1 represents the first twisted wheel-shaped cluster with a record high-nuclear molybdenum(V) cobalto-phosphate. The delocalized electron effects of the cluster are enhanced with the help of coordinated py ligands, which endows 1 with an excellent third-order nonlinear optical (NLO) response. Additionally, 1 also shows a better photocatalytic water oxidation activity than Co(NO3 )2 with the O2 production of 205 μmol during 6 h in the absence of the [Ru(bpy)3 ]2+ photosensitizer.
Collapse
Affiliation(s)
- Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ya-Yu Dong
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Xi-Ming Luo
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Ze-Yu Du
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Dunru Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
31
|
Synthesis, Physical Properties and Application of a Series of New Polyoxometalate-Based Ionic Liquids. Molecules 2021; 26:molecules26020496. [PMID: 33477711 PMCID: PMC7831901 DOI: 10.3390/molecules26020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
This paper deals with the preparation and the characterization of four new ionic liquids resulting from the pairing of various polyoxotungstates or polyoxomolybdates with the cation trihexyltetradecylphosphonium. The physical properties measured by different techniques evidence that the viscosity and the rheological behaviors of such POM-based ionic liquids, POM-ILs, strongly depend on the nature of the POM, especially its charge. Playing on the nature of the POM, we can indeed obtain Newtonian liquids or some much more viscous materials exhibiting characteristics of resins or pseudo-plastics. In a second part of this study, the potentialities of using such materials both as solvent and catalyst for the oxidation of a series of alcohols are presented as proof of concept. This part highlights great differences in strength and selectivity as a function of the POM-IL used. Furthermore, a very simple way to recycle the catalyst is also presented.
Collapse
|
32
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
33
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
34
|
Craig MJ, Barda-Chatain R, García-Melchor M. Fundamental insights and rational design of low-cost polyoxometalates for the oxygen evolution reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Dong Y, Han Q, Ma K, Song F, Zheng S, Ding Y. Study two kind different catalytic behaviors for K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]-cocatalyzed visible light driven water oxidation in pH 1–7 media. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Arens J, Blasco-Ahicart M, Azmani K, Soriano-López J, García-Eguizábal A, Poblet J, Galan-Mascaros J. Water oxidation electrocatalysis in acidic media with Co-containing polyoxometalates. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Zhang H, Tian W, Duan X, Sun H, Liu S, Wang S. Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904037. [PMID: 31793723 DOI: 10.1002/adma.201904037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Low-cost, nonprecious transition metal (TM) catalysts toward efficient water oxidation are of critical importance to future sustainable energy technologies. The advances in structure engineering of water oxidation catalysts (WOCs) with single TM centers as active sites, for example, single metallic molecular complexes (SMMCs), supported SMMCs, and single-atom catalysts (SACs) in recent reports are examined. The efforts made on these configurations in terms of design principle, advanced characterization, performances and theoretical studies, are critically reviewed. A clear roadmap with the correlations between the single-TM-site-based structures (coordination and geometric structure, TM species, support), and the catalytic performances in water oxidation is provided. The insights bridging SMMCs with SACs are also given. Finally, the challenges and opportunities in the single-TM-site catalysis are proposed.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
38
|
Ma X, Yu K, Yuan J, Cui L, Lv J, Dai W, Zhou B. Multinuclear Transition Metal Sandwich-Type Polytungstate Derivatives for Enhanced Electrochemical Energy Storage and Bifunctional Electrocatalysis Performances. Inorg Chem 2020; 59:5149-5160. [DOI: 10.1021/acs.inorgchem.0c00382] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xinyue Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Jie Yuan
- Harbin Medical University Daqing Campus, Daqing 163319, Heilongjiang, China
| | - Liping Cui
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Wenting Dai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| |
Collapse
|
39
|
Xu H, You S, Lang Z, Sun Y, Sun C, Zhou J, Wang X, Kang Z, Su Z. Highly Efficient Photoreduction of Low‐Concentration CO
2
to Syngas by Using a Polyoxometalates/Ru
II
Composite. Chemistry 2020; 26:2735-2740. [DOI: 10.1002/chem.201905155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Hui Xu
- Department College of ChemistryJilin University Changchun 130012 P. R. China
| | - Siqi You
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Zhongling Lang
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Yue Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 P. R. China
| | - Chunyi Sun
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Jie Zhou
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Xinlong Wang
- Local & United Engineering Lab for Power Batteries Key Lab of, Polyoxometalate Science of Ministry of EducationNortheast Normal University Changchun 130024 Jilin P. R. China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)Soochow University Suzhou 215123 P. R. China
| | - Zhongmin Su
- Department College of ChemistryJilin University Changchun 130012 P. R. China
| |
Collapse
|
40
|
Chen R, Yan Z, Kong X. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Zhi‐Hao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
41
|
Ding YS, Wang HY, Ding Y. Visible-light-driven hydrogen evolution using a polyoxometalate-based copper molecular catalyst. Dalton Trans 2020; 49:3457-3462. [DOI: 10.1039/c9dt04233d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Cu5(OH)4(H2O)2(A-α-SiW9O33)2]10− (1) was tested as a molecular catalyst for visible-light-driven H2 evolution and exhibited a high TON of 718.9. Many stability studies showed that 1 could maintain its structure intact during the catalytic process.
Collapse
Affiliation(s)
- Yuan-Sheng Ding
- School of Chemistry and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin
- P.R. China
| | - Hui-Ying Wang
- School of Chemistry and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin
- P.R. China
| | - Yong Ding
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
42
|
The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts. Molecules 2019; 25:molecules25010157. [PMID: 31906045 PMCID: PMC6983101 DOI: 10.3390/molecules25010157] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
This review describes major advances in the use of functionalized molecular metal oxides (polyoxometalates, POMs) as water oxidation catalysts under electrochemical conditions. The fundamentals of POM-based water oxidation are described, together with a brief overview of general approaches to designing POM water oxidation catalysts. Next, the use of POMs for homogeneous, solution-phase water oxidation is described together with a summary of theoretical studies shedding light on the POM-WOC mechanism. This is followed by a discussion of heterogenization of POMs on electrically conductive substrates for technologically more relevant application studies. The stability of POM water oxidation catalysts is discussed, using select examples where detailed data is already available. The review finishes with an outlook on future perspectives and emerging themes in electrocatalytic polyoxometalate-based water oxidation research.
Collapse
|
43
|
Su XF, Yan LK, Su ZM. Theoretical Insight into the Performance of Mn II/III-Monosubstituted Heteropolytungstates as Water Oxidation Catalysts. Inorg Chem 2019; 58:15751-15757. [PMID: 31710211 DOI: 10.1021/acs.inorgchem.9b01806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of MnII/III-monosubstituted heteropolytungstates [MnIII(H2O)GeW11O39]5- ([GT-MnIII-OH2]5-, where GT = GeW11O39) and [MnII(H2O)GeW11O39]6- ([GT-MnII-OH2]6-) as water oxidation catalysts at pH 9 was explored using density functional theory calculations. The counterion effect was fully considered, in which five and six Na+ ions were included in the calculations for water oxidation catalyzed by [GT-MnIII-OH2]5- and [GT-MnII-OH2]6-, respectively. The process of water oxidation catalysis was divided into three elemental stages: (i) oxidative activation, (ii) O-O bond formation, and (iii) O2 evolution. In the oxidative activation stage, two electrons and two protons are removed from [Na5-GT-MnIII-OH2] and three electrons and two protons are removed from [Na6-GT-MnII-OH2]. Therefore, the MnIV-O• species [Na5-GT-MnIV-O•] is obtained. Two mechanisms, (i) water nucleophilic attack and (ii) oxo-oxo coupling, were demonstrated to be competitive in O-O bond formation triggered from [Na5-GT-MnIV-O•]. In the last stage, the O2 molecule could be readily evolved from the peroxo or dinuclear species and the catalyst returns to the ground state after the coordination of a water molecule(s).
Collapse
Affiliation(s)
- Xiao-Fang Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Li-Kai Yan
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Zhong-Min Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| |
Collapse
|
44
|
Martinetto Y, Pégot B, Roch‐Marchal C, Cottyn‐Boitte B, Floquet S. Designing Functional Polyoxometalate‐Based Ionic Liquid Crystals and Ionic Liquids. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yohan Martinetto
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St‐Quentin en Yvelines, Université Paris‐Saclay 45 Avenue des Etats‐Unis 78035 Versailles France
- Institut Jean‐Pierre Bourgin, INRA, Agro Paris Tech, CNRS Université Paris Saclay 78000 Versailles France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St‐Quentin en Yvelines, Université Paris‐Saclay 45 Avenue des Etats‐Unis 78035 Versailles France
| | - Catherine Roch‐Marchal
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St‐Quentin en Yvelines, Université Paris‐Saclay 45 Avenue des Etats‐Unis 78035 Versailles France
| | - Betty Cottyn‐Boitte
- Institut Jean‐Pierre Bourgin, INRA, Agro Paris Tech, CNRS Université Paris Saclay 78000 Versailles France
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, UMR 8180 Université de Versailles St‐Quentin en Yvelines, Université Paris‐Saclay 45 Avenue des Etats‐Unis 78035 Versailles France
| |
Collapse
|
45
|
Ni L, Güttinger R, Triana CA, Spingler B, Baldridge KK, Patzke GR. Pathways towards true catalysts: computational modelling and structural transformations of Zn-polyoxotungstates. Dalton Trans 2019; 48:13293-13304. [PMID: 31424066 DOI: 10.1039/c9dt03018b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Current catalysis undergoes a paradigm shift from molecular and heterogeneous realms towards new dynamic catalyst concepts. This calls for innovative strategies to understand the essential catalytic motifs and true catalysts emerging from oxidative transformation processes. Polyoxometalate (POM) clusters offer an inexhaustible reservoir for new noble metal-free catalysts and excellent model systems whose structure-activity relationships and mechanisms remain to be explored. Here, we first introduce a new {ZnnNa6-n(B-α-SbW9O33)2} (n = 3-6) catalyst family with remarkable tuning options of the Zn-based core structure and high activity in H2O2-assisted catalytic alcohol oxidation as a representative reaction. Next, high level solution-based computational modelling of the intermediates and transition states was carried out for [Zn6Cl6(SbW9O33)2]12- as a representative well-defined case. The results indicate a radical-based oxidation process with the involvement of tungsten and adjacent zinc metal centers. The {ZnnNa6-n(B-α-SbW9O33)2} series indeed efficiently catalyses alcohol oxidation via peroxotungstate intermediates, in agreement with strong spectroscopic support and other experimental evidence for the radical mechanism. Finally, the high performance of [Zn6Cl6(SbW9O33)2]12- was traced back to its transformation into a highly active and robust disordered Zn/W-POM catalyst. The atomic short-range structure of this resting pre-catalyst was elucidated by RMC modelling of the experimental W-L3 and Zn-K edge EXAFS spectra and supported with further analytical methods. We demonstrate that computational identification of the reactive sites combined with the analytical tracking of their dynamic transformations provides essential input to expedite cluster-based molecular catalyst design.
Collapse
Affiliation(s)
- Lubin Ni
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Robin Güttinger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - C A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kim K Baldridge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
46
|
Haider A, Bassil BS, Soriano-López J, Qasim HM, Sáenz de Pipaón C, Ibrahim M, Dutta D, Koo YS, Carbó JJ, Poblet JM, Galán-Mascarós JR, Kortz U. 9-Cobalt(II)-Containing 27-Tungsto-3-germanate(IV): Synthesis, Structure, Computational Modeling, and Heterogeneous Water Oxidation Catalysis. Inorg Chem 2019; 58:11308-11316. [PMID: 31411866 DOI: 10.1021/acs.inorgchem.9b01495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 9-cobalt(II)-containing trimeric, cyclic polyanion [Co9(OH)3(H2O)6(PO4)2(B-α-GeW9O34)3]21- (1) was synthesized in an aqueous phosphate solution at pH 8 and isolated as a hydrated mixed sodium-cesium salt. Polyanion 1 was structurally and compositionally characterized in the solid state by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, as well as thermogravimetric and elemental analyses. The magnetic and electrochemical properties of 1 were also studied and compared with those of its phosphorus analogue, [Co9(OH)3(H2O)6(HPO4)2(B-α-PW9O34)3]16- (Co9-P). The electrochemical water oxidation activity of the cesium salt of 1 under heterogeneous conditions was also studied and shown to be superior to that of Co9-P. The experimental results were supported by computational studies.
Collapse
Affiliation(s)
- Ali Haider
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| | - Bassem S Bassil
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany.,Department of Chemistry, Faculty of Sciences , University of Balamand , P.O. Box 100, 1300 Tripoli , Lebanon
| | - Joaquín Soriano-López
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , E-43007 Tarragona , Spain.,Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , Tarragona E-43007 , Spain
| | - Hafiz M Qasim
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| | - Cristina Sáenz de Pipaón
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , Tarragona E-43007 , Spain
| | - Masooma Ibrahim
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| | - Daipayan Dutta
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| | - Yong-Sun Koo
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , Tarragona E-43007 , Spain
| | - Jorge J Carbó
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , E-43007 Tarragona , Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica , Universitat Rovira i Virgili , Marcel·lí Domingo 1 , E-43007 Tarragona , Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , Tarragona E-43007 , Spain.,ICREA , Passeig Lluis Companys 23 , Barcelona E-08010 , Spain
| | - Ulrich Kortz
- Jacobs University , Department of Life Sciences and Chemistry , Campus Ring 1 , 28759 Bremen , Germany
| |
Collapse
|
47
|
Han Q, Sun D, Zhao J, Liang X, Ding Y. A novel dicobalt-substituted tungstoantimonate polyoxometalate: Synthesis, characterization, and photocatalytic water oxidation properties. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63358-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Cao Y, Chen Q, Shen C, He L. Polyoxometalate-Based Catalysts for CO 2 Conversion. Molecules 2019; 24:molecules24112069. [PMID: 31151282 PMCID: PMC6600423 DOI: 10.3390/molecules24112069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/01/2022] Open
Abstract
Polyoxometalates (POMs) are a diverse class of anionic metal-oxo clusters with intriguing chemical and physical properties. Owing to unrivaled versatility and structural variation, POMs have been extensively utilized for catalysis for a plethora of reactions. In this focused review, the applications of POMs as promising catalysts or co-catalysts for CO2 conversion, including CO2 photo/electro reduction and CO2 as a carbonyl source for the carbonylation process are summarized. A brief perspective on the potentiality in this field is proposed.
Collapse
Affiliation(s)
- Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiongyao Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chaoren Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
49
|
Das S, Das K, Kübel C, Roy S. Light Driven Water Oxidation Coupled With C-N Coupling Reaction Using a Hybrid Cu-PW12
O40
Based Soft-Oxometalate. ChemistrySelect 2019. [DOI: 10.1002/slct.201803949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Santu Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Kousik Das
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| | - Christian Kübel
- Institute of Nanotechnology INT) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Soumyajit Roy
- EFAML; College of Chemistry; Central China Normal University; 152 Luoyu Road, Wuhan, Hubei 430079 P. R. China
- EFAML; Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur 741246 India
| |
Collapse
|
50
|
Synthesis, Crystal Structure, Electrochemistry and Electro-Catalytic Properties of the Manganese-Containing Polyoxotungstate, [(Mn(H2O)3)2(H2W12O42)]6−. INORGANICS 2019. [DOI: 10.3390/inorganics7020015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present the synthesis and structural characterization of the manganese-containing polyoxotungstate, [(Mn(H2O)3)2(H2W12O42)]6− (1), obtained by reaction of MnCl2 with six equivalents of Na2WO4 in the presence of Zn(CH3COO)2 in acetate medium (pH 4.7). This has been assessed by various techniques (FTIR, TGA, UV-Visible, XPS, elemental analysis, single crystal X-ray and electrochemistry). Single-crystal X-ray analyses showed that, in the solid state, 1 forms a 2-D network in which [H2W12O42]10− fragments are linked in pairs via Mn2+ ions, leading to linear chains of the form [(Mn(H2O)3)2(H2W12O42)]n6n−. The connection between chains occurs also via Mn2+ ions which bind [H2W12O42]10− fragments belonging to two adjacent chains, forming an infinite 2-D network. A complete electrochemical study was done in aqueous solution where 1 is stable in the pH range 1 to 6. This complex undergoes multiple electron-transfer processes that lead to the electro-generation of manganese high oxidation state species that catalyse water electro-oxidation. 1 is also effective in the electro-catalytic reduction of nitrite and dioxygen.
Collapse
|