1
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2024. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Yang ZM, Han X, Zhang MH, Liu C, Liu QL, Tang L, Gao F, Su J, Ding M, Zuo JL. Dynamic Interchain Motion in 1D Tetrathiafulvalene-Based Coordination Polymers for Highly Sensitive Molecular Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402255. [PMID: 38837847 DOI: 10.1002/smll.202402255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.
Collapse
Affiliation(s)
- Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng-Hang Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qing-Long Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Lingyu Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Zhang X, Jiang Y, Kong G, Liu Q, Zhang G, Wang K, Cao T, Cheng Q, Zhang Z, Ji G, Han L. CO 2-mediated catalytic upcycling of plastic waste for H 2-rich syngas and carbon nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132500. [PMID: 37708645 DOI: 10.1016/j.jhazmat.2023.132500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
To establish a reliable disposal platform of plastic waste, this work developed a novel dual-stage CO2-medaited decomposition-catalysis route by applying multi-functional zeolite-supported bimetallic catalysts. Catalytic upcycling of plastic was first performed in Ar as a reference environment. Bimetallic Fe-Co/ZSM5 catalyst achieved the highest gas yield (53.98 mmol/g), with a H2 proportion of 62.17 vol%. It was evidenced that the Fe-Co alloy had an apparent positive synergistic effect on catalytic cracking and reforming of intermediate volatiles into H2-rich fuel gas and pure carbon nanotubes (CNTs). Regarding CO2-mediated decomposition-catalysis of plastic, there was an apparent synergistic effect between metallic Ni and Fe on gas production so that bimetallic Ni-Fe catalyst gained the maximum cumulative gas yield of 82.33 mmol/g, with a syngas purity of ∼74%. Ni-Fe/ZSM5 also achieved the maximum hydrogen efficiency (87.38%) and CO2-to-CO conversion efficiency (98.62%), implying hydrogen content in plastic and oxygen content in CO2 were essentially converted into gases. Additionally, bimetallic Ni-Fe catalyst revealed the highest carbon production (33.74 wt%), witnessing a synergistic enhancement of 43.45%; specially, approximately 257 mg/g CNTs were anchored on Ni-Fe/ZSM5, with a CNTs purity of over 76%. Overall, this study offers a superb solution in plastic waste valorization and greenhouse gas emission management.
Collapse
Affiliation(s)
- Xuesong Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuan Jiang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ge Kong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Quan Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guanyu Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Kejie Wang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tianqi Cao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Cheng
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ziyi Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guanya Ji
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Paghi A, Mariani S, Barillaro G. 1D and 2D Field Effect Transistors in Gas Sensing: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206100. [PMID: 36703509 DOI: 10.1002/smll.202206100] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Indexed: 06/18/2023]
Abstract
Rapid progress in the synthesis and fundamental understanding of 1D and 2D materials have solicited the incorporation of these nanomaterials into sensor architectures, especially field effect transistors (FETs), for the monitoring of gas and vapor in environmental, food quality, and healthcare applications. Yet, several challenges have remained unaddressed toward the fabrication of 1D and 2D FET gas sensors for real-field applications, which are related to properties, synthesis, and integration of 1D and 2D materials into the transistor architecture. This review paper encompasses the whole assortment of 1D-i.e., metal oxide semiconductors (MOXs), silicon nanowires (SiNWs), carbon nanotubes (CNTs)-and 2D-i.e., graphene, transition metal dichalcogenides (TMD), phosphorene-materials used in FET gas sensors, critically dissecting how the material synthesis, surface functionalization, and transistor fabrication impact on electrical versus sensing properties of these devices. Eventually, pros and cons of 1D and 2D FETs for gas and vapor sensing applications are discussed, pointing out weakness and highlighting future directions.
Collapse
Affiliation(s)
- Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
5
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Xie RF, Zhang JB, Wu Y, Li L, Liu XY, Cui G. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. J Chem Phys 2023; 158:054108. [PMID: 36754819 DOI: 10.1063/5.0134353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.
Collapse
Affiliation(s)
- Rui-Fang Xie
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing-Bin Zhang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Yang Wu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Zhang R, Liu C, Wang P, Li Y, Su Y, Dai J. A room-temperature formaldehyde sensor based on hematite for breast cancer diagnosis. Analyst 2023; 148:248-254. [PMID: 36477164 DOI: 10.1039/d2an01796b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Formaldehyde (HCHO) is regarded as one kind of indoor pollutant. Additionally, HCHO serves as a biomarker in the exhaled breath of breast cancer patients. Early warning and management are crucial for the environment and human health. Thus, we have elaborately synthesized hematite (α-Fe2O3) employing a facet-engineering hydrothermal strategy using the fine-tuned solvent composition, with special attention to the effect of different exposed surfaces on HCHO detection. The spindle-like α-Fe2O3 nanocrystals with the (012) facet exposed exhibited impressively higher response towards HCHO at room temperature than that of the disk-like α-Fe2O3 with mainly the (001) facet exposed, partly due to the abundant vacancy oxygen and adsorbed oxygen of high-index facets of α-Fe2O3. More importantly, our experimental results coincide with theoretical calculations. Overall, the surface engineering strategy could be extended to a versatile approach for HCHO detection.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Chuanqun Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Pu Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- Department of Electronic Systems, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Yue Su
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100864, China
| | - Jianxun Dai
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Guo SY, Hou PX, Zhang F, Liu C, Cheng HM. Gas Sensors Based on Single-Wall Carbon Nanotubes. Molecules 2022; 27:5381. [PMID: 36080149 PMCID: PMC9458085 DOI: 10.3390/molecules27175381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.
Collapse
Affiliation(s)
- Shu-Yu Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hui-Ming Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Liu B, Zhu Q, Pan Y, Huang F, Tang L, Liu C, Cheng Z, Wang P, Ma J, Ding M. Single-Atom Tailoring of Two-Dimensional Atomic Crystals Enables Highly Efficient Detection and Pattern Recognition of Chemical Vapors. ACS Sens 2022; 7:1533-1543. [PMID: 35546283 DOI: 10.1021/acssensors.2c00356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low-dimensional semiconductor materials, such as single-walled carbon nanotubes, two-dimensional (2D) atomic crystals, and organic frameworks, have been widely adapted as ideal platforms to construct various chemo/biosensors with satisfying sensitivity. However, the general drawbacks in chemiresistive devices, including high operation temperatures, low response to low-polarity molecules, and poor selectivity, have limited their real-world applications. In this study, 2D materials (graphene, MoS2, and WSe2) were systematically functionalized with series of monodispersed single atomic sites (Pt, Co, and Ru) through a facile approach to construct single-atom sensors (SASs) for the detection of VOCs at room temperature. The structural and catalytic characteristics of SAs successfully translated into enhanced gas-sensing performance, with a 1-2 orders of magnitude increase in relative response to ethanol (@5 ppm) and acetone (@20 ppm) vapors (in all M-2D SASs as compared to pristine substrates), high selectivity to VOCs against relative humidity (M-WSe2 SASs), and fast response/recovery time (11/58 s for Pt-Graphene and 22/48 s for Pt-MoS2 to 50 ppm ethanol, 9/57 s for Pt-Graphene and 15/75 s for Pt-MoS2 to 200 ppm acetone) that are several times faster than the pristine 2D materials. Density functional theory (DFT) calculations revealed the signaling mechanism in SASs, and the data were further trained to build machine learning (ML) models for predicting the adsorption energies and sensing performance using the features of adsorption heights, metal charge, and charge transfer between the adsorbed VOCs and SASs sites. Finally, the rich combination of the metal single atoms and 2D atomic crystal supports were converted to cross-sensitive SA sensor array that allows for detection and identification of different VOCs.
Collapse
Affiliation(s)
- Bingqian Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Qin Zhu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
- Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Futao Huang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Zheng Cheng
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Peng Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
- Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
10
|
Saad R, Gamal A, Zayed M, Ahmed AM, Shaban M, BinSabt M, Rabia M, Hamdy H. Fabrication of ZnO/CNTs for Application in CO 2 Sensor at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3087. [PMID: 34835849 PMCID: PMC8624847 DOI: 10.3390/nano11113087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Thin films of ZnO and ZnO/carbon nanotubes (CNTs) are prepared and used as CO2 gas sensors. The spray pyrolysis method was used to prepare both ZnO and ZnO/CNTs films, with CNTs first prepared using the chemical vapor deposition method (CVD). The chemical structure and optical analyses for all the prepared nanomaterials were performed using X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FTIR), and UV/Vis spectrophotometer devices, respectively. According to the XRD analysis, the crystal sizes of ZnO and ZnO/CNTs were approximately 50.4 and 65.2 nm, respectively. CNTs have average inner and outer diameters of about 3 and 13 nm respectively, according to the transmitted electron microscope (TEM), and a wall thickness of about 5 nm. The detection of CO2 is accomplished by passing varying rates of the gas from 30 to 150 sccm over the prepared thin-film electrodes. At 150 sccm, the sensitivities of ZnO and ZnO/CNTs sensors are 6.8% and 22.4%, respectively. The ZnO/CNTs sensor has a very stable sensitivity to CO2 gas for 21 days. Moreover, this sensor has a high selectivity to CO2 in comparison with other gases, in which the ZnO/CNTs sensor has a higher sensitivity to CO2 compared to H2 and C2H2.
Collapse
Affiliation(s)
- Rana Saad
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
| | - Ahmed Gamal
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Zayed
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
| | - Ashour M. Ahmed
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
| | - Mohamed Shaban
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, AlMadinah Almonawara 42351, Saudi Arabia
| | - Mohammad BinSabt
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Mohamed Rabia
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hany Hamdy
- Nanophotonics and Applications Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (R.S.); (A.G.); (M.Z.); (A.M.A.); (M.R.); (H.H.)
| |
Collapse
|
11
|
Ternary Holey Carbon Nanohorns/TiO2/PVP Nanohybrids as Sensing Films for Resistive Humidity Sensors. COATINGS 2021. [DOI: 10.3390/coatings11091065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we present the relative humidity (RH) sensing response of a chemiresistive sensor, employing sensing layers based on a ternary nanohybrids comprised of holey carbon nanohorns (CNHox), titanium (IV) oxide, and polyvinylpyrrolidone (PVP) at 1/1/1/(T1), 2/1/1/(T2), and with 3/1/1 (T3) mass ratios. The sensing device is comprised of a silicon-based substrate, a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensitive layer was deposited via the drop-casting method on the sensing structure, followed by a two-step annealing process. The structure and composition of the sensing films were investigated through scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD). The resistance of the ternary nanohybrid-based sensing layer increases when H increases between 0% and 80%. A different behavior of the sensitive layers is registered when the humidity increases from 80% to 100%. Thus, the resistance of the T1 sensor slightly decreases with increasing humidity, while the resistance of sensors T2 and T3 register an increase in resistance with increasing humidity. The T2 and T3 sensors demonstrate a good linearity for the entire (0–100%) RH range, while for T1, the linear behavior is limited to the 0–80% range. Their overall room temperature response is comparable to a commercial humidity sensor, characterized by a good sensitivity, a rapid response, and fast recovery times. The functional role for each of the components of the ternary CNHox/TiO2/PVP nanohybrid is explained by considering issues such as their electronic properties, affinity for water molecules, and internal pore accessibility. The decreasing number of holes in the carbonaceous component at the interaction with water molecules, with the protonic conduction (Grotthus mechanism), and with swelling were analyzed to evaluate the sensing mechanism. The hard–soft acid-base (HSAB) theory also has proven to be a valuable tool for understanding the complex interaction of the ternary nanohybrid with moisture.
Collapse
|
12
|
Sadrnia A, Orooji Y, Behmaneshfar A, Darabi R, Maghsoudlou Kamali D, Karimi-Maleh H, Opoku F, Govender PP. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe 3O 4/graphene nanoribbons adsorbent. ENVIRONMENTAL RESEARCH 2021; 200:111522. [PMID: 34129863 DOI: 10.1016/j.envres.2021.111522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
This paper aims to develop a Box-Behnken experimental design system to optimize the removal process of doxorubicin anticancer drugs. For this goal, Fe3O4/graphene nanoribbons was selected as adsorbent and removal of doxorubicin anticancer drug optimized using Box-Behnken experimental design with a selection of four effective factors. A three-level, four-factor Box-Behnken experimental design was used to assess the relationship between removal percentage as a dependent variable with adsorption weight (0.0015-0.01 mg), pH (3-9), temperature (15-45 °C) and time (1-15 min) as independent variables. Optimized condition by Behnken experimental design (pH = 7.36; time = 15 min; adsorbent weight = 0.01 mg and temperature = 29.26 °C) improved removal of doxorubicin anticancer drug about 99.2% in aqueous solution. The dynamic behavior, adsorption properties and mechanism of doxorubicin molecule on Fe3O4/graphene nanoribbon were investigated based on ab initio molecular dynamics (AIMD) simulations and density functional theory calculations with dispersion corrections. A closer inspection of the adsorption configurations and binding energies revealed that π-π interactions were the driving force when the doxorubicin molecule adsorbed on Fe3O4/graphene nanoribbon. The observed negative adsorption energy signifies a favourable and exothermic adsorption process of the various adsorbate-substrate systems. Besides, AIMD and phonon dispersion calculations confirm the dynamic stability of Fe3O4/graphene nanoribbon.
Collapse
Affiliation(s)
- Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Donya Maghsoudlou Kamali
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China; Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Francis Opoku
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Penny Poomani Govender
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
13
|
Singh S, Sattigeri RM, Kumar S, Jha PK, Sharma S. Superior Room-Temperature Ammonia Sensing Using a Hydrothermally Synthesized MoS 2/SnO 2 Composite. ACS OMEGA 2021; 6:11602-11613. [PMID: 34056316 PMCID: PMC8154003 DOI: 10.1021/acsomega.1c00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 05/31/2023]
Abstract
Layered two-dimensional transition metal dichalcogenides, due to their semiconducting nature and large surface-to-volume ratio, have created their own niche in the field of gas sensing. Their large recovery time and accompanied incomplete recovery result in inferior sensing properties. Here, we report a composite-based strategy to overcome these issues. In this study, we report a facile double-step synthesis of a MoS2/SnO2 composite and its successful use as a superior room-temperature ammonia sensor. Contrary to the pristine nanosheet-based sensors, the devices made using the composite display superior gas sensing characteristics with faster response. Specifically, at room temperature (30° C), the composite-based sensor exhibited excellent sensitivity (10%) at an ammonia concentration down to 0.4 ppm along with the response and recovery times of 2 and 10 s, respectively. Moreover, the device also exhibited long-term durability, reproducibility, and selectivity toward ammonia against hydrogen sulfide, methanol, ethanol, benzene, acetone, and formaldehyde. Sensor devices made on quartz and alumina substrates with different roughnesses have yielded almost an identical response, except for slight variations in response and recovery transients. Further, to shed light on the underlying adsorption energetics and selectivity, density functional theory simulations were employed. The improved response and enhanced selectivity of the composite were explicitly discussed in terms of adsorption energy. Lowdin charge analysis was performed to understand the charge transfer mechanism between NH3, H2S, CH3OH, HCHO, and the underlying MoS2/SnO2 composite surface. The long-term durability of the sensor was evident from the stable response curves even after 2 months. These results indicate that hydrothermally synthesized MoS2/SnO2 composite-based gas sensors can be used as a promising sensing material for monitoring ammonia gas in real fields.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Raghottam M. Sattigeri
- Department
of Physics, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Suresh Kumar
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Prafulla K. Jha
- Department
of Physics, The Maharaja Sayajirao University
of Baroda, Vadodara 390002, Gujarat, India
| | - Sandeep Sharma
- Department
of Physics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
14
|
Hwang SI, Chen HY, Fenk C, Rothfuss MA, Bocan KN, Franconi NG, Morgan GJ, White DL, Burkert SC, Ellis JE, Vinay ML, Rometo DA, Finegold DN, Sejdic E, Cho SK, Star A. Breath Acetone Sensing Based on Single-Walled Carbon Nanotube-Titanium Dioxide Hybrids Enabled by a Custom-Built Dehumidifier. ACS Sens 2021; 6:871-880. [PMID: 33720705 DOI: 10.1021/acssensors.0c01973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acetone is a metabolic byproduct found in the exhaled breath and can be measured to monitor the metabolic degree of ketosis. In this state, the body uses free fatty acids as its main source of fuel because there is limited access to glucose. Monitoring ketosis is important for type I diabetes patients to prevent ketoacidosis, a potentially fatal condition, and individuals adjusting to a low-carbohydrate diet. Here, we demonstrate that a chemiresistor fabricated from oxidized single-walled carbon nanotubes functionalized with titanium dioxide (SWCNT@TiO2) can be used to detect acetone in dried breath samples. Initially, due to the high cross sensitivity of the acetone sensor to water vapor, the acetone sensor was unable to detect acetone in humid gas samples. To resolve this cross-sensitivity issue, a dehumidifier was designed and fabricated to dehydrate the breath samples. Sensor response to the acetone in dried breath samples from three volunteers was shown to be linearly correlated with the two other ketone bodies, acetoacetic acid in urine and β-hydroxybutyric acid in the blood. The breath sampling and analysis methodology had a calculated acetone detection limit of 1.6 ppm and capable of detecting up to at least 100 ppm of acetone, which is the dynamic range of breath acetone for someone with ketosis. Finally, the application of the sensor as a breath acetone detector was studied by incorporating the sensor into a handheld prototype breathalyzer.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Hou-Yu Chen
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Courtney Fenk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Gregory J. Morgan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James E. Ellis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David A. Rometo
- Department of Endocrinology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David N. Finegold
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Sung Kwon Cho
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Osikoya AO, Opoku F, Govender PP. Electrochemical detection of amoxicillin on 2D graphene-gold nanoparticle-Lacasse bio-interfaces: Combined experimental and theoretical study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Keyvanfard M, Karimi-Maleh H, Karimi F, Opoku F, Kiarii EM, Govender PP, Taghavi M, Fu L, Aygun A, Sen F. Electro-catalytic amplified sensor for determination of N-acetylcysteine in the presence of theophylline confirmed by experimental coupled theoretical investigation. Sci Rep 2021; 11:1006. [PMID: 33441706 PMCID: PMC7806823 DOI: 10.1038/s41598-020-79872-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
The 1,l/-bis(2-phenylethan-1-ol)ferrocene, 1-butyl-3-methylimidazolium hexafluoro phosphate (BMPF6) and NiO-SWCNTs were used to modify carbon paste electrode (BPOFc/BMPF6/NiO-SWCNTs/CPE), which could act as an electro-catalytic tool for the analysis of N-acetylcysteine in this work. The BPOFc/BMPF6/NiO-SWCNTs/CPE with high electrical conductivity showed two completely separate signals with oxidation potentials of 432 and 970 mV for the first time that is sufficient for the determination of N-acetylcysteine in the presence of theophylline. The BPOFc/BMPF6/NiO-SWCNTs/CPE showed linear dynamic ranges of 0.02–300.0 μM and 1.0–350.0 μM with the detection limit of ~ 8.0 nM and 0.6 μM for the measurement of N-acetylcysteine and theophylline, respectively. In the second part, understanding the nature of interaction, quantum conductance modulation, electronic properties, charge density, and adsorption behavior of N-acetylcysteine on NiO–SWCNTs surface from first-principle studies through the use of theoretical investigation is vital for designing high-performance sensor materials. The N-acetylcysteine molecule was chemisorbed on the NiO–SWCNTs surface by suitable adsorption energies (− 1.102 to − 5.042 eV) and reasonable charge transfer between N-acetylcysteine and NiO–SWCNTs.
Collapse
Affiliation(s)
- Mohsen Keyvanfard
- Department of Chemistry, Majlesi Branch, Islamic Azad University, Majlesi, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, People's Republic of China. .,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran. .,Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, People's Republic of China. .,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Francis Opoku
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Ephraim Muriithi Kiarii
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Poomani Penny Govender
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Mehdi Taghavi
- Polymer Chemistry Research Laboratory, Faculty of Science, Shahid Chamran University, 61357-43337, Ahvaz, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| |
Collapse
|
17
|
Rasheed T, Hassan AA, Kausar F, Sher F, Bilal M, Iqbal HM. Carbon nanotubes assisted analytical detection – Sensing/delivery cues for environmental and biomedical monitoring. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116066] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Electrochemical anticancer drug sensor for determination of raloxifene in the presence of tamoxifen using graphene-CuO-polypyrrole nanocomposite structure modified pencil graphite electrode: Theoretical and experimental investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Kumar KG, Avinash B, Rahimi-Gorji M, Majdoubi J. Photocatalytic activity and smartness of TiO2 nanotube arrays for room temperature acetone sensing. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Kalidoss R, Umapathy S. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator. Biomed Microdevices 2019; 22:2. [PMID: 31797133 DOI: 10.1007/s10544-019-0448-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The characterization of acetone in exhaled breath reflects the internal metabolism of glucose in bloodstream and airways. This phenomenon provides a great potential for non-invasive diagnosis of diabetes mellitus and has inspired medical sodalities as an alternative diagnostic tool. This review discusses about the origination of acetone in breath, its correlation with blood glucose level along with the ways to collect breath sample. Furthermore, we also discuss the detection of acetone by chemical sensors with emphasis on the use of pre-concentrators on a single lab-on-chip for the diagnosis of diabetes mellitus. Finally, this review outlines the future directions for the detection of acetone from exhaled breath. The first part of the review introduces the biochemistry and prevalence of diabetes in India along with the existing techniques to estimate the concentration of acetone. The second part focuses on the semiconducting metal oxide and polymer gas sensors which discusses about tailoring the dynamic sensitivity range and selectivity towards acetone in breath. The third part elaborates on the ways to pre-concentrate the target biomarkers along with future perspectives for non-invasive diabetes diagnosis. Finally we also provide the perspectives on future challenges to make it to clinical practice. Graphical abstract .
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Snekhalatha Umapathy
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
21
|
Zeng N, Long Z, Wang Y, Sun J, Ouyang J, Na N. An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations. Anal Chem 2019; 91:15763-15768. [DOI: 10.1021/acs.analchem.9b04023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ni Zeng
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Hwang SI, Franconi NG, Rothfuss MA, Bocan KN, Bian L, White DL, Burkert SC, Euler RW, Sopher BJ, Vinay ML, Sejdic E, Star A. Tetrahydrocannabinol Detection Using Semiconductor-Enriched Single-Walled Carbon Nanotube Chemiresistors. ACS Sens 2019; 4:2084-2093. [PMID: 31321969 DOI: 10.1021/acssensors.9b00762] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Semiconductor-enriched single-walled carbon nanotubes (s-SWCNTs) have potential for application as a chemiresistor for the detection of breath compounds, including tetrahydrocannabinol (THC), the main psychoactive compound found in the marijuana plant. Herein we show that chemiresistor devices fabricated from s-SWCNT ink using dielectrophoresis can be incorporated into a hand-held breathalyzer with sensitivity toward THC generated from a bubbler containing analytical standard in ethanol and a heated sample evaporator that releases compounds from steel wool. The steel wool was used to capture THC from exhaled marijuana smoke. The generation of the THC from the bubbler and heated breath sample chamber was confirmed using ultraviolet-visible absorption spectroscopy and mass spectrometry, respectively. Enhanced selectivity toward THC over more volatile breath components such as CO2, water, ethanol, methanol, and acetone was achieved by delaying the sensor reading to allow for the desorption of these compounds from the chemiresistor surface. Additionally, machine learning algorithms were utilized to improve the selective detection of THC with better accuracy at increasing quantities of THC delivered to the chemiresistor.
Collapse
Affiliation(s)
- Sean I. Hwang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicholas G. Franconi
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael A. Rothfuss
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kara N. Bocan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Long Bian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - David L. White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Raymond W. Euler
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brett J. Sopher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Miranda L. Vinay
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ervin Sejdic
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
23
|
Abstract
Carbon nanotubes (CNTs) promise to advance a number of real-world technologies. Of these applications, they are particularly attractive for uses in chemical sensors for environmental and health monitoring. However, chemical sensors based on CNTs are often lacking in selectivity, and the elucidation of their sensing mechanisms remains challenging. This review is a comprehensive description of the parameters that give rise to the sensing capabilities of CNT-based sensors and the application of CNT-based devices in chemical sensing. This review begins with the discussion of the sensing mechanisms in CNT-based devices, the chemical methods of CNT functionalization, architectures of sensors, performance parameters, and theoretical models used to describe CNT sensors. It then discusses the expansive applications of CNT-based sensors to multiple areas including environmental monitoring, food and agriculture applications, biological sensors, and national security. The discussion of each analyte focuses on the strategies used to impart selectivity and the molecular interactions between the selector and the analyte. Finally, the review concludes with a brief outlook over future developments in the field of chemical sensors and their prospects for commercialization.
Collapse
Affiliation(s)
- Vera Schroeder
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Maggie He
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Sibo Lin
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
24
|
Freddi S, Drera G, Pagliara S, Goldoni A, Sangaletti L. Enhanced selectivity of target gas molecules through a minimal array of gas sensors based on nanoparticle-decorated SWCNTs. Analyst 2019; 144:4100-4110. [DOI: 10.1039/c9an00551j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layers of CNTs decorated with metal and metal–oxide nanoparticles can be used to develop highly selective gas sensor arrays.
Collapse
Affiliation(s)
- Sonia Freddi
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | - Giovanni Drera
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | - Stefania Pagliara
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| | | | - Luigi Sangaletti
- I-Lamp and Dipartimento di Matematica e Fisica
- Università Cattolica del Sacro Cuore
- 25121 Brescia
- Italy
| |
Collapse
|
25
|
Li W, Elzatahry A, Aldhayan D, Zhao D. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem Soc Rev 2018; 47:8203-8237. [PMID: 30137079 DOI: 10.1039/c8cs00443a] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because of its unmatched resource potential, solar energy utilization currently is one of the hottest research areas. Much effort has been devoted to developing advanced materials for converting solar energy into electricity, solar fuels, active chemicals, or heat. Among them, TiO2 nanomaterials have attracted much attention due to their unique properties such as low cost, nontoxicity, good stability and excellent optical and electrical properties. Great progress has been made, but research opportunities are still present for creating new nanostructured TiO2 materials. Core-shell structured nanomaterials are of great interest as they provide a platform to integrate multiple components into a functional system, showing improved or new physical and chemical properties, which are unavailable from the isolated components. Consequently, significant effort is underway to design, fabricate and evaluate core-shell structured TiO2 nanomaterials for solar energy utilization to overcome the remaining challenges, for example, insufficient light absorption and low quantum efficiency. This review strives to provide a comprehensive overview of major advances in the synthesis of core-shell structured TiO2 nanomaterials for solar energy utilization. This review starts from the general protocols to construct core-shell structured TiO2 nanomaterials, and then discusses their applications in photocatalysis, water splitting, photocatalytic CO2 reduction, solar cells and photothermal conversion. Finally, we conclude with an outlook section to offer some insights on the future directions and prospects of core-shell structured TiO2 nanomaterials and solar energy conversion.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
26
|
Wang T, Song S, Liu Q, Chu W, Li L, Huang Q, Jiang C. Assembling Carbon into Anatase TiO2
as Interstitial Atoms towards Photocatalytic Activity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Teng Wang
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Shuang Song
- College of Architecture & Environment; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Qiang Liu
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Wei Chu
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
- College of Architecture & Environment; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Luming Li
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Qingsong Huang
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
| | - Chengfa Jiang
- School of Chemical Engineering; Sichuan University; 610065 Chengdu Sichuan P.R.China
| |
Collapse
|
27
|
Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 2018; 47:4781-4859. [PMID: 29888356 DOI: 10.1039/c8cs00317c] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article is an overview of the present and ongoing developments in the field of nanomaterial-based sensors for enabling fast, relatively inexpensive and minimally (or non-) invasive diagnostics of health conditions with follow-up by detecting volatile organic compounds (VOCs) excreted from one or combination of human body fluids and tissues (e.g., blood, urine, breath, skin). Part of the review provides a didactic examination of the concepts and approaches related to emerging sensing materials and transduction techniques linked with the VOC-based non-invasive medical evaluations. We also present and discuss diverse characteristics of these innovative sensors, such as their mode of operation, sensitivity, selectivity and response time, as well as the major approaches proposed for enhancing their ability as hybrid sensors to afford multidimensional sensing and information-based sensing. The other parts of the review give an updated compilation of the past and currently available VOC-based sensors for disease diagnostics. This compilation summarizes all VOCs identified in relation to sickness and sampling origin that links these data with advanced nanomaterial-based sensing technologies. Both strength and pitfalls are discussed and criticized, particularly from the perspective of the information and communication era. Further ideas regarding improvement of sensors, sensor arrays, sensing devices and the proposed workflow are also included.
Collapse
Affiliation(s)
- Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | | | | | | | | |
Collapse
|
28
|
Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process. NANOMATERIALS 2018; 8:nano8060403. [PMID: 29874789 PMCID: PMC6026900 DOI: 10.3390/nano8060403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu2O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.
Collapse
|
29
|
Park S, Lee DY. Materials and Applications of Smart Diagnostic Contact Lens Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:155-160. [PMID: 30357623 DOI: 10.1007/978-981-13-0950-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Contact lenses were originally developed for the purpose of vision correction, but they have recently been used for various purposes. Because contact lenses are minimally invasive, they are used in diagnostic and drug delivery applications. In particular, interest in using contact lenses for the purpose of diagnosing diseases by fusing contact lenses with information technology (IT), nanotechnology (NT), and biotechnology (BT) is increasing. These contact lens-based platforms are getting more attention as Google and Novartis develop contact lenses for diabetes diagnosis. Therefore, this chapter introduces materials that can be used for contact lens materials and diagnostic contact lenses, and discusses future prospects.
Collapse
Affiliation(s)
- Sijin Park
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, South Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, South Korea.
| |
Collapse
|
30
|
Schütt F, Postica V, Adelung R, Lupan O. Single and Networked ZnO-CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23107-23118. [PMID: 28654234 DOI: 10.1021/acsami.7b03702] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Highly porous hybrid materials with unique high-performance properties have attracted great interest from the scientific community, especially in the field of gas-sensing applications. In this work, tetrapodal-ZnO (ZnO-T) networks were functionalized with carbon nanotubes (CNTs) to form a highly efficient hybrid sensing material (ZnO-T-CNT) for ultrasensitive, selective, and rapid detection of ammonia (NH3) vapor at room temperature. By functionalizing the ZnO-T networks with 2.0 wt % of CNTs by a simple dripping procedure, an increase of 1 order of magnitude in response (from about 37 to 330) was obtained. Additionally, the response and recovery times were improved (by decreasing them from 58 and 61 s to 18 and 35 s, respectively). The calculated lowest detection limit of 200 ppb shows the excellent potential of the ZnO-T-CNT networks as NH3 vapor sensors. Room temperature operation of such networked ZnO-CNT hybrid tetrapods shows an excellent long-time stability of the fabricated sensors. Additionally, the gas-sensing mechanism was identified and elaborated based on the high porosity of the used three-dimensional networks and the excellent conductivity of the CNTs. On top of that, several single hybrid microtetrapod-based devices were fabricated (from samples with 2.0 wt % CNTs) with the help of the local metal deposition function of a focused ion beam/scanning electron microscopy instrument. The single microdevices are based on tetrapods with arms having a diameter of around 0.35 μm and show excellent NH3 sensing performance with a gas response (Igas/Iair) of 6.4. Thus, the fabricated functional networked ZnO-CNT hybrid tetrapods will allow to detect ammonia and to quantify its concentration in automotive, environmental monitoring, chemical industry, and medical diagnostics.
Collapse
Affiliation(s)
- Fabian Schütt
- Institute for Materials Science, Kiel University , Kaiser str. 2, D-24143 Kiel, Germany
| | - Vasile Postica
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova , 168 Stefan cel Mare Avenue, MD-2004 Chisinau, Republic of Moldova
| | - Rainer Adelung
- Institute for Materials Science, Kiel University , Kaiser str. 2, D-24143 Kiel, Germany
| | - Oleg Lupan
- Institute for Materials Science, Kiel University , Kaiser str. 2, D-24143 Kiel, Germany
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova , 168 Stefan cel Mare Avenue, MD-2004 Chisinau, Republic of Moldova
| |
Collapse
|
31
|
Liu M, Ding X, Yang Q, Wang Y, Zhao G, Yang N. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO 2@CNTs nanostructure. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:309-320. [PMID: 28273581 DOI: 10.1016/j.jhazmat.2017.02.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/21/2017] [Accepted: 02/18/2017] [Indexed: 05/14/2023]
Abstract
A simple and highly sensitive photoelectrochemical (PEC) sensor towards Microcystin-LR (MC-LR), a kind of typical cyanobacterial toxin in water samples, was developed on a surface molecular imprinted TiO2 coated multiwalled carbon nanotubes (MI-TiO2@CNTs) hybrid nanostructure. It was synthesized using a feasible two-step sol-gel method combining with in situ surface molecular imprinting technique (MIT). With a controllable core-shell tube casing structure, the resultant MI-TiO2@CNTs are enhanced greatly in visible-light driven response capacity. In comparison with the traditional TiO2 (P25) and non-imprinted (NI-)TiO2@CNTs, the MI-TiO2@CNTs based PEC sensor showed a much higher photoelectric oxidation capacity towards MC-LR. Using this sensor, the determination of MC-LR was doable in a wide linear range from 1.0pM to 3.0nM with a high photocurrent response sensitivity. An outstanding selectivity towards MC-LR was further achieved with this sensor, proven by simultaneously monitoring 100-fold potential co-existing interferences. The superiority of the obtained MC-LR sensor in sensitivity and selectivity is mainly attributed to the high specific surface area and excellent photoelectric activity of TiO2@CNTs heterojunction structure, as well as the abundant active recognition sites on its functionalized molecular imprinting surface. A promising PEC analysis platform with high sensitivity and selectivity for MC-LR has thus been provided.
Collapse
Affiliation(s)
- Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xue Ding
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Qiwei Yang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Paul-Bonatz Str. 9-11, Siegen 57076, Germany.
| |
Collapse
|
32
|
The Electrostatically Formed Nanowire: A Novel Platform for Gas-Sensing Applications. SENSORS 2017; 17:s17030471. [PMID: 28245637 PMCID: PMC5375757 DOI: 10.3390/s17030471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 02/02/2023]
Abstract
The electrostatically formed nanowire (EFN) gas sensor is based on a multiple-gate field-effect transistor with a conducting nanowire, which is not defined physically; rather, the nanowire is defined electrostatically post-fabrication, by using appropriate biasing of the different surrounding gates. The EFN is fabricated by using standard silicon processing technologies with relaxed design rules and, thereby, supports the realization of a low-cost and robust gas sensor, suitable for mass production. Although the smallest lithographic definition is higher than half a micrometer, appropriate tuning of the biasing of the gates concludes a conducting channel with a tunable diameter, which can transform the conducting channel into a nanowire with a diameter smaller than 20 nm. The tunable size and shape of the nanowire elicits tunable sensing parameters, such as sensitivity, limit of detection, and dynamic range, such that a single EFN gas sensor can perform with high sensitivity and a broad dynamic range by merely changing the biasing configuration. The current work reviews the design of the EFN gas sensor, its fabrication considerations and process flow, means of electrical characterization, and preliminary sensing performance at room temperature, underlying the unique and advantageous tunable capability of the device.
Collapse
|
33
|
Ding M, Liu Y, Wang G, Zhao Z, Yin A, He Q, Huang Y, Duan X. Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602969. [PMID: 27862908 DOI: 10.1002/smll.201602969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 05/22/2023]
Abstract
Ultrathin platinum nanowires obtained from wet-synthesis with no strong binding ligands exhibit very high sensitivity toward hydrogen gas (two orders of magnitude increase compared with state-of-the-art devices). Their chemical sensitivity, selectivity, and other sensing characteristics can be rationally tailored through further surface engineering. A significantly reduced cross-sensitivity toward humidity is achieved, while the hydrogen sensitivity is preserved or even enhanced.
Collapse
Affiliation(s)
- Mengning Ding
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gongming Wang
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anxiang Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiyuan He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Ellis JE, Star A. Carbon Nanotube Based Gas Sensors toward Breath Analysis. Chempluschem 2016; 81:1248-1265. [DOI: 10.1002/cplu.201600478] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 12/25/2022]
Affiliation(s)
- James E. Ellis
- Department of Chemistry; University of Pittsburgh; Pittsburgh PA 15260 USA
| | - Alexander Star
- Department of Chemistry; University of Pittsburgh; Pittsburgh PA 15260 USA
| |
Collapse
|
35
|
Komori K, Yamura K, Kogo A, Takahashi Y, Tatsuma T, Sakoda A, Sakai Y. Oxygenated Cup-Stacked Carbon Nanofibers/TiO2 Composite Films with Enhanced Photocatalytic Currents. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kikuo Komori
- Institute of Industrial Science, The University of Tokyo
| | - Kentaro Yamura
- Institute of Industrial Science, The University of Tokyo
| | - Atsushi Kogo
- Institute of Industrial Science, The University of Tokyo
| | | | - Tetsu Tatsuma
- Institute of Industrial Science, The University of Tokyo
| | | | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
36
|
Swaminathan N, Henning A, Vaknin Y, Shimanovich K, Godkin A, Shalev G, Rosenwaks Y. Dynamic Range Enhancement Using the Electrostatically Formed Nanowire Sensor. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nandhini Swaminathan
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Alex Henning
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Yonathan Vaknin
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Klimentiy Shimanovich
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Andrey Godkin
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Gil Shalev
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| | - Yossi Rosenwaks
- Department
of Physical Electronics,
School of Electrical Engineering, Tel Aviv University, Ramat Aviv − 69978, Israel
| |
Collapse
|
37
|
Peng G, Ellis JE, Xu G, Xu X, Star A. In Situ Grown TiO2 Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7403-10. [PMID: 26929979 PMCID: PMC6540760 DOI: 10.1021/acsami.6b01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Titanium dioxide (TiO2) nanostructures and TiO2/graphene nanocomposites are intensively studied materials for energy conversion, energy storage, and organic contaminant photodegradation. However, for TiO2/graphene composites, impermeability across the graphitic basal plane for electrolytes, metal ions, and gas molecules hinders their practical applications. Herein we report a simple, environmentally friendly synthetic route for mesoporous anatase TiO2 nanospindles, and successfully apply this method to obtain in situ grown TiO2 nanospindles/graphene oxide composite. After a thermal reduction at 400 °C, holes are created in the reduced graphene oxide (RGO) sheets through a photocatalytic oxidation mechanism. The formation of holes in RGO is promoted by photogenerated hydroxyl radicals that oxidize and subsequently decarboxylate the graphitic surface of RGO. The proposed mechanism was supported by photocatalytic electrochemical properties of the nanomaterials. The resulting TiO2/holey RGO composites may overcome the original impermeability of graphene sheets and find applications in catalysis, energy conversion/storage devices, and sensors.
Collapse
Affiliation(s)
- Guiming Peng
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James E. Ellis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Gang Xu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- Corresponding Author Address correspondence to
| | - Xueqing Xu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Corresponding Author Address correspondence to
| |
Collapse
|
38
|
Zhang H, Luo Y, Zhuo M, Yang T, Liang J, Zhang M, Ma J, Duan H, Li Q. Diethylamine gas sensor using V2O5-decorated α-Fe2O3 nanorods as a sensing material. RSC Adv 2016. [DOI: 10.1039/c5ra23032b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
V2O5-decorated α-Fe2O3 composite nanorods were synthesized successfully by electrospinning and an environmentally-friendly soak-calcination method.
Collapse
Affiliation(s)
- Haonan Zhang
- College of Electrical and Information Engineering
- Hunan University
- China
| | - Yazi Luo
- College of Electrical and Information Engineering
- Hunan University
- China
| | - Ming Zhuo
- College of Electrical and Information Engineering
- Hunan University
- China
| | - Ting Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Jiaojiao Liang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Ming Zhang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Jianmin Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Huigao Duan
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiuhong Li
- College of Electrical and Information Engineering
- Hunan University
- China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology of Xiamen University
- Xiamen
| |
Collapse
|
39
|
Ellis JE, Green U, Sorescu DC, Zhao Y, Star A. Indium Oxide-Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature. J Phys Chem Lett 2015; 6:712-717. [PMID: 26262491 DOI: 10.1021/jz502631a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Utilizing a sol-gel synthesis, indium oxide is grown on the surface of oxidized single-walled carbon nanotubes (SWCNT) to form a hybrid material with high conductivity and sensitivity toward certain organic vapors. The room-temperature sensing of dilute ethanol and acetone vapors on the surface of indium oxide/SWCNT hybrid material is studied using electrical conductance experiments in a nonoxidizing environment. Through testing of variously calcinated materials, it was observed that the degree of annealing greatly affects the material's response to acetone and ethanol, such that the intermediate calcination condition yields the best sensitivity. DFT simulations are used to study the interface between defective SWCNT and indium oxide, as well as the interaction between ethanol and acetone molecules with the indium oxide/SWCNT hybrid material.
Collapse
Affiliation(s)
- James E Ellis
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Uri Green
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Dan C Sorescu
- ‡United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States
- §Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yong Zhao
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
40
|
Zhang D, Liu A, Chang H, Xia B. Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 2015. [DOI: 10.1039/c4ra10942b] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this paper, we demonstrated a room-temperature acetone gas sensor based on a tin dioxide (SnO2)-reduced graphene oxide (RGO) hybrid composite film.
Collapse
Affiliation(s)
- Dongzhi Zhang
- College of Information and Control Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- People’s Republic of China
| | - Aiming Liu
- College of Information and Control Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- People’s Republic of China
| | - Hongyan Chang
- College of Information and Control Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- People’s Republic of China
| | - Bokai Xia
- College of Information and Control Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- People’s Republic of China
| |
Collapse
|
41
|
Kim SM, Lee G, In I, Park SY. Superior Photocatalytic Activity of Titanium Dioxide Nanoparticles Linked on Single-walled Carbon Nanotubes through Mussel-inspired Chemistry. CHEM LETT 2014. [DOI: 10.1246/cl.140627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sung Min Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation
| | - Insik In
- Department of Polymer Science and Engineering, Korea National University of Transportation
- Department of IT Convergence, Korea National University of Transportation
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation
- Department of IT Convergence, Korea National University of Transportation
| |
Collapse
|
42
|
Makaram P, Owens D, Aceros J. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics (Basel) 2014; 4:27-46. [PMID: 26852676 PMCID: PMC4665544 DOI: 10.3390/diagnostics4020027] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 11/17/2022] Open
Abstract
Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.
Collapse
Affiliation(s)
| | - Dawn Owens
- Department of Electrical Engineering, University of North Florida, Jacksonville, FL 32246, USA.
| | - Juan Aceros
- Department of Electrical Engineering, University of North Florida, Jacksonville, FL 32246, USA.
| |
Collapse
|
43
|
Huang F, Yan AH, Fu ZY, Zhang F, Wang YH, Yin SB, Qiang YH. Preparation of hollow dipyramid TiO2with truncated structure using an oxidation/etch method and its gas-sensing properties. CRYSTAL RESEARCH AND TECHNOLOGY 2014. [DOI: 10.1002/crat.201400017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Huang
- Low Carbon Energy Institute; China University of Mining and Technology; Xuzhou 221008 China
- School of Materials Science and Engineering; China University of Mining and Technology; Xuzhou 221008 China
| | - Ai-Hua Yan
- Low Carbon Energy Institute; China University of Mining and Technology; Xuzhou 221008 China
| | - Zheng-Yi Fu
- State Key Lab of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
| | - Fan Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; Wuhan 430070 China
| | - Yue-Hua Wang
- College of Sciences; China University of Mining and Technology; Xuzhou 221008 China
| | - Shi-Bin Yin
- Low Carbon Energy Institute; China University of Mining and Technology; Xuzhou 221008 China
- School of Materials Science and Engineering; China University of Mining and Technology; Xuzhou 221008 China
| | - Ying-Huai Qiang
- School of Materials Science and Engineering; China University of Mining and Technology; Xuzhou 221008 China
| |
Collapse
|
44
|
Yuan K, Chen L, Tan L, Chen Y. Performance Enhancement of Bulk Heterojunction Solar Cells with Direct Growth of CdS-Cluster-Decorated Graphene Nanosheets. Chemistry 2014; 20:6010-8. [DOI: 10.1002/chem.201400119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Indexed: 11/06/2022]
|
45
|
Li X, Zhang H, Feng C, Sun Y, Ma J, Wang C, Lu G. Novel cage-like α-Fe2O3/SnO2 composite nanofibers by electrospinning for rapid gas sensing properties. RSC Adv 2014. [DOI: 10.1039/c4ra03307h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel α-Fe2O3/SnO2 composite nanofibers were fabricated by a homotaxial electrospinning method.
Collapse
Affiliation(s)
- Xin Li
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Hang Zhang
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Changhao Feng
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Yanfeng Sun
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Jian Ma
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Chong Wang
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| | - Geyu Lu
- Jilin University
- College of Electronic Science and Engineering
- Jilin 130012
- , China
| |
Collapse
|