1
|
Zhang X, Zhao Y, Chen M, Ji M, Sha Y, Nozaki K, Tang S. Polyethylene Materials with Tunable Degradability by Incorporating In-Chain Mechanophores. J Am Chem Soc 2024; 146:24024-24032. [PMID: 39153185 DOI: 10.1021/jacs.4c07445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Polyolefins are recognized as fundamental plastic materials that are manufactured in the largest quantities among all synthetic polymers. The chemical inertness of the saturated hydrocarbon chains is crucial for storing and using polyolefin plastics, but poses significant environmental challenges related to plastic pollution. Here, we report a versatile approach to creating polyethylene materials with tunable degradability by incorporating in-chain mechanophores. Through palladium-catalyzed coordination/insertion copolymerization of ethylene with cyclobutene-fused comonomers, several cyclobutane-fused mechanophores were successfully incorporated with varied insertion ratios (0.35-26 mol %). The resulting polyethylene materials with in-chain mechanophores exhibit both high thermal stability and remarkable acid resistance. Upon mechanochemical activation by ultrasonication or ball-milling, degradable functional units (imide and ester groups) are introduced into the main polymer chain. The synergy of mechanochemical activation and acid hydrolysis facilitates the efficient degradation of high molecular weight polyethylene materials into telechelic oligomers.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minghang Ji
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Yang C, Wu XT, Yu L, Bi CA, Du FS, Li ZC. Photochemical [2 + 2] Cycloaddition Enables the Synthesis of Highly Thermally Stable and Acid/Base-Resistant Polyesters from a Nonpolymerizable α,β-Conjugated Valerolactone. ACS Macro Lett 2024; 13:1084-1092. [PMID: 39103245 DOI: 10.1021/acsmacrolett.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a simple strategy to transform a nonpolymerizable six-membered α,β-conjugated lactone, 5,6-dihydro-2H-pyran-2-one (DPO), into polymerizable bicyclic lactones via photochemical [2 + 2] cycloaddition. Two bicyclic lactones, M1 and M2, were obtained by the photochemical [2 + 2] cycloaddition of tetramethylethylene and DPO. Ring-opening polymerization (ROP) of M1 and M2 catalyzed by diphenyl phosphate (DPP), La[N(SiMe3)2]3, and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylide-namino]-2λ5, 4λ5-catenadi(phosphazene) (tBu-P4) were conducted. M1 is highly polymerizable, either DPP or La[N(SiMe3)2]3 could catalyze its living ROP under mild conditions, affording the well-defined PM1 with a predictable molar mass and low dispersity. M2 could only be polymerized with tBu-P4 as the catalyst, also generating the same polymer PM1. PM1 has high thermal stability, with a Td,5% being up to 376 °C. Ring-opening copolymerization (ROcP) of M1 and δ-valerolactone (δ-VL) catalyzed by La[N(SiMe3)2]3 afforded a series of random copolymers with enhanced thermal stabilities. Both PM1 and the copolymer containing 10 mol % M1 exhibited excellent resistance to acidic and basic hydrolysis. Our results demonstrate that direct photochemical [2 + 2] cycloaddition of α,β-conjugated valerolactone is not only a strategy to tune its polymerizability, but also allows for the synthesis of highly thermally stable aliphatic polyesters, inaccessible by other methods.
Collapse
Affiliation(s)
- Chun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Lefei Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Cheng-Ao Bi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Centre for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wang J, Fu Q, Cao S, Lv X, Yin Y, Ban X, Zhao X, Jiang Z. Enantioselective [2 + 2] Photocycloreversion Enables De Novo Deracemization Synthesis of Cyclobutanes. J Am Chem Soc 2024; 146:22840-22849. [PMID: 39094097 DOI: 10.1021/jacs.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While photochemical deracemization significantly enhances atom economy by eliminating the necessity for additional oxidants or reductants, the laborious presynthesis of substrates from feedstock chemicals is often required, thereby compromising the practicality of this method. In this study, we propose a novel approach known as de novo deracemization synthesis, which involves direct utilization of simple substrates undergoing both photochemical transformation and reversible photochemical transformation. The efficient enantiocontrol of chiral catalysts in the latter process establishes an effective platform for deracemization. This alternative and practical approach to address the challenges of asymmetric photocatalysis has been successfully demonstrated in the photosensitized de novo deracemization synthesis of azaarene-functionalized cyclobutanes featuring three stereocenters, including an all-carbon quaternary center. By exclusively employing a suitable chiral catalyst to enable kinetically controlled [2 + 2] photocycloreversion, we pave a creative path toward achieving more cost-effective photochemical deracemization.
Collapse
Affiliation(s)
- Jiahao Wang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianqian Fu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shanshan Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xinxin Lv
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xu Ban
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
4
|
Flear EJ, Horst M, Yang J, Xia Y. Force Transduction Through Distant Force-Bearing Regioisomeric Linkages Affects the Mechanochemical Reactivity of Cyclobutane. Angew Chem Int Ed Engl 2024; 63:e202406103. [PMID: 38818671 DOI: 10.1002/anie.202406103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non-scissile 1,2-diphenyl cyclobutanes, varying their linkage to the polymer backbone via the o, m, or p-position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C-C bond, the p isomer exhibited significantly higher mechanochemical reactivity than the o and m isomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through the p-position than the other two substitution positions. These findings point to the importance of considering force-bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.
Collapse
Affiliation(s)
- Erica J Flear
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Matías Horst
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Jinghui Yang
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| |
Collapse
|
5
|
Li Z, Zhang X, Zhao Y, Tang S. Mechanochemical Backbone Editing for Controlled Degradation of Vinyl Polymers. Angew Chem Int Ed Engl 2024; 63:e202408225. [PMID: 38801168 DOI: 10.1002/anie.202408225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The chemically inert nature of fully saturated hydrocarbon backbones endows vinyl polymers with desirable durability, but it also leads to their significant environmental persistence. Enhancing the sustainability of these materials requires a pivotal yet challenging shift: transforming the inert backbone into one that is degradable. Here, we present a versatile platform for mechanochemically editing the fully saturated backbone of vinyl polymers towards degradable polymer chains by integrating cyclobutene-fused succinimide (CBS) units along backbone through photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) copolymerization. Significantly, the evenly insertion of CBS units does not compromise thermal or chemical stability but rather offers a means to adjust the properties of polymethylacrylate (PMA). Meanwhile, reactive acyclic imide units can be selectively introduced to the backbone through mechanochemical activation (pulse ultrasonication or ball-milling grinding) when required. Subsequent hydrolysis of the acyclic imide groups enables efficient degradation, yielding telechelic oligomers. This approach holds promise for inspiring the design and modification of more environmentally friendly vinyl polymers through backbone editing.
Collapse
Affiliation(s)
- Zhuang Li
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Zhang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yajun Zhao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Cheng Q, De Bo G. Mechanochemical generation of aryne. Chem Sci 2024:d4sc03968h. [PMID: 39129780 PMCID: PMC11308379 DOI: 10.1039/d4sc03968h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
Mechanical force is unique in promoting unusual reaction pathways and especially for the generation of reactive intermediates sometimes inaccessible to other forms of activation. The mechanochemical generation of reactive species could find application in synthetic and materials chemistry alike. However, the nature of these reactive intermediates has been mostly limited to radicals or carbenes. Here, we present a new mechanophore that generates a reactive aryne intermediate upon dissociation of a benzocyclobutene (BCB) core via a force-promoted retro [2 + 2] cycloaddition.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
7
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
8
|
El-Arid S, Lenihan JM, Jacobsen A, Beeler AB, Grinstaff MW. Accessing Cyclobutane Polymers: Overcoming Synthetic Challenges via Efficient Continuous Flow [2 + 2] Photopolymerization. ACS Macro Lett 2024; 13:607-613. [PMID: 38695337 PMCID: PMC11414449 DOI: 10.1021/acsmacrolett.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We report an improved and efficient method to prepare well-defined, structurally complex truxinate cyclobutane polymers via a thioxanthone sensitized solution state [2 + 2] photopolymerization. Monomers with varying electron density and structure polymerize in good to excellent yields to afford a library of 42 polyesters. Monomers with internal olefin separation distances of greater than 5 Å undergo polymerization via intermolecular [2 + 2] photocycloaddition readily, as opposed to the intramolecular [2 + 2] photocycloaddition observed in monomers with olefins in closer proximity. Use of a continuous flow reactor decreases reaction time, increases polymer molecular weight, and decreases dispersity compared to batch reactions. Furthermore, under continuous flow, polymerization is readily scalable beyond what is possible with batch reactions. This advancement ushers truxinate cyclobutane-based polyesters, which have been historically limited to a few examples and only research scale quantities, to the forefront of development as new materials for potential use across industry sectors.
Collapse
|
9
|
Ding S, Wang W, Germann A, Wei Y, Du T, Meisner J, Zhu R, Liu Y. Bicyclo[2.2.0]hexene: A Multicyclic Mechanophore with Reactivity Diversified by External Forces. J Am Chem Soc 2024; 146:6104-6113. [PMID: 38377579 DOI: 10.1021/jacs.3c13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Polymer mechanochemistry has been established as an enabling tool in accessing chemical reactivity and reaction pathways that are distinctive from their thermal counterparts. However, eliciting diversified reaction pathways by activating different constituent chemical bonds from the same mechanophore structure remains challenging. Here, we report the design of a bicyclo[2.2.0]hexene (BCH) mechanophore to leverage its structural simplicity and relatively low molecular symmetry to demonstrate this idea of multimodal activation. Upon changing the attachment points of pendant polymer chains, three different C-C bonds in bicyclo[2.2.0]hexene are specifically activated via externally applied force by sonication. Experimental characterization confirms that in different scenarios of polymer attachment, the regioisomers of BCH undergo different activation reactions, entailing retro-[2+2] cycloreversion, 1,3-allylic migration, and retro-4π ring-opening reactions, respectively. Control experiments with small-molecule analogues reveal that the observed diversified reactivity of BCH regioisomers is possible only with mechanical force. Theoretical studies further elucidate that the differences in the positions of substitution between regioisomers have a minimal impact on the potential energy surface of the parent BCH scaffold. The mechanochemical selectivity between different C-C bonds in each constitutional isomer is a result of selective and effective coupling of force to the aligned C-C bond in each case.
Collapse
Affiliation(s)
- Shihao Ding
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Anne Germann
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Yiting Wei
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jan Meisner
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
He X, Tian Y, O’Neill RT, Xu Y, Lin Y, Weng W, Boulatov R. Coumarin Dimer Is an Effective Photomechanochemical AND Gate for Small-Molecule Release. J Am Chem Soc 2023; 145:23214-23226. [PMID: 37821455 PMCID: PMC10603814 DOI: 10.1021/jacs.3c07883] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Indexed: 10/13/2023]
Abstract
Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.
Collapse
Affiliation(s)
- Xiaojun He
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yancong Tian
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Robert T. O’Neill
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Yuanze Xu
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yangju Lin
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wengui Weng
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Roman Boulatov
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
11
|
Ditzler RAJ, King AJ, Towell SE, Ratushnyy M, Zhukhovitskiy AV. Editing of polymer backbones. Nat Rev Chem 2023; 7:600-615. [PMID: 37542179 DOI: 10.1038/s41570-023-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/06/2023]
Abstract
Polymers are at the epicentre of modern technological progress and the associated environmental pollution. Considerations of both polymer functionality and lifecycle are crucial in these contexts, and the polymer backbone - the core of a polymer - is at the root of these considerations. Just as the meaning of a sentence can be altered by editing its words, the function and sustainability of a polymer can also be transformed via the chemical modification of its backbone. Yet, polymer modification has primarily been focused on the polymer periphery. In this Review, we focus on the transformations of the polymer backbone by defining some concepts fundamental to this topic (for example, 'polymer backbone' and 'backbone editing') and by collecting and categorizing examples of backbone editing scattered throughout a century's worth of chemical literature, and outline critical directions for further research. In so doing, we lay the foundation for the field of polymer backbone editing and hope to accelerate its development.
Collapse
Affiliation(s)
- Rachael A J Ditzler
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew J King
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sydney E Towell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxim Ratushnyy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
12
|
Cardosa-Gutierrez M, De Bo G, Duwez AS, Remacle F. Bond breaking of furan-maleimide adducts via a diradical sequential mechanism under an external mechanical force. Chem Sci 2023; 14:1263-1271. [PMID: 36756317 PMCID: PMC9891376 DOI: 10.1039/d2sc05051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Substituted furan-maleimide Diels-Alder adducts are bound by dynamic covalent bonds that make them particularly attractive mechanophores. Thermally activated [4 + 2] retro-Diels-Alder (DA) reactions predominantly proceed via a concerted mechanism in the ground electronic state. We show that an asymmetric mechanical force along the anchoring bonds in both the endo and exo isomers of proximal dimethyl furan-maleimide adducts favors a sequential pathway. The switching from a concerted to a sequential mechanism occurs at external forces of ≈1 nN. The first bond rupture occurs for a projection of the pulling force on the scissile bond at ≈4.3 nN for the exo adduct and ≈3.8 nN for the endo one. The reaction is inhibited for external forces up to ≈3.4 nN for the endo adduct and 3.6 nN for the exo one after which it is activated. In the activated region, at 4 nN, the rupture rate of the first bond for the endo adduct is computed to be ≈3 orders of magnitude larger than for the exo one in qualitative agreement with recent sonication experiments [Z. Wang and S. L. Craig, Chem. Commun., 2019, 55, 12263-12266]. In the intermediate region of the path between the rupture of the first and the second bond, the lowest singlet state exhibits a diradical character for both adducts and is close in energy to a diradical triplet state. The computed values of spin-orbit coupling along the path are too small for inducing intersystem crossings. These findings open the way for the rational design of DA mechanophores for polymer science and photochemistry.
Collapse
Affiliation(s)
| | - Guillaume De Bo
- Department of Chemistry, University of ManchesterManchesterM13 9PLUK
| | - Anne-Sophie Duwez
- UR Molecular Systems, Department of Chemistry, University of Liège 4000 Liège Belgium
| | - Francoise Remacle
- UR Molecular Systems, Department of Chemistry, University of Liège 4000 Liège Belgium
| |
Collapse
|
13
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
14
|
Hsu TG, Liu S, Guan X, Yoon S, Zhou J, Chen WY, Gaire S, Seylar J, Chen H, Wang Z, Rivera J, Wu L, Ziegler CJ, McKenzie R, Wang J. Mechanochemically accessing a challenging-to-synthesize depolymerizable polymer. Nat Commun 2023; 14:225. [PMID: 36641481 PMCID: PMC9840636 DOI: 10.1038/s41467-023-35925-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Polymers with low ceiling temperatures (Tc) are highly desirable as they can depolymerize under mild conditions, but they typically suffer from demanding synthetic conditions and poor stability. We envision that this challenge can be addressed by developing high-Tc polymers that can be converted into low-Tc polymers on demand. Here, we demonstrate the mechanochemical generation of a low-Tc polymer, poly(2,5-dihydrofuran) (PDHF), from an unsaturated polyether that contains cyclobutane-fused THF in each repeat unit. Upon mechanically induced cycloreversion of cyclobutane, each repeat unit generates three repeat units of PDHF. The resulting PDHF completely depolymerizes into 2,5-dihydrofuran in the presence of a ruthenium catalyst. The mechanochemical generation of the otherwise difficult-to-synthesize PDHF highlights the power of polymer mechanochemistry in accessing elusive structures. The concept of mechanochemically regulating the Tc of polymers can be applied to develop next-generation sustainable plastics.
Collapse
Affiliation(s)
- Tze-Gang Hsu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Shiqi Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Xin Guan
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Junfeng Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Wei-Yuan Chen
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Sanjay Gaire
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Joshua Seylar
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Jared Rivera
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Leyao Wu
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Christopher J Ziegler
- Department of Chemistry, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Ruel McKenzie
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave, Akron, OH, 44325, USA.
| |
Collapse
|
15
|
Wang X, Sun Y, Yao XQ, Xu Y, Wang J. Diazoacetates as Terminating Agents in Living Ring-Opening Metathesis Polymerization: Synthesis of Chain-End-Functionalized Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing100871, China
| | - Yichen Sun
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing100871, China
| | - Xing-Qi Yao
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing100871, China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing100871, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
16
|
|
17
|
Wang Z, Kouznetsova TB, Craig S. Pulling Outward but Reacting Inward: Mechanically Induced Symmetry-Allowed Reactions of cis- and trans-Diester-substituted Dichlorocyclopropanes. Synlett 2022. [DOI: 10.1055/a-1760-8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The mechanically induced symmetry-allowed disrotatory ring-openings of cis- and trans- gem-dichlorocyclopropane (gDCC) diesters are demonstrated through sonication and single-molecule force spectroscopy (SMFS) studies. In contrast to the previously reported symmetry-forbidden conrotatory ring-opening of alkyl-tethered trans-gDCC, we show that the diester-tethered trans-gDCC primarily undergoes a symmetry-allowed disrotatory pathway even at the high forces (>2 nN) and short time scales (ms or less) of sonication and SMFS experiments. The quantitative force-rate data obtained from SMFS data is consistent with computational models of transition state geometry for the symmetry allowed process, and activation lengths of 1.41 ± 0.02 Å and 1.08 ± 0.03 Å are inferred for the cis-gDCC diester and trans-gDCC diester, respectively. The strong mechanochemical coupling in the trans-gDCC is notable, given that the directionality of the applied force may appear initially to oppose the disrotatory motion associated with the reaction. The stereochemical perturbations of mechanical coupling created by the ester attachments reinforce the complexity that is possible in covalent polymer mechanochemistry and illustrate the breadth of reactivity outcomes that are available through judicious mechanophore design.
Collapse
Affiliation(s)
- Zi Wang
- Chemistry, Duke University, Durham, United States
| | | | | |
Collapse
|
18
|
Sun Y, Neary WJ, Burke ZP, Qian H, Zhu L, Moore JS. Mechanically Triggered Carbon Monoxide Release with Turn-On Aggregation-Induced Emission. J Am Chem Soc 2022; 144:1125-1129. [PMID: 35019277 DOI: 10.1021/jacs.1c12108] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymers that release functional small molecules under mechanical stress potentially serve as next-generation materials for catalysis, sensing, and mechanochemical dynamic therapy. To further expand the function of mechanoresponsive materials, the discovery of chemistries capable of small molecule release are highly desirable. In this report, we detail a nonscissile bifunctional mechanophore (i.e., dual mechano-activated properties) based on a unique mechanochemical reaction involving norborn-2-en-7-one (NEO). One property is the release of carbon monoxide (CO) upon pulsed solution ultrasonication. A release efficiency of 58% is observed at high molecular weights (Mn = 158.8 kDa), equating to ∼154 molecules of CO released per chain. The second property is the bright cyan emission from the macromolecular product in its aggregated state, resulting in a turn-on fluorescence readout coincident with CO release. This report not only demonstrates a unique strategy for the release of small molecules in a nonscissile way but also guides future designs of force-responsive aggregation-induced emission (AIE) luminogens.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Zachary P Burke
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Hai Qian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Zhou J, Sathe D, Wang J. Understanding the Structure-Polymerization Thermodynamics Relationships of Fused-Ring Cyclooctenes for Developing Chemically Recyclable Polymers. J Am Chem Soc 2022; 144:928-934. [PMID: 34985870 DOI: 10.1021/jacs.1c11197] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymers that can be chemically recycled to their constituent monomers offer a promising solution to address the challenges in plastics sustainability through a circular use of materials. The design and development of monomers for next-generation chemically recyclable polymers require an understanding of the relationships between the structure of the monomers/polymers and the thermodynamics of polymerization/depolymerization. Here we investigate the structure-polymerization thermodynamics relationships of a series of cyclooctene monomers that contain an additional ring fused at the 5,6-positions, including trans-cyclobutane, trans-cyclopentane, and trans-five-membered cyclic acetals. The four- and five-membered rings trans-fused to cyclooctene reduce the ring strain energies of the monomer, and the enthalpy changes of polymerizations are found to be in the range of -2.1 to -3.3 kcal mol-1. Despite the narrow range of enthalpy changes, the ceiling temperatures at 1.0 M span from 330 to 680 °C, due to the low entropy changes, ranging from -2.7 to -5.0 cal mol-1 K-1. Importantly, geminal substituents on the trans-five-membered cyclic acetal fused cyclooctenes are found to reduce the ceiling temperature by ∼300 °C, although they are not directly attached to the cyclooctene. The remote gem-disubstituent effect demonstrated here can be leveraged to promote depolymerization of the corresponding polymers and to tune their thermomechanical properties.
Collapse
Affiliation(s)
- Junfeng Zhou
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
20
|
Miller KA, Dodo OJ, Devkota GP, Kirinda VC, Bradford KGE, Sparks J, Hartley CS, Konkolewicz D. Aromatic Foldamers as Molecular Springs in Network Polymers. Chem Commun (Camb) 2022; 58:5590-5593. [DOI: 10.1039/d2cc01223e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer networks crosslinked with spring-like ortho-phenylene (oP) foldamers were developed. NMR analysis indicated the oP crosslinkers were well-folded. Polymer networks with oP-based crosslinkers showed enhanced energy dissipation and elasticity compared...
Collapse
|
21
|
Wang T, Wang H, Shen L, Zhang N. Force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore. Chem Commun (Camb) 2021; 57:12675-12678. [PMID: 34779466 DOI: 10.1039/d1cc05305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered a force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore (NCD). Our results revealed that mechanically induced retro-cycloaddition of the NCD and subsequent crosslinking reactions between CC bonds were responsible for this peculiar strenghthening, and demonstrated the good possibility that the NCD can be applied in smart materials fields.
Collapse
Affiliation(s)
- Taisheng Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| | - Haoxiang Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Lei Shen
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Na Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| |
Collapse
|
22
|
Liu Y, Holm S, Meisner J, Jia Y, Wu Q, Woods TJ, Martinez TJ, Moore JS. Flyby reaction trajectories: Chemical dynamics under extrinsic force. Science 2021; 373:208-212. [PMID: 34244412 DOI: 10.1126/science.abi7609] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
Dynamic effects are an important determinant of chemical reactivity and selectivity, but the deliberate manipulation of atomic motions during a chemical transformation is not straightforward. Here, we demonstrate that extrinsic force exerted upon cyclobutanes by stretching pendant polymer chains influences product selectivity through force-imparted nonstatistical dynamic effects on the stepwise ring-opening reaction. The high product stereoselectivity is quantified by carbon-13 labeling and shown to depend on external force, reactant stereochemistry, and intermediate stability. Computational modeling and simulations show that, besides altering energy barriers, the mechanical force activates reactive intramolecular motions nonstatistically, setting up "flyby trajectories" that advance directly to product without isomerization excursions. A mechanistic model incorporating nonstatistical dynamic effects accounts for isomer-dependent mechanochemical stereoselectivity.
Collapse
Affiliation(s)
- Yun Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Soren Holm
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,The PULSE Institute, Stanford University, Stanford, CA 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,The PULSE Institute, Stanford University, Stanford, CA 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Yuan Jia
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Wu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Toby J Woods
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,3M Materials Chemistry Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Todd J Martinez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA. .,The PULSE Institute, Stanford University, Stanford, CA 94305, USA.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Sammon MS, Biewend M, Michael P, Schirra S, Ončák M, Binder WH, Beyer MK. Activation of a Copper Biscarbene Mechano-Catalyst Using Single-Molecule Force Spectroscopy Supported by Quantum Chemical Calculations. Chemistry 2021; 27:8723-8729. [PMID: 33822419 PMCID: PMC8251802 DOI: 10.1002/chem.202100555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 11/17/2022]
Abstract
Single-molecule force spectroscopy allows investigation of the effect of mechanical force on individual bonds. By determining the forces necessary to sufficiently activate bonds to trigger dissociation, it is possible to predict the behavior of mechanophores. The force necessary to activate a copper biscarbene mechano-catalyst intended for self-healing materials was measured. By using a safety line bypassing the mechanophore, it was possible to pinpoint the dissociation of the investigated bond and determine rupture forces to range from 1.6 to 2.6 nN at room temperature in dimethyl sulfoxide. The average length-increase upon rupture of the Cu-C bond, due to the stretching of the safety line, agrees with quantum chemical calculations, but the values exhibit an unusual scattering. This scattering was assigned to the conformational flexibility of the mechanophore, which includes formation of a threaded structure and recoiling of the safety line.
Collapse
Affiliation(s)
- Matthew S. Sammon
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Michel Biewend
- Department of Macromolecular ChemistryMartin-Luther-Universität Halle-Wittenbergvon-Danckelmann-Platz 406120Halle (Saale)Germany
| | - Philipp Michael
- Department of Macromolecular ChemistryMartin-Luther-Universität Halle-Wittenbergvon-Danckelmann-Platz 406120Halle (Saale)Germany
| | - Simone Schirra
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Wolfgang H. Binder
- Department of Macromolecular ChemistryMartin-Luther-Universität Halle-Wittenbergvon-Danckelmann-Platz 406120Halle (Saale)Germany
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
24
|
Bowser BH, Wang S, Kouznetsova TB, Beech HK, Olsen BD, Rubinstein M, Craig SL. Single-Event Spectroscopy and Unravelling Kinetics of Covalent Domains Based on Cyclobutane Mechanophores. J Am Chem Soc 2021; 143:5269-5276. [PMID: 33783187 DOI: 10.1021/jacs.1c02149] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanochemical reactions that lead to an increase in polymer contour length have the potential to serve as covalent synthetic mimics of the mechanical unfolding of noncovalent "stored length" domains in structural proteins. Here we report the force-dependent kinetics of stored length release in a family of covalent domain polymers based on cis-1,2-substituted cyclobutane mechanophores. The stored length is determined by the size (n) of a fused ring in an [n.2.0] bicyclic architecture, and it can be made sufficiently large (>3 nm per event) that individual unravelling events are resolved in both constant-velocity and constant-force single-molecule force spectroscopy (SMFS) experiments. Replacing a methylene in the pulling attachment with a phenyl group drops the force necessary to achieve rate constants of 1 s-1 from ca. 1970 pN (dialkyl handles) to 630 pN (diaryl handles), and the substituent effect is attributed to a combination of electronic stabilization and mechanical leverage effects. In contrast, the kinetics are negligibly perturbed by changes in the amount of stored length. The independent control of unravelling force and extension holds promise as a probe of molecular behavior in polymer networks and for optimizing the behaviors of materials made from covalent domain polymers.
Collapse
Affiliation(s)
- Brandon H Bowser
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shu Wang
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana B Kouznetsova
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Haley K Beech
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Physics, Mechanical Engineering and Materials Science, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.,World Premier Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Stephen L Craig
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
25
|
Wang S, Beech HK, Bowser BH, Kouznetsova TB, Olsen BD, Rubinstein M, Craig SL. Mechanism Dictates Mechanics: A Molecular Substituent Effect in the Macroscopic Fracture of a Covalent Polymer Network. J Am Chem Soc 2021; 143:3714-3718. [PMID: 33651599 DOI: 10.1021/jacs.1c00265] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fracture of rubbery polymer networks involves a series of molecular events, beginning with conformational changes along the polymer backbone and culminating with a chain scission reaction. Here, we report covalent polymer gels in which the macroscopic fracture "reaction" is controlled by mechanophores embedded within mechanically active network strands. We synthesized poly(ethylene glycol) (PEG) gels through the end-linking of azide-terminated tetra-arm PEG (Mn = 5 kDa) with bis-alkyne linkers. Networks were formed under identical conditions, except that the bis-alkyne was varied to include either a cis-diaryl (1) or cis-dialkyl (2) linked cyclobutane mechanophore that acts as a mechanochemical "weak link" through a force-coupled cycloreversion. A control network featuring a bis-alkyne without cyclobutane (3) was also synthesized. The networks show the same linear elasticity (G' = 23-24 kPa, 0.1-100 Hz) and equilibrium mass swelling ratios (Q = 10-11 in tetrahydrofuran), but they exhibit tearing energies that span a factor of 8 (3.4 J, 10.6, and 27.1 J·m-2 for networks with 1, 2, and 3, respectively). The difference in fracture energy is well-aligned with the force-coupled scission kinetics of the mechanophores observed in single-molecule force spectroscopy experiments, implicating local resonance stabilization of a diradical transition state in the cycloreversion of 1 as a key determinant of the relative ease with which its network is torn. The connection between macroscopic fracture and a small-molecule reaction mechanism suggests opportunities for molecular understanding and optimization of polymer network behavior.
Collapse
Affiliation(s)
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
26
|
Brown CL, Bowser BH, Meisner J, Kouznetsova TB, Seritan S, Martinez TJ, Craig SL. Substituent Effects in Mechanochemical Allowed and Forbidden Cyclobutene Ring-Opening Reactions. J Am Chem Soc 2021; 143:3846-3855. [PMID: 33667078 DOI: 10.1021/jacs.0c12088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Woodward and Hoffman once jested that a very powerful Maxwell demon could seize a molecule of cyclobutene at its methylene groups and tear it open in a disrotatory fashion to obtain butadiene (Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem., Int. Ed. 1969, 8, 781-853). Nearly 40 years later, that demon was discovered, and the field of covalent polymer mechanochemistry was born. In the decade since our demon was befriended, many fundamental investigations have been undertaken to build up our understanding of force-modified pathways for electrocyclic ring-opening reactions. Here, we seek to extend that fundamental understanding by exploring substituent effects in allowed and forbidden ring-opening reactions of cyclobutene (CBE) and benzocyclobutene (BCB) using a combination of single-molecule force spectroscopy (SMFS) and computation. We show that, while the forbidden ring-opening of cis-BCB occurs at a lower force than the allowed ring-opening of trans-BCB on the time scale of the SMFS experiment, the opposite is true for cis- and trans-CBE. Such a reactivity flip is explained through computational analysis and discussion of the so-called allowed/forbidden gap.
Collapse
Affiliation(s)
- Cameron L Brown
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Brandon H Bowser
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jan Meisner
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Seritan
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J Martinez
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Abstract
In mechanochemistry, molecules under tension can react in unexpected ways. The reactivity of mechanophores (mechanosensitive molecules) can be controlled using various geometric or electronic factors. Often these factors affect the rate of mechanical activation but sometimes give rise to alternative reaction pathways. Here we show that a simple isotope substitution (H to D) leads to a reversal of selectivity in the activation of a mechanophore. Remarkably this isotope effect is not kinetic in nature but emerges from dynamic effects in which deuteration reduces the ability of the reactant to follow a post-transition-state concerted trajectory on the bifurcated force-modified potential energy surface. These results give a new insight into the reactivity of molecules under tension.
Collapse
Affiliation(s)
- Robert Nixon
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
28
|
Abstract
In an effort to develop polymers that can undergo extensive backbone degradation in response to mechanical stress, we report a polymer system that is hydrolytically stable but unmasks easily hydrolysable enol ether backbone linkages when force is applied. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a novel mechanophore monomer consisting of cyclic ether fused bicyclohexene. Hydrogenation of the resulting polymers led to significantly enhanced thermal stability (Td > 400 °C) and excellent resistance toward acidic or basic conditions. Solution ultrasonication of the polymers resulted in up to 65% activation of the mechanophore units and conversion to backbone enol ether linkages, which then allowed facile degradation of the polymers to generate small molecule or oligomeric species under mildly acidic conditions. We also achieved solid-state mechano-activation and polymer degradation via grinding the solid polymer. Force-induced hydrolytic polymer degradability can enable materials that are stable under force-free conditions but readily degrade under stress. Facile degradation of mechanically activated polymechanophores also facilitates the analysis of mechanochemical products. A mechanically responsive polymer system that is hydrolytically stable without stress, but unmasks enol ether backbone linkages under force to allow facile hydrolytic degradation.![]()
Collapse
Affiliation(s)
- Jinghui Yang
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Yan Xia
- Department of Chemistry, Stanford University Stanford California 94305 USA
| |
Collapse
|
29
|
Watabe T, Aoki D, Otsuka H. Enhancement of Mechanophore Activation in Mechanochromic Dendrimers by Functionalization of Their Surface. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
30
|
O’Neill RT, Boulatov R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 2021; 5:148-167. [PMID: 37117533 DOI: 10.1038/s41570-020-00249-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.
Collapse
|
31
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
32
|
Ayer MA, Verde-Sesto E, Liu CH, Weder C, Lattuada M, Simon YC. Modeling ultrasound-induced molecular weight decrease of polymers with multiple scissile azo-mechanophores. Polym Chem 2021. [DOI: 10.1039/d1py00420d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective and non-selective chain scission compete upon ultrasonic treatment of polymers with randomly distributed azo units.
Collapse
Affiliation(s)
- Mathieu A. Ayer
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Ester Verde-Sesto
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
- Centro de Física de Materiales (CSIC
| | - Cheyenne H. Liu
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- 118 College Dr
- USA
| | - Christoph Weder
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
| | - Marco Lattuada
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
- Department of Chemistry
| | - Yoan C. Simon
- Adolphe Merkle Institute
- University of Fribourg
- 1700 Fribourg
- Switzerland
- School of Polymer Science and Engineering
| |
Collapse
|
33
|
Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, Boulatov R, Weng W. A Mechanochemical Reaction Cascade for Controlling Load-Strengthening of a Mechanochromic Polymer. Angew Chem Int Ed Engl 2020; 59:21980-21985. [PMID: 32827332 PMCID: PMC7756483 DOI: 10.1002/anie.202010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 11/08/2022]
Abstract
We demonstrate an intermolecular reaction cascade to control the force which triggers crosslinking of a mechanochromic polymer of spirothiopyran (STP). Mechanochromism arises from rapid reversible force-sensitive isomerization of STP to a merocyanine, which reacts rapidly with activated C=C bonds. The concentration of such bonds, and hence the crosslinking rate, is controlled by force-dependent dissociation of a Diels-Alder adduct of anthracene and maleimide. Because the adduct requires ca. 1 nN higher force to dissociate at the same rate as that of STP isomerization, the cascade limits crosslinking to overstressed regions of the material, which are at the highest rate of material damage. Using comb polymers decreased the minimum concentration of mechanophores required to crosslinking by about 100-fold compared to previous examples of load-strengthening materials. The approach described has potential for controlling a broad range of reaction sequences triggered by mechanical load.
Collapse
Affiliation(s)
- Yifei Pan
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Huan Zhang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Piaoxue Xu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Yancong Tian
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Chenxu Wang
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Shishuai Xiang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Roman Boulatov
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Wengui Weng
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| |
Collapse
|
34
|
Tian Y, Cao X, Li X, Zhang H, Sun CL, Xu Y, Weng W, Zhang W, Boulatov R. A Polymer with Mechanochemically Active Hidden Length. J Am Chem Soc 2020; 142:18687-18697. [PMID: 33064473 PMCID: PMC7596784 DOI: 10.1021/jacs.0c09220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incorporating hidden length into polymer chains can improve their mechanical properties, because release of the hidden length under mechanical loads enables localized strain relief without chain fracture. To date, the design of hidden length has focused primarily on the choice of the sacrificial bonds holding the hidden length together. Here we demonstrate the advantages of adding mechanochemical reactivity to hidden length itself, using a new mechanophore that integrates (Z)-2,3-diphenylcyclobutene-1,4-dicarboxylate, with hitherto unknown mechanochemistry, into macrocyclic cinnamate dimers. Stretching a polymer of this mechanophore more than doubles the chain contour length without fracture. DFT calculations indicate that the sequential dissociation of the dimer, followed by cyclobutene isomerization at higher forces yields a chain fracture energy 11 times that of a simple polyester of the same initial contour length and preserves high energy-dissipating capacity up to ∼3 nN. In sonicated solutions cyclobutene isomerizes to two distinct products by competing reaction paths, validating the computed mechanochemical mechanism and suggesting an experimental approach to quantifying the distribution of single-chain forces under diverse loading scenarios.
Collapse
Affiliation(s)
- Yancong Tian
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Xiaodong Cao
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Huan Zhang
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Cai-Li Sun
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Yuanze Xu
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
35
|
Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, Boulatov R, Weng W. A Mechanochemical Reaction Cascade for Controlling Load‐Strengthening of a Mechanochromic Polymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yifei Pan
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Huan Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Piaoxue Xu
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yancong Tian
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Chenxu Wang
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Shishuai Xiang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Roman Boulatov
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Wengui Weng
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| |
Collapse
|
36
|
Abstract
The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness. Methods by which the intrinsic molecular strength of the constituents of a given polymeric material might be switched are therefore potentially useful both for applications in which triggered property changes are desirable, and as tests of molecular theories for bulk behaviors. Here we report that the sequential oxidation of sulfide containing polyesters (PE-S) to the corresponding sulfoxide (PE-SO) and then sulfone (PE-SO2) first weakens (sulfoxide), and then enhances (sulfone), the effective mechanical integrity of the polymer backbone; PE-S ∼ PE-SO2 > PE-SO. The relative mechanical strength as a function of oxidation state is revealed through the use of gem-dichlorocyclopropane nonscissile mechanophores as an internal standard, and the observed order agrees well with the reported bond dissociation energies of C–S bonds in each species and with the results of CoGEF modeling. The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness.![]()
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Stephen L Craig
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
37
|
Klein IM, Husic CC, Kovács DP, Choquette NJ, Robb MJ. Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. J Am Chem Soc 2020; 142:16364-16381. [DOI: 10.1021/jacs.0c06868] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Isabel M. Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Corey C. Husic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dávid P. Kovács
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicolas J. Choquette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
38
|
Al-Qatatsheh A, Morsi Y, Zavabeti A, Zolfagharian A, Salim N, Z. Kouzani A, Mosadegh B, Gharaie S. Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4484. [PMID: 32796604 PMCID: PMC7474433 DOI: 10.3390/s20164484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Advancements in materials science and fabrication techniques have contributed to the significant growing attention to a wide variety of sensors for digital healthcare. While the progress in this area is tremendously impressive, few wearable sensors with the capability of real-time blood pressure monitoring are approved for clinical use. One of the key obstacles in the further development of wearable sensors for medical applications is the lack of comprehensive technical evaluation of sensor materials against the expected clinical performance. Here, we present an extensive review and critical analysis of various materials applied in the design and fabrication of wearable sensors. In our unique transdisciplinary approach, we studied the fundamentals of blood pressure and examined its measuring modalities while focusing on their clinical use and sensing principles to identify material functionalities. Then, we carefully reviewed various categories of functional materials utilized in sensor building blocks allowing for comparative analysis of the performance of a wide range of materials throughout the sensor operational-life cycle. Not only this provides essential data to enhance the materials' properties and optimize their performance, but also, it highlights new perspectives and provides suggestions to develop the next generation pressure sensors for clinical use.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Yosry Morsi
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville VIC 3010, Australia;
| | - Ali Zolfagharian
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Nisa Salim
- Faculty of Science, Engineering, and Technology (FSET), Swinburne University of Technology, Melbourne VIC 3122, Australia; (Y.M.); (N.S.)
| | - Abbas Z. Kouzani
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| | - Bobak Mosadegh
- Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Saleh Gharaie
- Faculty of Science, Engineering and Built Environment, School of Engineering, Deakin University, Waurn Ponds VIC 3216, Australia; (A.Z.); (A.Z.K.)
| |
Collapse
|
39
|
|
40
|
Deneke N, Rencheck ML, Davis CS. An engineer's introduction to mechanophores. SOFT MATTER 2020; 16:6230-6252. [PMID: 32567642 DOI: 10.1039/d0sm00465k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanophores (MPs) are a class of stimuli-responsive materials that are of increasing interest to engineers due to their potential applications as stress sensors. These mechanically responsive molecules change color or become fluorescent upon application of a mechanical stimulus as they undergo a chemical reaction when a load is applied. By incorporating MPs such as spirolactam, spiropyran, or dianthracene into a material system, the real-time stress distribution of the matrix can be directly observed through a visual response, ideal for damage and failure sensing applications. A wide array of applications that require continuous structural health monitoring could benefit from MPs including flexible electronics, protective coatings, and polymer matrix composites. However, there are significant technical challenges preventing MP implementation in industry. Effective strategies to quantitatively calibrate the photo response of the MP with applied stress magnitudes must be developed. Additionally, environmental conditions, including temperature, humidity, and ultraviolet light exposure can potentially impact the performance of MPs. By addressing these limitations, engineers can work to move MPs from the synthetic chemistry bench to the field. This review aims to highlight recent progress in MP research, discuss barriers to implementation, and provide an outlook on the future of MPs, specifically focused on polymeric material systems. Although the focus is on engineering MPs for bulk materials, a brief overview of mechanochemistry will be discussed followed by methods for activation and quantification of MP photo response (concentrating specifically on fluorescently active species). Finally, current challenges and future directions in MP research will be addressed.
Collapse
Affiliation(s)
- Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Mitchell L Rencheck
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| |
Collapse
|
41
|
Abstract
Degradable polymers are desirable for the replacement of conventional organic polymers that persist in the environment, but they often suffer from the unintentional scission of the degradable functionalities on the polymer backbone, which diminishes polymer properties during storage and regular use. Herein, we report a strategy that combats unintended degradation in polymers by combining two common degradation stimuli-mechanical and acid triggers-in an "AND gate" fashion. A cyclobutane (CB) mechanophore is used as a mechanical gate to regulate an acid-sensitive ketal that has been widely employed in acid degradable polymers. This gated ketal is further incorporated into the polymer backbone. In the presence of an acid trigger alone, the pristine polymer retains its backbone integrity, and delivering high mechanical forces alone by ultrasonication degrades the polymer to an apparent limiting molecular weight of 28 kDa. The sequential treatment of ultrasonication followed by acid, however, leads to a further 11-fold decrease in molecular weight to 2.5 kDa. Experimental and computational evidence further indicate that the ungated ketal possesses mechanical strength that is commensurate with the conventional polymer backbones. Single molecule force spectroscopy (SMFS) reveals that the force necessary to activate the CB molecular gate on the time scale of 100 ms is approximately 2 nN.
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Tatiana B Kouznetsova
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Stephen L Craig
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
42
|
Hsu TG, Zhou J, Su HW, Schrage BR, Ziegler CJ, Wang J. A Polymer with "Locked" Degradability: Superior Backbone Stability and Accessible Degradability Enabled by Mechanophore Installation. J Am Chem Soc 2020; 142:2100-2104. [PMID: 31940198 DOI: 10.1021/jacs.9b12482] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Though numerous applications require degradable polymers, there are surprisingly few polymer systems that combine superior stability and controllable degradability. Particularly, the degradability of a conventional degradable polymer is typically enabled by cleavable groups on the backbone, which can be attacked by stimuli in ambient conditions, causing undesirable material deterioration. Here we report a general strategy to overcome this issue: "locking" the degradability during handling and use of the polymers and "unlocking" it when degradation is needed. This strategy is demonstrated with a cyclobutane-fused lactone (CBL) polymer. The cyclobutane keeps polymer backbone intact under conditions that hydrolyze the lactone and allows the ester group to be recovered when undesirable hydrolysis occurs. When backbone degradation is needed, the degradability can be unlocked by mechanochemical activation that converts the polyCBL into a linear polyester. The rare combination of two intrinsically conflicting properties, i.e., backbone stability and accessible degradability, can make this polymer a potential option for new sustainable materials.
Collapse
Affiliation(s)
- Tze-Gang Hsu
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Junfeng Zhou
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Hsin-Wei Su
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Briana R Schrage
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Christopher J Ziegler
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Junpeng Wang
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
43
|
The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat Chem 2020; 12:302-309. [DOI: 10.1038/s41557-019-0396-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 11/15/2019] [Indexed: 11/08/2022]
|
44
|
Izak-Nau E, Campagna D, Baumann C, Göstl R. Polymer mechanochemistry-enabled pericyclic reactions. Polym Chem 2020. [DOI: 10.1039/c9py01937e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer mechanochemical pericyclic reactions are reviewed with regard to their structural features and substitution prerequisites to the polymer framework.
Collapse
Affiliation(s)
- Emilia Izak-Nau
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| |
Collapse
|
45
|
Ren J, He J. Polymer chain editing: functionality “knock-in”, “knock-out” and replacement via cross metathesis reaction and thiol-Michael addition. Polym Chem 2020. [DOI: 10.1039/d0py00549e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inspired by the gene editing process, chain editing of synthetic polymers, including functionality “knock-out”, “knock-in” and replacement, was performed through cross metathesis and thiol-Michael addition.
Collapse
Affiliation(s)
- Jie Ren
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai
- China
| |
Collapse
|
46
|
Peterson GI, Lee J, Choi TL. Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone–Arm Junctions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01996] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
47
|
Lee JS, Kapustin EA, Pei X, Llopis S, Yaghi OM, Toste FD. Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. Chem 2019; 6:142-152. [PMID: 32285019 DOI: 10.1016/j.chempr.2019.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway - reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analogue is prone to decomposition in solution. Stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.
Collapse
Affiliation(s)
- John S Lee
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Eugene A Kapustin
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA
| | - Xiaokun Pei
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA
| | - Sebastián Llopis
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Omar M Yaghi
- Department of Chemistry, University of California, Berkeley, CA, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA.,Berkeley Global Science Institute, Berkeley, CA, USA.,UC Berkeley-KACST Joint Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, USA.,Lead Contact
| |
Collapse
|
48
|
Bowser BH, Ho CH, Craig SL. High Mechanophore Content, Stress-Relieving Copolymers Synthesized via RAFT Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon H. Bowser
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ching-Hsien Ho
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
49
|
Lin Y, Hansen HR, Brittain WJ, Craig SL. Strain-Dependent Kinetics in the Cis-to-Trans Isomerization of Azobenzene in Bulk Elastomers. J Phys Chem B 2019; 123:8492-8498. [PMID: 31525921 DOI: 10.1021/acs.jpcb.9b07088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cis-to-trans isomerization of azobenzene is accelerated in a bulk PDMS elastomer under uniaxial tension. The kinetics are cleanly described by a single-exponential first-order process (k = 2.7 × 10-5 s-1) in the absence of tension but become multiexponential under constant strains of 40-90%. The complex kinetics can be reasonably modeled as a two-component process. The majority (∼92%) process is slower and occurs with a rate constant that is similar to that of the unstrained system (k = 2.3-2.7 × 10-5 s-1), whereas the rate constant of the minority (∼8%) process increases from k = 10.1 × 10-5 s-1 at 40% strain to k = 21.3 × 10-5 s-1 at 90% strain. Simple models of expected force-rate relationships suggest that the average force of tension per strand in the minority component ranges from 28 to 44 pN across strains of 40-90%.
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Heather R Hansen
- Department of Chemistry and Biochemistry , Texas State University , San Marcos , Texas 78666 , United States
| | - William J Brittain
- Department of Chemistry and Biochemistry , Texas State University , San Marcos , Texas 78666 , United States
| | - Stephen L Craig
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
50
|
Barbee MH, Wang J, Kouznetsova T, Lu M, Craig SL. Mechanochemical Ring-Opening of Allylic Epoxides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Junpeng Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Meilin Lu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|