1
|
Cubuk J, Greenberg L, Greenberg AE, Emenecker RJ, Stuchell-Brereton MD, Holehouse AS, Soranno A, Greenberg MJ. Structural dynamics of the intrinsically disordered linker region of cardiac troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596451. [PMID: 38853835 PMCID: PMC11160775 DOI: 10.1101/2024.05.30.596451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of troponin, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for cardiomyopathy mutations. This linker region is predicted to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker and demonstrate that it does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other troponin complex subunits, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms driving the pathogenesis of cardiomyopathies.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| |
Collapse
|
2
|
Cubuk J, Incicco JJ, Hall KB, Holehouse AS, Stuchell-Brereton MD, Soranno A. The dimerization domain of SARS CoV 2 Nucleocapsid protein is partially disordered as a monomer and forms a high affinity dynamic complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614883. [PMID: 39386676 PMCID: PMC11463464 DOI: 10.1101/2024.09.25.614883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The SARS-CoV-2 Nucleocapsid (N) is a 419 amino acids protein that drives the compaction and packaging of the viral genome. This compaction is aided not only by protein-RNA interactions, but also by protein-protein interactions that contribute to increasing the valence of the nucleocapsid protein. Here, we focused on quantifying the mechanisms that control dimer formation. Single-molecule Förster Resonance Energy Transfer enabled us to investigate the conformations of the dimerization domain in the context of the full-length protein as well as the energetics associated with dimerization. Under monomeric conditions, we observed significantly expanded configurations of the dimerization domain (compared to the folded dimer structure), which are consistent with a dynamic conformational ensemble. The addition of unlabeled protein stabilizes a folded dimer configuration with a high mean transfer efficiency, in agreement with predictions based on known structures. Dimerization is characterized by a dissociation constant of ~ 12 nM at 23 °C and is driven by strong enthalpic interactions between the two protein subunits, which originate from the coupled folding and binding. Interestingly, the dimer structure retains some of the conformational heterogeneity of the monomeric units, and the addition of denaturant reveals that the dimer domain can significantly expand before being completely destabilized. Our findings suggest that the inherent flexibility of the monomer form is required to adopt the specific fold of the dimer domain, where the two subunits interlock with one another. We proposed that the retained flexibility of the dimer form may favor the capture and interactions with RNA, and that the temperature dependence of dimerization may explain some of the previous observations regarding the phase separation propensity of the N protein.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - J. Jeremias Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- current address: Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires - CONICET, Ciudad de Buenos Aires, Argentina
| | - Kathleen B. Hall
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| |
Collapse
|
3
|
Rissone P, Severino A, Pastor I, Ritort F. Universal cold RNA phase transitions. Proc Natl Acad Sci U S A 2024; 121:e2408313121. [PMID: 39150781 PMCID: PMC11348302 DOI: 10.1073/pnas.2408313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.
Collapse
Affiliation(s)
- Paolo Rissone
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Aurélien Severino
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Isabel Pastor
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
4
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Firouzbakht A, Haider A, Gaalswyk K, Alaeen S, Ghosh K, Gruebele M. HYPK: A marginally disordered protein sensitive to charge decoration. Proc Natl Acad Sci U S A 2024; 121:e2316408121. [PMID: 38657047 PMCID: PMC11067017 DOI: 10.1073/pnas.2316408121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.
Collapse
Affiliation(s)
- Arash Firouzbakht
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
| | - Austin Haider
- Department of Molecular and Cellular Biophysics, University of Denver, Denver, CO80210
| | - Kari Gaalswyk
- Department of Physics and Astronomy, University of Denver, Denver, CO80210
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, CO80210
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Department of Physics, University of Illinois at Urbana Champaign, Urbana Champaign, IL61801
- Carle-Illinois College of Medicine, University of Illinois Urbana Champaign, Urbana Champaign, IL61801
- Center for Advanced Study, University of Illinois Urbana Champaign, Urbana Champaign, IL61801
| |
Collapse
|
6
|
Liu Z, Nguyen TTT, Ding F. Protocol for building a user-friendly temperature control system to support microscopes, microfluidic chambers, and custom incubators. STAR Protoc 2024; 5:102862. [PMID: 38294908 PMCID: PMC10846474 DOI: 10.1016/j.xpro.2024.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Biological experiments require precise temperature control, necessitating an integrated adjustable temperature system for instruments such as microscopes, microfluidic chambers, or custom incubators. We present a protocol for building a user-friendly temperature control system suitable for both in vitro and in vivo assays. We describe steps for preparing materials, assembling the printed circuit board and enclosure, and fine-tuning the heating algorithm for accuracy. This system can maintain a stable temperature of up to 60°C with stabilities under 0.06°C.
Collapse
Affiliation(s)
- Ziteng Liu
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA 92697, USA.
| | - Thao Thi Thu Nguyen
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Fangyuan Ding
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, Center for Synthetic Biology, Chao Family Comprehensive Cancer Center, Department of Developmental and Cell Biology, and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Alwehaidah MS, Alsabbagh M, Al-Kafaji G. Comprehensive analysis of mitochondrial DNA variants, mitochondrial DNA copy number and oxidative damage in psoriatic arthritis. Biomed Rep 2023; 19:85. [PMID: 37881602 PMCID: PMC10594069 DOI: 10.3892/br.2023.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Growing evidence suggests that abnormalities in mitochondrial DNA (mtDNA) are involved in the pathogenesis of various inflammatory and immuno-mediated diseases. The present study analysed the entire mitochondrial genome by next-generation sequencing (NGS) in 23 patients with psoriatic arthritis (PsA) and 20 healthy controls to identify PsA-related variants. Changes in mtDNA copy number (mtDNAcn) were also evaluated by quantitative polymerase chain reaction (qPCR) and mtDNA oxidative damage was measured using an 8-hydroxy-2'-deoxyguanosine assay. NGS analysis revealed a total of 435 variants including 187 in patients with PsA only and 122 in controls only. Additionally, 126 common variants were found, of which 2 variants differed significantly in their frequencies among patients and controls (P<0.05), and may be associated with susceptibility to PsA. A total of 33 missense variants in mtDNA-encoded genes for complexes I, III, IV and V were identified only in patients with PsA. Of them, 25 variants were predicted to be deleterious by affecting the functions and structures of encoded proteins, and 13 variants were predicted to affect protein's stability. mtDNAcn analysis revealed decreased mtDNA content in patients with PsA compared with controls (P=0.0001) but the decrease in mtDNAcn was not correlated with patients' age or inflammatory biomarkers (P>0.05). Moreover, a higher level of oxidative damage was observed in patients with PsA compared with controls (P=0.03). The results of the present comprehensive analysis of mtDNA in PsA revealed that certain mtDNA variants may be implicated in the predisposition/pathogenesis of PsA, highlighting the importance of NGS in the identification of mtDNA variants in PsA. The current results also demonstrated that decreased mtDNAcn in PsA may be a consequence of increased oxidative stress. These data provide valuable insights into the contribution of mtDNA defects to the pathogenesis of PsA. Additional studies in larger cohorts are needed to elucidate the role of mtDNA defects in PsA.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, City of Kuwait 31470, State of Kuwait
| | - Manhel Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
8
|
Stringer M, Cubuk J, Incicco JJ, Roy D, Hall KB, Stuchell-Brereton MD, Soranno A. Excluded Volume and Weak Interactions in Crowded Solutions Modulate Conformations and RNA Binding of an Intrinsically Disordered Tail. J Phys Chem B 2023; 127:5837-5849. [PMID: 37348142 PMCID: PMC10331728 DOI: 10.1021/acs.jpcb.3c02356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Indexed: 06/24/2023]
Abstract
The cellular milieu is a solution crowded with a significant concentration of different components (proteins, nucleic acids, metabolites, etc.). Such a crowded environment affects protein conformations, dynamics, and interactions. Intrinsically disordered proteins and regions are particularly sensitive to these effects. Here, we investigate the impact on an intrinsically disordered tail that flanks a folded domain, the N-terminal domain, and the RNA-binding domain of the SARS-CoV-2 nucleocapsid protein. We mimic the crowded environment of the cell using polyethylene glycol (PEG) and study its impact on protein conformations using single-molecule Förster resonance energy transfer. We found that high-molecular-weight PEG induces a collapse of the disordered N-terminal tail, whereas low-molecular-weight PEG induces a chain expansion. Our data can be explained by accounting for two opposing contributions: favorable interactions between the protein and crowder molecules and screening of excluded volume interactions. We further characterized the interaction between protein and RNA in the presence of crowding agents. While for all PEG molecules tested, we observed an increase in the binding affinity, the trend is not monotonic as a function of the degree of PEG polymerization. This points to the role of nonspecific protein-PEG interactions on binding in addition to the entropic effects due to crowding. To separate the enthalpic and entropic components of the effects, we investigated the temperature dependence of the association constants in the absence and presence of crowders. Finally, we compared the effects of crowding across mutations in the disordered region and found that the threefold difference in association constants for two naturally occurring variants of the SARS-CoV-2 nucleocapsid protein is reduced to almost identical affinities in the presence of crowders. Overall, our data provide new insights into understanding and modeling the contribution of crowding effects on disordered regions, including the impact of interactions between proteins and crowders and their interplay when binding a ligand.
Collapse
Affiliation(s)
- Madison
A. Stringer
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jasmine Cubuk
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - J. Jeremías Incicco
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Debjit Roy
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Kathleen B. Hall
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
| | - Melissa D. Stuchell-Brereton
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Andrea Soranno
- Department
of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Avenue, Saint
Louis, Missouri 63110, United States
- Center
for Biomolecular Condensates, Washington
University in St Louis, 1 Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
9
|
Pastore A, Temussi PA. The Protein Unfolded State: One, No One and One Hundred Thousand. J Am Chem Soc 2022; 144:22352-22357. [PMID: 36450361 PMCID: PMC9756289 DOI: 10.1021/jacs.2c07696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 12/03/2022]
Abstract
Many in vitro studies, in which proteins have been unfolded by the action of a variety of physical or chemical agents, have led to the definition of a folded versus an unfolded state and to the question of what is the nature of the unfolded state. The unstructured nature of this state could suggest that "the" unfolded state is a unique entity which holds true for all kinds of unfolding processes. This assumption has to be questioned because the unfolding processes under different stress conditions are dictated by entirely different mechanisms. As a consequence, it can be easily understood that the final state, generically referred to as "the unfolded state", can be completely different for each of the unfolding processes. The present review examines recent data on the characteristics of the unfolded states emerging from experiments under different conditions, focusing specific attention to the level of compaction of the unfolded species.
Collapse
Affiliation(s)
| | - Piero Andrea Temussi
- UK Dementia Research Institute at
the Maurice Wohl Institute of King’s College London, London, SE5 9RT, United Kingdom
| |
Collapse
|
10
|
The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays Biochem 2022; 66:875-890. [PMID: 36416865 PMCID: PMC9760427 DOI: 10.1042/ebc20220065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) have emerged as key players across many biological functions and diseases. Differently from structured proteins, disordered proteins lack stable structure and are particularly sensitive to changes in the surrounding environment. Investigation of disordered ensembles requires new approaches and concepts for quantifying conformations, dynamics, and interactions. Here, we provide a short description of the fundamental biophysical properties of disordered proteins as understood through the lens of single-molecule fluorescence observations. Single-molecule Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) provides an extensive and versatile toolbox for quantifying the characteristics of conformational distributions and the dynamics of disordered proteins across many different solution conditions, both in vitro and in living cells.
Collapse
|
11
|
Sun Q, Fu Y, Wang W. Temperature effects on hydrophobic interactions: Implications for protein unfolding. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
13
|
Puthenveetil R, Christenson ET, Vinogradova O. New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. MEMBRANES 2022; 12:227. [PMID: 35207148 PMCID: PMC8877495 DOI: 10.3390/membranes12020227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
A plethora of membrane proteins are found along the cell surface and on the convoluted labyrinth of membranes surrounding organelles. Since the advent of various structural biology techniques, a sub-population of these proteins has become accessible to investigation at near-atomic resolutions. The predominant bona fide methods for structure solution, X-ray crystallography and cryo-EM, provide high resolution in three-dimensional space at the cost of neglecting protein motions through time. Though structures provide various rigid snapshots, only an amorphous mechanistic understanding can be inferred from interpolations between these different static states. In this review, we discuss various techniques that have been utilized in observing dynamic conformational intermediaries that remain elusive from rigid structures. More specifically we discuss the application of structural techniques such as NMR, cryo-EM and X-ray crystallography in studying protein dynamics along with complementation by conformational trapping by specific binders such as antibodies. We finally showcase the strength of various biophysical techniques including FRET, EPR and computational approaches using a multitude of succinct examples from GPCRs, transporters and ion channels.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Section on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Dr., Bethesda, MD 20892, USA
| | | | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Wang Z, Mothi N, Muñoz V. Single-Molecule Fluorescence Spectroscopy Approaches for Probing Fast Biomolecular Dynamics and Interactions. Methods Mol Biol 2022; 2376:235-246. [PMID: 34845613 DOI: 10.1007/978-1-0716-1716-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule fluorescence spectroscopy, and particularly its Förster resonance energy transfer implementation (SM-FRET), provides the opportunity to resolve the stochastic conformational fluctuations undergone by individual protein molecules while they fold-unfold, bind to their partners, or carry out catalysis. Such information is key to resolve the microscopic pathways and mechanisms underlying such processes, and cannot be obtained from bulk experiments. To fully resolve protein conformational dynamics, SM-FRET experiments need to reach microsecond, and even sub-microsecond, time resolutions. The key to reach such resolution lies in increasing the efficiency at which photons emitted by a single molecule are collected and detected by the instrument (photon count rates). In this chapter, we describe basic procedures that an end user can follow to optimize the confocal microscope optics in order to maximize the photon count rates. We also discuss the use of photoprotection cocktails specifically designed to reduce fluorophore triplet buildup at high irradiance (the major cause of limiting photon emission rates) while improving the mid-term photostability of the fluorophores. Complementary strategies based on the data analysis are discussed in depth by other authors in Chap. 14 .
Collapse
Affiliation(s)
- Zifan Wang
- Department of Bioengineering, University of California at Merced, Merced, CA, USA
- NSF CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, CA, USA
| | - Nivin Mothi
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, CA, USA
- NSF CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, CA, USA
| | - Victor Muñoz
- Department of Bioengineering and Center for Cellular and Biomolecular Machines, University of California Merced, Merced, CA, USA.
| |
Collapse
|
15
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
16
|
Puglisi R, Karunanithy G, Hansen DF, Pastore A, Temussi PA. The anatomy of unfolding of Yfh1 is revealed by site-specific fold stability analysis measured by 2D NMR spectroscopy. Commun Chem 2021; 4:127. [PMID: 35243007 PMCID: PMC7612453 DOI: 10.1038/s42004-021-00566-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most techniques allow detection of protein unfolding either by following the behaviour of single reporters or as an averaged all-or-none process. We recently added 2D NMR spectroscopy to the well-established techniques able to obtain information on the process of unfolding using resonances of residues in the hydrophobic core of a protein. Here, we questioned whether an analysis of the individual stability curves from each resonance could provide additional site-specific information. We used the Yfh1 protein that has the unique feature to undergo both cold and heat denaturation at temperatures above water freezing at low ionic strength. We show that stability curves inconsistent with the average NMR curve from hydrophobic core residues mainly comprise exposed outliers that do nevertheless provide precious information. By monitoring both cold and heat denaturation of individual residues we gain knowledge on the process of cold denaturation and convincingly demonstrate that the two unfolding processes are intrinsically different.
Collapse
Affiliation(s)
- Rita Puglisi
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK
| | - Gogulan Karunanithy
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - D. Flemming Hansen
- grid.83440.3b0000000121901201Department of Structural Biology, Division of Biosciences, University College London, London, UK
| | - Annalisa Pastore
- grid.511435.7UK-DRI at King’s College London, The Wohl Institute, London, UK ,grid.5398.70000 0004 0641 6373European Synchrotron Radiation Facility, Grenoble, France
| | | |
Collapse
|
17
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
18
|
Ruidiaz SF, Dreier JE, Hartmann-Petersen R, Kragelund BB. The disordered PCI-binding human proteins CSNAP and DSS1 have diverged in structure and function. Protein Sci 2021; 30:2069-2082. [PMID: 34272906 PMCID: PMC8442969 DOI: 10.1002/pro.4159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) regularly constitute components of larger protein assemblies contributing to architectural stability. Two small, highly acidic IDPs have been linked to the so-called PCI complexes carrying PCI-domain subunits, including the proteasome lid and the COP9 signalosome. These two IDPs, DSS1 and CSNAP, have been proposed to have similar structural propensities and functions, but they display differences in their interactions and interactome sizes. Here we characterized the structural properties of human DSS1 and CSNAP at the residue level using NMR spectroscopy and probed their propensities to bind ubiquitin. We find that distinct structural features present in DSS1 are completely absent in CSNAP, and vice versa, with lack of relevant ubiquitin binding to CSNAP, suggesting the two proteins to have diverged in both structure and function. Our work additionally highlights that different local features of seemingly similar IDPs, even subtle sequence variance, may endow them with different functional traits. Such traits may underlie their potential to engage in multiple interactions thereby impacting their interactome sizes.
Collapse
Affiliation(s)
- Sarah F Ruidiaz
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper E Dreier
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
19
|
Badasyan A, Tonoyan S, Valant M, Grdadolnik J. Implicit water model within the Zimm-Bragg approach to analyze experimental data for heat and cold denaturation of proteins. Commun Chem 2021; 4:57. [PMID: 36697562 PMCID: PMC9814862 DOI: 10.1038/s42004-021-00499-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Studies of biopolymer conformations essentially rely on theoretical models that are routinely used to process and analyze experimental data. While modern experiments allow study of single molecules in vivo, corresponding theories date back to the early 1950s and require an essential update to include the recent significant progress in the description of water. The Hamiltonian formulation of the Zimm-Bragg model we propose includes a simplified, yet explicit model of water-polypeptide interactions that transforms into the equivalent implicit description after performing the summation of solvent degrees of freedom in the partition function. Here we show that our model fits very well to the circular dichroism experimental data for both heat and cold denaturation and provides the energies of inter- and intra-molecular H-bonds, unavailable with other processing methods. The revealed delicate balance between these energies determines the conditions for the existence of cold denaturation and thus clarifies its absence in some proteins.
Collapse
Affiliation(s)
- Artem Badasyan
- University of Nova Gorica, Materials Research Laboratory, Nova Gorica, Slovenia.
| | - Shushanik Tonoyan
- Yerevan State University, Department of Molecular Physics, Yerevan, Armenia
| | - Matjaz Valant
- University of Nova Gorica, Materials Research Laboratory, Nova Gorica, Slovenia
- University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Chengdu, China
| | | |
Collapse
|
20
|
Xia C, Kang W, Wang J, Wang W. Temperature Dependence of Internal Friction of Peptides. J Phys Chem B 2021; 125:2821-2832. [PMID: 33689339 DOI: 10.1021/acs.jpcb.0c09056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Internal friction is a valuable concept to describe the kinetics of proteins. As is well known, internal friction can be modulated by solvent features (such as viscosity). How can internal friction be affected by environmental temperature? The answer to this question is not evident. In the present work, we approach this problem with simulations on two model peptides. The thermodynamics and relaxation kinetics are characterized through long molecular dynamics simulations, with the viscosity modulated by varying the mass of solvent molecules. Based on the extrapolation to zero viscosity together with scaling of the relaxation time scales, we discover that internal friction is almost invariant at various temperatures. Controlled simulations further support the idea that internal friction is independent of environmental temperature. Comparisons between the two model peptides help us to understand the diverse phenomena in experiments.
Collapse
Affiliation(s)
- Chenliang Xia
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| | - Wenbin Kang
- School of Public Health and Management, Hubei University of Medicine, Shiyan 442000, P.R. China
| | - Jun Wang
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| | - Wei Wang
- School of Physics, Nanjing University, Nanjing 210093, P.R.China.,National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, P.R.China
| |
Collapse
|
21
|
|
22
|
Stenzoski NE, Zou J, Piserchio A, Ghose R, Holehouse AS, Raleigh DP. The Cold-Unfolded State Is Expanded but Contains Long- and Medium-Range Contacts and Is Poorly Described by Homopolymer Models. Biochemistry 2020; 59:3290-3299. [PMID: 32786415 DOI: 10.1021/acs.biochem.0c00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cold unfolding of proteins is predicted by the Gibbs-Helmholtz equation and is thought to be driven by a strongly temperature-dependent interaction of protein nonpolar groups with water. Studies of the cold-unfolded state provide insight into protein energetics, partially structured states, and folding cooperativity and are of practical interest in biotechnology. However, structural characterization of the cold-unfolded state is much less extensive than studies of thermally or chemically denatured unfolded states, in large part because the midpoint of the cold unfolding transition is usually below freezing. We exploit a rationally designed point mutation (I98A) in the hydrophobic core of the C-terminal domain of the ribosomal protein L9 that allows the cold denatured state ensemble to be observed above 0 °C at near neutral pH and ambient pressure in the absence of added denaturants. A combined approach consisting of paramagnetic relaxation enhancement measurements, analysis of small-angle X-ray scattering data, all-atom simulations, and polymer theory provides a detailed description of the cold-unfolded state. Despite a globally expanded ensemble, as determined by small-angle X-ray scattering, sequence-specific medium- and long-range interactions in the cold-unfolded state give rise to deviations from homopolymer-like behavior. Our results reveal that the cold-denatured state is heterogeneous with local and long-range intramolecular interactions that may prime the folded state and also demonstrate that significant long-range interactions are compatible with expanded unfolded ensembles. The work also highlights the limitations of homopolymer-based descriptions of unfolded states of proteins.
Collapse
Affiliation(s)
- Natalie E Stenzoski
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States.,Graduate Programs in Biochemistry, Chemistry and Physics, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Center for Science and Engineering of Living Systems, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel P Raleigh
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Baul U, Bley M, Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020; 21:3523-3538. [DOI: 10.1021/acs.biomac.0c00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
24
|
Soranno A. Physical basis of the disorder-order transition. Arch Biochem Biophys 2020; 685:108305. [DOI: 10.1016/j.abb.2020.108305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022]
|
25
|
Predictive Value of Opto-magnetic Imaging Spectroscopy in Discriminating Oral Squamous Cell Carcinoma from Non-tumor Tissue in Surgical Margins. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Pastore A, Martin SR, Temussi PA. Generalized View of Protein Folding: In Medio Stat Virtus. J Am Chem Soc 2019; 141:2194-2200. [PMID: 30566837 DOI: 10.1021/jacs.8b10779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteins are often described in textbooks as being only "marginally stable" but many proteins, specifically those with a high free energy of unfolding are, in fact, so stable that they exist only in the fully folded state except under harsh denaturing conditions. Proteins that are truly only marginally stable, those with a low free energy of unfolding, exist as an equilibrium mixture of folded and unfolded forms under "normal" conditions. To some extent such proteins have some features in common with "intrinsically disordered" proteins. We analyzed the relationship between these marginally stable proteins and intrinsically disordered proteins in order to fully understand the twilight zone that distinguishes the two ensembles in the hope of clarifying the fuzzy borders of the current classification that divides the protein world into folded and intrinsically disordered ones. Our analysis suggests that the division may be too drastic and misleading, because it puts within the same category proteins with very different behaviors. We propose a restricted, albeit operational, definition of "marginally stable proteins", referring by this term only to proteins whose free energy difference between the folded and unfolded states falls in the interval 0-3 kcal/mol. These proteins have special features because they normally exist as equilibrium mixtures of folded and unfolded species or as molten globule states. This coexistence makes marginally stable proteins ideal tools to study even small environmental changes to which they may behave as natural sensors.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Department of Molecular Medicine , University of Pavia , Pavia 27100 , Italy
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute , 1 Midland Road , London NW1 1AT , United Kingdom
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London , 5 Cutcombe Road , London SE59RT , United Kingdom.,Dipartimento di Scienze Chimiche , Universita' di Napoli Federico II , Napoli 80126 , Italy
| |
Collapse
|
27
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
28
|
|
29
|
Stenzoski NE, Luan B, Holehouse AS, Raleigh DP. The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures. Biophys J 2018; 115:655-663. [PMID: 30098729 DOI: 10.1016/j.bpj.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022] Open
Abstract
The temperature dependence of the overall dimensions of the denatured state ensemble (DSE) of proteins remains unclear. Some studies indicate compaction of the DSE at high temperatures, whereas others argue that dimensions do not decrease. The degree of compaction or expansion in the cold-denatured state has been less studied. To investigate the temperature dependence of unfolded state dimensions, small angle x-ray scattering measurements were performed in native buffer in the absence of denaturant for a designed point mutant of the C-terminal domain of L9, a small cooperatively folded α-β protein, at 14 different temperatures over the range of 5-60°C. The I98A mutation destabilizes the domain such that both the DSE and the folded state are populated at 25°C in the absence of denaturant or extreme pH. Thermal unfolding as well as cold unfolding can thus be observed in the absence of denaturant, allowing a direct comparison of these regimes for the same protein using the same technique. The temperature of maximal stability, Ts, is 30°C. There is no detectable change in Rg of the unfolded state as the temperature is increased above Ts, but a clear expansion is detected as the temperature is decreased below Ts. The Rg of the DSE populated in buffer was found to be 27.8 ± 1.7 Å at 5°C, 21.8 ± 1.9 Å at 30°C, and 21.7 ± 2.0 Å at 60°C. In contrast, no significant temperature dependence was observed for the value of Rg measured in 6 M guanidine hydrochloride. The small angle x-ray scattering data reported here indicate clear differences between the cold- and thermal-unfolded states and show that there is no significant compaction at elevated temperatures.
Collapse
Affiliation(s)
- Natalie E Stenzoski
- Graduate Program in Biochemistry & Structural Biology, Stony Brook, New York
| | - Bowu Luan
- Department of Chemistry, Stony Brook University, Stony Brook, New York
| | - Alex S Holehouse
- Center for Biological Systems Engineering, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Daniel P Raleigh
- Graduate Program in Biochemistry & Structural Biology, Stony Brook, New York; Department of Chemistry, Stony Brook University, Stony Brook, New York; Institute of Structural and Molecular Biology, University of College London, London, United Kingdom.
| |
Collapse
|
30
|
Schneider S, Paulsen H, Reiter KC, Hinze E, Schiene-Fischer C, Hübner CG. Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A. J Chem Phys 2018; 148:123336. [DOI: 10.1063/1.5009662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sven Schneider
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Hauke Paulsen
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Kim Colin Reiter
- Institute of Physics, University of Lübeck, Lübeck D-23562, Germany
| | - Erik Hinze
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Halle/Saale D-06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | | |
Collapse
|
31
|
Davis CM, Gruebele M. Labeling for Quantitative Comparison of Imaging Measurements in Vitro and in Cells. Biochemistry 2018; 57:1929-1938. [PMID: 29546761 DOI: 10.1021/acs.biochem.8b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Qualitative imaging of biomolecular localization and distribution inside cells has revolutionized cell biology. Most of these powerful techniques require modifications to the target biomolecule. Over the past 10 years, these techniques have been extended to quantitative measurements, from in-cell protein folding rates to complex dissociation constants to RNA lifetimes. Such measurements can be affected even when a target molecule is just mildly perturbed by its labels. Here, the impact of labeling on protein (and RNA) structure, stability, and function in cells is discussed via practical examples from the recent literature. General guidelines for selecting and validating modification sites are provided to bring the best from cell biology and imaging to quantitative biophysical experiments inside cells.
Collapse
|
32
|
Curvature of designed armadillo repeat proteins allows modular peptide binding. J Struct Biol 2018; 201:108-117. [DOI: 10.1016/j.jsb.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/15/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
|
33
|
Graziano G. Comment on “Thermal compaction of the intrinsically disordered protein tau: entropic, structural, and hydrophobic factors” by A. Battisti, G. Ciasca, A. Grottesi and A. Tenenbaum, Phys. Chem. Chem. Phys., 2017, 19, 8435. Phys Chem Chem Phys 2018; 20:690-693. [DOI: 10.1039/c7cp04546h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chain compaction is favoured on raising the temperature because the entropy gain of water molecules due to the decrease in solvent-excluded volume increases with temperature.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie
- Università del Sannio
- 82100 Benevento
- Italy
| |
Collapse
|
34
|
Holmstrom ED, Nesbitt DJ. Biophysical Insights from Temperature-Dependent Single-Molecule Förster Resonance Energy Transfer. Annu Rev Phys Chem 2017; 67:441-65. [PMID: 27215819 DOI: 10.1146/annurev-physchem-040215-112544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids. This review provides an overview of various temperature-dependent smFRET approaches from our laboratory and others, highlighting efforts in which such methods have been successfully applied to studies of single-molecule nucleic acid folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309;
| |
Collapse
|
35
|
Manger LH, Foote AK, Wood SL, Holden MR, Heylman KD, Margittai M, Goldsmith RH. Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level. Angew Chem Int Ed Engl 2017; 56:15584-15588. [PMID: 29063723 PMCID: PMC5831721 DOI: 10.1002/anie.201708242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/05/2017] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution-phase structural studies. We employed an anti-Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we recorded the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is conspicuously bimodal while those obtained by trapping a globular protein or individual fluorophores are not. Time-resolved fluorescence anisotropy measurements were used to provide an explanation of the bimodal distribution as originating from a shift in the compaction of the two different families of conformations.
Collapse
Affiliation(s)
- Lydia H Manger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Alexander K Foote
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Sharla L Wood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Michael R Holden
- Department of Chemistry & Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, CO, 80208, USA
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| | - Martin Margittai
- Department of Chemistry & Biochemistry, University of Denver, 2190 East Iliff Ave., Denver, CO, 80208, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA
| |
Collapse
|
36
|
Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Kizilsavas G, Ledolter K, Kurzbach D. Hydrophobic Collapse of the Intrinsically Disordered Transcription Factor Myc Associated Factor X. Biochemistry 2017; 56:5365-5372. [DOI: 10.1021/acs.biochem.7b00679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gönül Kizilsavas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Karin Ledolter
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria
| | - Dennis Kurzbach
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), Paris, France
| |
Collapse
|
38
|
Exploring the Denatured State Ensemble by Single-Molecule Chemo-Mechanical Unfolding: The Effect of Force, Temperature, and Urea. J Mol Biol 2017; 430:450-464. [PMID: 28782558 DOI: 10.1016/j.jmb.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022]
Abstract
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions.
Collapse
|
39
|
Li M, Sun T, Jin F, Yu D, Liu Z. Dimension conversion and scaling of disordered protein chains. MOLECULAR BIOSYSTEMS 2017; 12:2932-40. [PMID: 27440558 DOI: 10.1039/c6mb00415f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To extract protein dimension and energetics information from single-molecule fluorescence resonance energy transfer spectroscopy (smFRET) data, it is essential to establish the relationship between the distributions of the radius of gyration (Rg) and the end-to-end (donor-to-acceptor) distance (Ree). Here, we performed a coarse-grained molecular dynamics simulation to obtain a conformational ensemble of denatured proteins and intrinsically disordered proteins. For any disordered chain with fixed length, there is an excellent linear correlation between the average values of Rg and Ree under various solvent conditions, but the relationship deviates from the prediction of a Gaussian chain. A modified conversion formula was proposed to analyze smFRET data. The formula reduces the discrepancy between the results obtained from FRET and small-angle X-ray scattering (SAXS). The scaling law in a coil-globule transition process was examined where a significant finite-size effect was revealed, i.e., the scaling exponent may exceed the theoretical critical boundary [1/3, 3/5] and the prefactor changes notably during the transition. The Sanchez chain model was also tested and it was shown that the mean-field approximation works well for expanded chains.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Tanlin Sun
- Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Fan Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing 100871, China. and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Alfano C, Sanfelice D, Martin SR, Pastore A, Temussi PA. An optimized strategy to measure protein stability highlights differences between cold and hot unfolded states. Nat Commun 2017; 8:15428. [PMID: 28516908 PMCID: PMC5454340 DOI: 10.1038/ncomms15428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Macromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study. Accurate evaluation of the volume exclusion effect is made possible by the choice of yeast frataxin, a protein that undergoes cold denaturation above zero degrees, because the unfolded form at low temperature is more expanded than the corresponding one at high temperature. To achieve optimum sensitivity to changes in stability we introduce an empirical parameter derived from the stability curve. The large effect of PEG 20 on cold denaturation can be explained by a change in water activity, according to Privalov's interpretation of cold denaturation.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Domenico Sanfelice
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Stephen R. Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Annalisa Pastore
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Piero Andrea Temussi
- Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
- Dipartimento di Scienze Chimiche, Universita' di Napoli Federico II, Napoli 80126, Italy
| |
Collapse
|
41
|
Pastore A, Temussi PA. The Emperor's new clothes: Myths and truths of in-cell NMR. Arch Biochem Biophys 2017; 628:114-122. [PMID: 28259514 DOI: 10.1016/j.abb.2017.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
In-cell NMR is a technique developed to study the structure and dynamical behavior of biological macromolecules in their natural environment, circumventing all isolation and purification steps. In principle, the potentialities of the technique are enormous, not only for the possibility of bypassing all purification steps but, even more importantly, for the wealth of information that can be gained from directly monitoring interactions among biological macromolecules in a natural cell. Here, we review critically the promises, successes and limits of this technique as it stands now. Interestingly, many of the problems of NMR in bacterial cells stem from the artificially high concentration of the protein under study whose overexpression is anyway necessary to select it from the background. This has, as a consequence, that when overexpressed, most globular proteins, do not show an NMR spectrum, limiting the applicability of the technique to intrinsically unfolded or specifically behaving proteins. The outlook for in-cell NMR of eukaryotic cells is more promising and is possibly the most attracting aspect for the future.
Collapse
Affiliation(s)
- Annalisa Pastore
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Pavia, Department of Molecular Medicine, Pavia, Italy.
| | - Piero Andrea Temussi
- The Wohl Institute, King's College London, 5 Cutcombe Rd, London SE5 9RT, UK; University of Naples "Federico II", Department of Chemical Sciences, Naples, Italy
| |
Collapse
|
42
|
Rösner HI, Caldarini M, Prestel A, Vanoni MA, Broglia RA, Aliverti A, Tiana G, Kragelund BB. Cold Denaturation of the HIV-1 Protease Monomer. Biochemistry 2017; 56:1029-1032. [DOI: 10.1021/acs.biochem.6b01141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heike I. Rösner
- Structural
Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark
- Biotech
Research and Innovation Centre (BRIC), Faculty of Health and Medical
Sciences, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martina Caldarini
- Department
of Physics, University of Milano and INFN, via Celoria 16, 20133 Milano, Italy
| | - Andreas Prestel
- Structural
Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark
| | - Maria A. Vanoni
- Department
of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Ricardo A. Broglia
- Department
of Physics, University of Milano and INFN, via Celoria 16, 20133 Milano, Italy
- Niels Bohr Institute, Blegdamsvej
17, 2100 Copenhagen Ø, Denmark
| | - Alessandro Aliverti
- Department
of Biosciences, University of Milano, via Celoria 26, 20133 Milano, Italy
| | - Guido Tiana
- Department
of Physics, University of Milano and INFN, via Celoria 16, 20133 Milano, Italy
| | - Birthe B. Kragelund
- Structural
Biology and NMR Laboratory (SBiNlab), Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
43
|
Büning S, Sharma A, Vachharajani S, Newcombe E, Ormsby A, Gao M, Gnutt D, Vöpel T, Hatters DM, Ebbinghaus S. Conformational dynamics and self-association of intrinsically disordered Huntingtin exon 1 in cells. Phys Chem Chem Phys 2017; 19:10738-10747. [DOI: 10.1039/c6cp08167c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-cell temperature jump experiments induce monomer collapse, misfolding and self-association of the Huntingtin exon 1 protein.
Collapse
Affiliation(s)
- Steffen Büning
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Abhishek Sharma
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | | | - Estella Newcombe
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Angelique Ormsby
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Mimi Gao
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - David Gnutt
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Tobias Vöpel
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology & Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- Melbourne
- Australia
| | - Simon Ebbinghaus
- Department of Physical Chemistry II
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
44
|
Espinosa YR, Grigera JR, Caffarena ER. Essential dynamics of the cold denaturation: pressure and temperature effects in yeast frataxin. Proteins 2017; 85:125-136. [PMID: 27802581 DOI: 10.1002/prot.25205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
Abstract
The cold denaturation of globular proteins is a process that can be caused by increasing pressure or decreasing the temperature. Currently, the action mechanism of this process has not been clearly understood, raising an interesting debate on the matter. We have studied the process of cold denaturation using molecular dynamics simulations of the frataxin system Yfh1, which has a dynamic experimental characterization of unfolding at low and high temperatures. The frataxin model here studied allows a comparative analysis using experimental data. Furthermore, we monitored the cold denaturation process of frataxin and also investigated the effect under the high-pressure regime. For a better understanding of the dynamics and structural properties of the cold denaturation, we also analyzed the MD trajectories using essentials dynamic. The results indicate that changes in the structure of water by the effect of pressure and low temperatures destabilize the hydrophobic interaction modifying the solvation and the system volume leading to protein denaturation. Proteins 2016; 85:125-136. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanis R Espinosa
- CEQUINOR (CONICET-UNLP), 120 e/61 y 62, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - J Raúl Grigera
- CEQUINOR (CONICET-UNLP), 120 e/61 y 62, Universidad Nacional de La Plata, La Plata, 1900, Argentina
- Departmento de Biología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Ernesto R Caffarena
- Fundação Oswaldo Cruz., Rio de Janeiro, Programa de Computação Científica (PROCC), CEP, 21040-360, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Hofmann H. Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory. Methods Appl Fluoresc 2016; 4:042003. [DOI: 10.1088/2050-6120/4/4/042003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Aznauryan M, Delgado L, Soranno A, Nettels D, Huang JR, Labhardt AM, Grzesiek S, Schuler B. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A 2016; 113:E5389-98. [PMID: 27566405 PMCID: PMC5027429 DOI: 10.1073/pnas.1607193113] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The properties of unfolded proteins are essential both for the mechanisms of protein folding and for the function of the large group of intrinsically disordered proteins. However, the detailed structural and dynamical characterization of these highly dynamic and conformationally heterogeneous ensembles has remained challenging. Here we combine and compare three of the leading techniques for the investigation of unfolded proteins, NMR spectroscopy (NMR), small-angle X-ray scattering (SAXS), and single-molecule Förster resonance energy transfer (FRET), with the goal of quantitatively testing their consistency and complementarity and for obtaining a comprehensive view of the unfolded-state ensemble. Using unfolded ubiquitin as a test case, we find that its average dimensions derived from FRET and from structural ensembles calculated using the program X-PLOR-NIH based on NMR and SAXS restraints agree remarkably well; even the shapes of the underlying intramolecular distance distributions are in good agreement, attesting to the reliability of the approaches. The NMR-based results provide a highly sensitive way of quantifying residual structure in the unfolded state. FRET-based nanosecond fluorescence correlation spectroscopy allows long-range distances and chain dynamics to be probed in a time range inaccessible by NMR. The combined techniques thus provide a way of optimally using the complementarity of the available methods for a quantitative structural and dynamical description of unfolded proteins both at the global and the local level.
Collapse
Affiliation(s)
- Mikayel Aznauryan
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | - Andrea Soranno
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei City 112, Taiwan
| | | | | | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
47
|
Camilloni C, Bonetti D, Morrone A, Giri R, Dobson CM, Brunori M, Gianni S, Vendruscolo M. Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep 2016; 6:28285. [PMID: 27461719 PMCID: PMC4962056 DOI: 10.1038/srep28285] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/03/2016] [Indexed: 11/09/2022] Open
Abstract
The hydrophobic effect is a major driving force in protein folding. A complete understanding of this effect requires the description of the conformational states of water and protein molecules at different temperatures. Towards this goal, we characterise the cold and hot denatured states of a protein by modelling NMR chemical shifts using restrained molecular dynamics simulations. A detailed analysis of the resulting structures reveals that water molecules in the bulk and at the protein interface form on average the same number of hydrogen bonds. Thus, even if proteins are 'large' particles (in terms of the hydrophobic effect, i.e. larger than 1 nm), because of the presence of complex surface patterns of polar and non-polar residues their behaviour can be compared to that of 'small' particles (i.e. smaller than 1 nm). We thus find that the hot denatured state is more compact and richer in secondary structure than the cold denatured state, since water at lower temperatures can form more hydrogen bonds than at high temperatures. Then, using Φ-value analysis we show that the structural differences between the hot and cold denatured states result in two alternative folding mechanisms. These findings thus illustrate how the analysis of water-protein hydrogen bonds can reveal the molecular origins of protein behaviours associated with the hydrophobic effect.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniela Bonetti
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Angela Morrone
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Rajanish Giri
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | | | - Maurizio Brunori
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy
| | | |
Collapse
|
48
|
Bothe JR, Tonelli M, Ali IK, Dai Z, Frederick RO, Westler WM, Markley JL. The Complex Energy Landscape of the Protein IscU. Biophys J 2016; 109:1019-25. [PMID: 26331259 PMCID: PMC4564936 DOI: 10.1016/j.bpj.2015.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
IscU, the scaffold protein for iron-sulfur (Fe-S) cluster biosynthesis in Escherichia coli, traverses a complex energy landscape during Fe-S cluster synthesis and transfer. Our previous studies showed that IscU populates two interconverting conformational states: one structured (S) and one largely disordered (D). Both states appear to be functionally important because proteins involved in the assembly or transfer of Fe-S clusters have been shown to interact preferentially with either the S or D state of IscU. To characterize the complex structure-energy landscape of IscU, we employed NMR spectroscopy, small-angle x-ray scattering (SAXS), and differential scanning calorimetry. Results obtained for IscU at pH 8.0 show that its S state is maximally populated at 25°C and that heating or cooling converts the protein toward the D state. Results from NMR and DSC indicate that both the heat- and cold-induced S→D transitions are cooperative and two-state. Low-resolution structural information from NMR and SAXS suggests that the structures of the cold-induced and heat-induced D states are similar. Both states exhibit similar 1H-15N HSQC spectra and the same pattern of peptidyl-prolyl peptide bond configurations by NMR, and both appear to be similarly expanded compared with the S state based on analysis of SAXS data. Whereas in other proteins the cold-denatured states have been found to be slightly more compact than the heat-denatured states, these two states occupy similar volumes in IscU.
Collapse
Affiliation(s)
- Jameson R Bothe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ibrahim K Ali
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ziqi Dai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronnie O Frederick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin
| | - William M Westler
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
49
|
Sawle L, Ghosh K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J Chem Phys 2016; 143:085101. [PMID: 26328871 DOI: 10.1063/1.4929391] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A general formalism to compute configurational properties of proteins and other heteropolymers with an arbitrary sequence of charges and non-uniform excluded volume interaction is presented. A variational approach is utilized to predict average distance between any two monomers in the chain. The presented analytical model, for the first time, explicitly incorporates the role of sequence charge distribution to determine relative sizes between two sequences that vary not only in total charge composition but also in charge decoration (even when charge composition is fixed). Furthermore, the formalism is general enough to allow variation in excluded volume interactions between two monomers. Model predictions are benchmarked against the all-atom Monte Carlo studies of Das and Pappu [Proc. Natl. Acad. Sci. U. S. A. 110, 13392 (2013)] for 30 different synthetic sequences of polyampholytes. These sequences possess an equal number of glutamic acid (E) and lysine (K) residues but differ in the patterning within the sequence. Without any fit parameter, the model captures the strong sequence dependence of the simulated values of the radius of gyration with a correlation coefficient of R(2) = 0.9. The model is then applied to real proteins to compare the unfolded state dimensions of 540 orthologous pairs of thermophilic and mesophilic proteins. The excluded volume parameters are assumed similar under denatured conditions, and only electrostatic effects encoded in the sequence are accounted for. With these assumptions, thermophilic proteins are found-with high statistical significance-to have more compact disordered ensemble compared to their mesophilic counterparts. The method presented here, due to its analytical nature, is capable of making such high throughput analysis of multiple proteins and will have broad applications in proteomic studies as well as in other heteropolymeric systems.
Collapse
Affiliation(s)
- Lucas Sawle
- Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, USA
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado 80208, USA
| |
Collapse
|
50
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|