1
|
Kim S, Goldfogel MJ, Ahern BN, Salgueiro DC, Guzei IA, Weix DJ. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Triflates with Alkyl Halides: Mechanism-Informed Design of More General Conditions. J Am Chem Soc 2025. [PMID: 39793607 DOI: 10.1021/jacs.4c14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp2)-C(sp3) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(N-cyanocarboxamidine) (PyBCamCN)-ligated nickel catalysts. The scope of the reaction is demonstrated with 38 examples (61 ± 14% average yield). Mechanistic studies provide a rationale for the conditions used and a roadmap for further applications of cross-electrophile coupling. First, the rate of alkyl radical generation is controlled by maintaining the majority of alkyl halide as the alkyl chloride, which is unreactive, and utilizing a dynamic halide exchange process to adjust the concentration of reactive alkyl bromide or iodide. Second, the challenge of using electron-rich aryl triflates appears to be due to off-cycle transmetalation to form unproductive aryl zinc reagents. The optimal PyBCamCN ligand together with LiCl avoids this deleterious transmetalation step.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew J Goldfogel
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Benjamin N Ahern
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel C Salgueiro
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Wang L, Zhou PP, Xie D, Yue Q, Sun HZ, Yang SD, Wang GW. Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes. J Am Chem Soc 2025. [PMID: 39791566 DOI: 10.1021/jacs.4c15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines. Various types of aziridines, including 2-phenyl, 2-carbonyl, 2-alkyl, and disubstituted aziridines, consistently cleave their more sterically hindered C-N bonds to generate 1,3-radical anion intermediates. These intermediates participate in a highly regioselective 1,4-Heck/allylic substitution cascade with aromatic branched 1,3-dienes, resulting in a radical-polar crossover (4 + 3) cycloaddition that produces seven-membered azepine products. This approach not only complements traditional dipolar cycloaddition, in which aziridines typically act as zwitterionic 1,3-dipoles, but also introduces an unusual cycloaddition mode for 1,3-dienes. Experimental investigations and density functional theory (DFT) calculations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dong Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qian Yue
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Zheng Sun
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Xie S, Lu M, Wang P, Shi R. Current-Regulated Selective Nickel-Catalyzed Electroreductive Cross-Electrophile Carbonylation to β/γ-Hydroxy Ketones. Angew Chem Int Ed Engl 2024:e202418147. [PMID: 39714447 DOI: 10.1002/anie.202418147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks. A diverse range of multi-substituted β/γ-hydroxyketones can be accessed with high chemo- and regioselectivity from epoxides, aryl iodides, and a simple CO source (ClCO2Pr). This electroreductive carbonylation strategy exhibits high functional group tolerance and can be applied in late-stage derivatization of drugs and natural products. Notably, chiral epoxides can be employed as reactants with chirality retention, enabling the synthesis of asymmetric β-hydroxy ketones. Our approach demonstrates a novel electrochemical selectivity-controlled strategy in multi-component cross-electrophile coupling.
Collapse
Affiliation(s)
- Shentong Xie
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an 710049, P. R. China
| | - Ming Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Pengcheng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Michel NWM, Gabbey AL, Edjoc RK, Fagbola E, Hughes JME, Campeau LC, Rousseaux SAL. Nickel-Catalyzed Reductive Arylation of Redox Active Esters for the Synthesis of α-Aryl Nitriles: Investigation of a Chlorosilane Additive. J Org Chem 2024; 89:16161-16169. [PMID: 38197128 DOI: 10.1021/acs.joc.3c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A nickel-catalyzed reductive cross-coupling of redox active N-hydroxyphthalimide (NHP) esters and iodoarenes for the synthesis of α-aryl nitriles is described. The NHP ester substrate is derived from cyanoacetic acid, which allows for a modular synthesis of substituted α-aryl nitriles, an important scaffold in the pharmaceutical sciences. The reaction exhibits a broad scope, and many functional groups are compatible under the reaction conditions, including complex highly functionalized medicinal agents. Mechanistic studies reveal that reduction and decarboxylation of the NHP ester to the reactive radical intermediate are accomplished by a combination of a chlorosilane additive and Zn dust. We demonstrate that stoichiometric chlorosilane is essential for product formation and that chlorosilane plays a role beyond activation of the metal reductant.
Collapse
Affiliation(s)
- Nicholas W M Michel
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Racquel K Edjoc
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Emmanuel Fagbola
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research and Development, Merck & Company Inc., Rahway, New Jersey 07065, United States
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Fohn N, Gao Y, Sproules S, Nichol GS, Brennan CM, Robinson AJ, Lloyd-Jones GC. Kinetics and Mechanism of PPh 3/Ni-Catalyzed, Zn-Mediated, Aryl Chloride Homocoupling: Antagonistic Effects of ZnCl 2/Cl . J Am Chem Soc 2024; 146:29913-29927. [PMID: 39420638 PMCID: PMC11528415 DOI: 10.1021/jacs.4c12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The Ni/PPh3-catalyzed homocoupling of aryl chlorides in DMF using Zn as the stochiometric reducing agent is one of a general class of Ni-catalyzed processes, where the mechanism has been a matter of long-standing debate. This study re-evaluates prior conclusions and insights. NMR spectroscopy is used to identify [(PPh3)2NiII(Ar)Cl] as a key intermediate and to explore the indirect roles of using Zn as the reductant. The [ZnCl2] coproduct is responsible for several features, including a sequential transmetalation pathway involving [ArZnCl]. [ZnCl2] also abstracts halide from [(PPh3)2NiCl2] to generate [NiIICl(DMF)5]+[ZnCl3(DMF)]-, and in doing so, affects the NiII + Ni0 ↔ 2 NiI speciation. [ZnCl2] thus acts as an accelerator and inhibitor, resulting in mildly sigmoidal reaction profiles. When the [ZnCl2] concentration becomes too high or the phosphine ligand concentration too low, catalysis stalls. Turnover is restored by the addition of further phosphine ligand, or chloride ion. In the presence of an exogenous chloride ion, turnover is rapid, again proceeding via [(PPh3)2NiII(Ar)Cl] but via dinuclear metathesis. The generation of [ZnCl3(DMF)]- results in mutually antagonistic effects between [ZnCl2] and [Cl]- such that turnover proceeds via one mechanism or the other, depending on which species is in excess. The intermediacy of [ArZnCl] suggests a solution to the long-standing anomaly that many other reductants were found to be much less effective than Zn in inducing turnover of Ni/PPh3 catalyzed aryl chloride homocoupling in DMF. The use of DMAc as a solvent in place of DMF inhibits stalling through the steric inhibition of mixed metalate generation.
Collapse
Affiliation(s)
- Nicole
A. Fohn
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Yuan Gao
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Stephen Sproules
- University
of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K.
| | - Gary S. Nichol
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Colin M. Brennan
- Jealott’s
Hill International Research Centre, Berkshire, Bracknell RG42
6EY, U.K.
| | - Alan J. Robinson
- Syngenta
Crop Protection, Research and Development Centre, Stein 4332, Switzerland
| | - Guy C. Lloyd-Jones
- University
of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
7
|
Höthker S, Plato A, Grimme S, Qu ZW, Gansäuer A. Stereoconvergent Approach to the Enantioselective Construction of α-Quaternary Alcohols by Radical Epoxide Allylation. Angew Chem Int Ed Engl 2024; 63:e202405911. [PMID: 38669602 DOI: 10.1002/anie.202405911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We describe a highly stereoconvergent radical epoxide allylation towards diastereomerically and enantiomerically enriched α-quaternary alcohols in two steps from olefins. Our approach combines the stereospecifity and enantioselectivity of the Shi epoxidation with the unprecedented Ti(III)-promoted intramolecular radical group transfer allylation of epoxides. A directional isomerization step via configurationally labile radical intermediates enables the selective preparation of all-carbon quaternary stereocenters in a unique fashion.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Annika Plato
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Chen ZH, Zheng YQ, Huang HG, Wang KH, Gong JL, Liu WB. From Quaternary Carbon to Tertiary C(sp 3)-Si and C(sp 3)-Ge Bonds: Decyanative Coupling of Malononitriles with Chlorosilanes and Chlorogermanes Enabled by Ni/Ti Dual Catalysis. J Am Chem Soc 2024; 146:14445-14452. [PMID: 38739877 DOI: 10.1021/jacs.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Gui Huang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ke-Hao Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun-Lin Gong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Wang ZY, Liu SZ, Guo C, Cheng YZ, Li Q, Dou J, Li D. Nickel-catalyzed γ-alkylation of cyclopropyl ketones with unactivated primary alkyl chlorides: balancing reactivity and selectivity via halide exchange. RSC Adv 2024; 14:12883-12887. [PMID: 38650692 PMCID: PMC11033608 DOI: 10.1039/d4ra02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
A novel method was developed for synthesizing γ-alkyl ketones via nickel-catalyzed cross-electrophile coupling of cyclopropyl ketones and non-activated primary alkyl chlorides. High reactivity and selectivity can be achieved with sodium iodide as a crucial cocatalyst that generates a low concentration of alkyl iodide via halide exchange, thus avoiding the formation of alkyl dimers. This reaction possessed excellent regioselectivity and high step economy circumventing in situ or pregenerated organometallics.
Collapse
Affiliation(s)
- Zheng-Ying Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Shi-Zheng Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Cong Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yi-Zheng Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
10
|
Moser AJ, Funk BE, West JG. Vitamin B 12 in Photocatalysis - An Underexplored Frontier in Cooperative Catalysis. ChemCatChem 2024; 16:e202301231. [PMID: 39372221 PMCID: PMC11452056 DOI: 10.1002/cctc.202301231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 10/08/2024]
Abstract
Vitamin B12 (VB12) is a flexible and sustainable catalyst both in nature and the reaction flask, facilitating varied organic transformations of high value to both enzymatic processes and synthetic chemists. Key to this value is the breadth of reactivity it possesses, capable of both ionic, 2 electron chemistry, and radical, 1 electron chemistry. In particular, the ability to generate carbon-centered radical intermediates via photolysis of organocobalt intermediates formed from alkyl electrophiles opens the door to powerful new radical transformations challenging to achieve using classical photoredox or ligand-to-metal charge transfer (LMCT) catalysis. While this unique photocatalytic reactivity of VB12 has been increasingly leveraged in monocatalytic schemes, recent reports have demonstrated VB12 is able to function as the photocatalytic component in cooperative schemes, driving diverse reactivity including remote elimination of alkyl halides, regioselective epoxide arylation, and regioselective epoxide reduction. This concept briefly overviews the enabling photochemical properties of VB12 and recent applications in cooperative catalysis, providing a framework for the continued development of new cooperative catalyst systems using this powerful photoactive complex.
Collapse
Affiliation(s)
- Austin J. Moser
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Brian E. Funk
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| | - Julian G. West
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005 United States
| |
Collapse
|
11
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
12
|
Suga T, Takada R, Sakamoto M, Ukaji Y. Directing-Group-Assisted Non-Strained Ether C-O Bond Homolysis Mediated by Low-Valent Titanium. Org Lett 2024; 26:2315-2320. [PMID: 38456776 DOI: 10.1021/acs.orglett.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ether C-O bonds are typical constituents of organic molecules that are seldom regarded as reactive functional groups except when highly strained. With the assistance of appropriate directing groups, low-valent titanium was found to homolytically cleave non-strained C-O bonds. In particular, a newly designed catechol monoether directing group rendered a route toward the activation of non-benzylic C(sp3)-O bonds. This method has been applied to conventional radical addition reactions to alkenes.
Collapse
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Ryusei Takada
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Masaya Sakamoto
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
13
|
Wang T, Guan Y, Zhang T, Liang Y. Ligand Relay for Nickel-Catalyzed Decarbonylative Alkylation of Aroyl Chlorides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306923. [PMID: 38088530 PMCID: PMC10916626 DOI: 10.1002/advs.202306923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
Transition metal-catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late-stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel-catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross-electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late-stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.
Collapse
Affiliation(s)
- Tian‐Zhang Wang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Qiu Guan
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Tian‐Yu Zhang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| | - Yu‐Feng Liang
- School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
| |
Collapse
|
14
|
Bai PB, Durie A, Wang GW, Larrosa I. Unlocking regioselective meta-alkylation with epoxides and oxetanes via dynamic kinetic catalyst control. Nat Commun 2024; 15:31. [PMID: 38167324 PMCID: PMC10761682 DOI: 10.1038/s41467-023-44219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Regioselective arene C-H bond alkylation is a powerful tool in synthetic chemistry, yet subject to many challenges. Herein, we report the meta-C-H bond alkylation of aromatics bearing N-directing groups using (hetero)aromatic epoxides as alkylating agents. This method results in complete regioselectivity on both the arene as well as the epoxide coupling partners, cleaving exclusively the benzylic C-O bond. Oxetanes, which are normally unreactive, also participate as alkylating reagents under the reaction conditions. Our mechanistic studies reveal an unexpected reversible epoxide ring opening process undergoing catalyst-controlled regioselection, as key for the observed high regioselectivities.
Collapse
Affiliation(s)
- Peng-Bo Bai
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Alastair Durie
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gang-Wei Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Igor Larrosa
- School of Natural Sciences, Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.
| |
Collapse
|
15
|
Williams WL, Gutiérrez-Valencia NE, Doyle AG. Branched-Selective Cross-Electrophile Coupling of 2-Alkyl Aziridines and (Hetero)aryl Iodides Using Ti/Ni Catalysis. J Am Chem Soc 2023; 145:24175-24183. [PMID: 37888947 DOI: 10.1021/jacs.3c08301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant β-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.
Collapse
Affiliation(s)
- Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neyci E Gutiérrez-Valencia
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Kanale VV, Uyeda C. Catalytic Asymmetric Ring-Opening Reactions of Unstrained Heterocycles Using Cobalt Vinylidenes. Angew Chem Int Ed Engl 2023; 62:e202309681. [PMID: 37656431 PMCID: PMC10591978 DOI: 10.1002/anie.202309681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
Cobalt catalysts promote highly enantioselective ring-opening reactions of 2,5-dihydrofurans using vinylidenes. The products are acyclic organozinc compounds that can be functionalized with an electrophile. The proposed mechanism involves the generation of a cobalt vinylidene species that adds to the alkene by a [2+2]-cycloaddition pathway. Ring-opening then occurs via outer-sphere β-O elimination assisted by coordination of a ZnX2 Lewis acid to the alkoxide leaving group. DFT models reveal that competing inner-sphere syn β-H and β-O elimination pathways are suppressed by the geometric constraints of the metallacycle intermediate. These models rationalize the observed stereochemical outcome of the reaction.
Collapse
Affiliation(s)
- Vibha V Kanale
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Christopher Uyeda
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Li J, Cao C, Wu H, Dong K. Nickel/Titanocene-Catalyzed Electrophilic Acylation Coupling of Styrene Oxides. Org Lett 2023; 25:6959-6963. [PMID: 37726896 DOI: 10.1021/acs.orglett.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The cross-coupling of epoxides with acyl chlorides or anhydrides by a nickel/titanocene dual catalytic system is established. A variety of synthetically useful β-hydroxy ketones were obtained in good to high yields by using modified pyridine-oxazoline ligand. The reaction proceeds via the cooperation of titanocene-catalyzed ring-opening of epoxides and nickel-catalyzed acylation of the benzylic radical intermediate.
Collapse
Affiliation(s)
- Jincan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
18
|
Das K, Halder S. Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor Catalytic Approach. J Org Chem 2023; 88:12872-12883. [PMID: 36007267 DOI: 10.1021/acs.joc.2c00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of highly functionalized five-membered oxa- and aza-heterocycles has been reported utilizing hydrogen-bond donor (HBD) catalysis. In this method, an epoxide was taken as a substrate and reacted with functionalized arylidene/alkylidene malononitrile derivatives in the presence of a newly designed HBD catalyst. In all the cases, the products 2,5-disubstituted tetrahydrofurans (2,5-THFs) were obtained in good to excellent yields (up to 86%) with high diastereoselectivity (dr up to 99:1) as a single regioisomer. The stereochemistry at the 2- and 5-positions of the five-membered ring has been confirmed by single-crystal X-ray analysis, and cis is found to be the major product. The same strategy has been further utilized to obtain substituted oxazolidines whenever the epoxide has been reacted with isocyanate as an electrophile. In order to induce enantioselectivity, a chiral epoxide has been reacted with both the electrophiles in the presence of the same catalyst system to afford the single stereoisomer of the final products. This synthetic methodology involves a low catalyst loading and ambient reaction condition and has been generalized with various substituents present in the starting electrophiles to produce the resultant products in acceptable yields and stereoselectivity.
Collapse
Affiliation(s)
- Koushik Das
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| | - Sandipan Halder
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440010, India
| |
Collapse
|
19
|
DeCicco EM, Berritt S, Knauber T, Coffey SB, Hou J, Dowling MS. Decarboxylative Cross-Electrophile Coupling of (Hetero)Aromatic Bromides and NHP Esters. J Org Chem 2023; 88:12329-12340. [PMID: 37609685 DOI: 10.1021/acs.joc.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Aryl bromides are known to be challenging substrates in the decarboxylative cross-electrophile coupling with redox-active NHP esters-the majority of such processes utilize aryl iodides. Herein, we describe the development of conditions that are suitable for the decarboxylative cross-electrophile coupling of NHP esters and a wide range of (hetero)aryl bromides. The key advances that allowed for the use of aryl bromides in this reaction are (1) the identification of ligand L3 as an optimal ligand for the use of electron-neutral and deficient aryl bromides and (2) the significant improvement in yield that iodide salts and excess heterogenous zinc impart to this reaction. A wide variety of NHP esters perform well under the optimized conditions, including methyl, primary, secondary, and several strained tertiary systems. Likewise, a variety of aromatic and heteroaromatic bromides relevant to medicinal chemistry perform well in this transformation, including an aryl bromide precursor to the known drug dapagliflozin.
Collapse
Affiliation(s)
- Ethan M DeCicco
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas Knauber
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven B Coffey
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Hou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Matthew S Dowling
- Medicine Design, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
20
|
Tang W, Fan P. Nickel-Catalyzed Cross-Electrophile Ring Opening/ gem-Difluoroallylation of Aziridines. Org Lett 2023; 25:5756-5761. [PMID: 37503939 DOI: 10.1021/acs.orglett.3c01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a nickel-catalyzed regioselective cross-electrophile ring opening reaction of sulfonyl-protected aziridines with trifluoromethyl-substituted alkenes as the gem-difluoroallylating agents, providing a new and efficient entry to prepare gem-difluorobishomoallylic sulfonamides. Moreover, the scaffold of 6-fluoro-1,2,3,4-tetrahydropyridine can be constructed starting from the ring opening products via NaH-mediated intramolecular defluorinative nucleophilic vinylic substitution.
Collapse
Affiliation(s)
- Wei Tang
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Höthker S, Gansäuer A. Formal Anti-Markovnikov Addition of Water to Olefins by Titanocene-Catalyzed Epoxide Hydrosilylation: From Stoichiometric to Sustainable Catalytic Reactions. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200240. [PMID: 37483422 PMCID: PMC10362118 DOI: 10.1002/gch2.202200240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Indexed: 07/25/2023]
Abstract
Here, the evolution of the titanocene-catalyzed hydrosilylation of epoxides that yields the corresponding anti-Markovnikov alcohols is summarized. The study focuses on aspects of sustainability, efficient catalyst activation, and stereoselectivity. The latest variant of the reaction employs polymethylhydrosiloxane (PMHS), a waste product of the Müller-Rochow process as terminal reductant, features an efficient catalyst activation with benzylMgBr and the use of the bench stable Cp2TiCl2 as precatalyst. The combination of olefin epoxidation and epoxide hydrosilylation provides a uniquely efficient approach to the formal anti-Markovnikov addition of H2O to olefins.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| | - Andreas Gansäuer
- Kekulé‐Institut für Organische Chemie und BiochemieRheinische Friedrich‐Wilhelms‐Universität BonnGerhard‐Domagk‐Straße 153121BonnGermany
| |
Collapse
|
22
|
Piszel PE, Orzolek BJ, Olszewski AK, Rotella ME, Spiewak AM, Kozlowski MC, Weix DJ. Protodemetalation of (Bipyridyl)Ni(II)-Aryl Complexes Shows Evidence for Five-, Six-, and Seven-Membered Cyclic Pathways. J Am Chem Soc 2023; 145:10.1021/jacs.3c00618. [PMID: 37026854 PMCID: PMC10558627 DOI: 10.1021/jacs.3c00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Protonation of C-M bonds and its microscopic reverse, metalation of C-H bonds, are fundamental steps in a variety of metal-catalyzed processes. As such, studies on protonation of C-M bonds can shed light on C-H activation. We present here studies on the rate of protodemetalation (PDM) of a suite of arylnickel(II) complexes with various acids that provide evidence for a concerted, cyclic transition state for the PDM of C-Ni bonds and demonstrate that five-, six-, and seven-membered transition states are particularly favorable. Our data show that while the rate of protodemetalation of arylnickel(II) complexes scales with acidity for many acids, several are faster than predicted by pKa. For example, while acetic acid and acetohydroxamic acid are much less acidic than HCl, they both protodemetalate arylnickel(II) complexes significantly faster than HCl. Our data also show how in the case of acetohydroxamic acid, a seven-membered cyclic transition state (CH3C(O)NHOH) can be more favorable than a six-membered transition state (CH3C(O)NHOH). Similarly, five-membered transition states, such as for pyrazole, are highly favorable as well. Comparison of transition state polarization (from density functional theory) compares these new nickel transition states to better-studied precious-metal systems and demonstrates how the base can change the polarization of the transition state giving rise to opposing electronic preferences. Collectively, these studies suggest several new avenues for study in C-H activation as well as approaches to accelerate or slow protodemetalation in nickel catalysis.
Collapse
Affiliation(s)
- Paige E. Piszel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brandon J. Orzolek
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Madeline E. Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda M. Spiewak
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Ackerman-Biegasiewicz LKG, Kariofillis SK, Weix DJ. Multimetallic-Catalyzed C-C Bond-Forming Reactions: From Serendipity to Strategy. J Am Chem Soc 2023; 145:6596-6614. [PMID: 36913663 PMCID: PMC10163949 DOI: 10.1021/jacs.2c08615] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The use of two or more metal catalysts in a reaction is a powerful synthetic strategy to access complex targets efficiently and selectively from simple starting materials. While capable of uniting distinct reactivities, the principles governing multimetallic catalysis are not always intuitive, making the discovery and optimization of new reactions challenging. Here, we outline our perspective on the design elements of multimetallic catalysis using precedent from well-documented C-C bond-forming reactions. These strategies provide insight into the synergy of metal catalysts and compatibility of the individual components of a reaction. Advantages and limitations are discussed to promote further development of the field.
Collapse
Affiliation(s)
| | - Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| |
Collapse
|
24
|
Lin Q, Tong W, Shu XZ, Chen Y. Ti-Catalyzed Dehydroxylation of Tertiary Alcohols. Org Lett 2022; 24:8459-8464. [DOI: 10.1021/acs.orglett.2c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Weiqi Tong
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yunrong Chen
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People’s Republic of China
| |
Collapse
|
25
|
Franke MC, Longley VR, Rafiee M, Stahl SS, Hansen EC, Weix DJ. Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. ACS Catal 2022; 12:12617-12626. [PMID: 37065181 PMCID: PMC10101217 DOI: 10.1021/acscatal.2c03033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel-catalyzed reductive cross-electrophile coupling reactions are becoming increasingly important in organic synthesis, but application at scale is limited by three interconnected challenges: a reliance on amide solvents (complicated workup, regulated), the generation of stoichiometric Zn salts (complicated isolation, waste disposal issue), and mixing/activation challenges of zinc powder. We show here an electrochemical approach that addresses these three issues: the reaction works in acetonitrile with diisopropylethylamine as the terminal reductant in a simple undivided cell (graphite(+)/nickel foam(-)). The reaction utilizes a combination of two ligands, 4,4'-di-tert-butyl-2,2'-bipyridine and 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine. Studies show that, alone, the bipyridine nickel catalyst predominantly forms protodehalogenated aryl and aryl dimer, whereas the terpyridine nickel catalyst predominantly forms bialkyl and product. By combining these two unselective catalysts, a tunable, general system results because excess radical formed by the terpyridine catalyst can be converted to product by the bipyridine catalyst. As the aryl bromide becomes more electron rich, the optimal ratio shifts to have more of the bipyridine nickel catalyst. Lastly, examination of a variety of flow-cell configurations establishes that batch recirculation can achieve higher productivity (mmol product/time/electrode area) than single-pass, that high flow rates are essential to maximizing current, and that two flow cells in parallel can nearly halve the reaction time. The resulting reaction is demonstrated on gram scale and should be scalable to kilogram scale.
Collapse
Affiliation(s)
- Mareena C. Franke
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Mohammad Rafiee
- Department of Chemistry, University of Missouri–Kansas City, Kansas City, MO 64110 USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Eric C. Hansen
- Chemical Research and Development, Pfizer, Inc., Eastern Point Road, Groton, CT 06340 USA
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| |
Collapse
|
26
|
Wang F, Tong Y, Zou G. Nickel-Catalyzed, Manganese-Assisted Denitrogenative Cross-Electrophile-Coupling of Benzotriazinones with Alkyl Halides for ortho-Alkylated Benzamides. Org Lett 2022; 24:5741-5745. [PMID: 35916781 DOI: 10.1021/acs.orglett.2c02182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed denitrogenative cross-electrophile-coupling of benzotriazinones with unactivated alkyl halides (X = Cl, Br, I) in the presence of manganese powder as a reductant has been developed. The reaction furnishes ortho-alkylated secondary benzamides in modest to good yields under mild conditions. The scope of the reaction is demonstrated with 25 examples, showing good tolerance of steric hindrance and common functional groups, thus providing an efficient protocol to ortho-alkylated benzamide derivatives without the use of preprepared organometallic reagents.
Collapse
Affiliation(s)
- Fengze Wang
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yi Tong
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
27
|
Hu W, Lin Z, Wang C. Synthesis of Multisubstituted Allylic Alcohols via a Nickel-Catalyzed Cross-Electrophile Ring-Opening Reaction. Org Lett 2022; 24:5751-5755. [PMID: 35901221 DOI: 10.1021/acs.orglett.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report a nickel-catalyzed cross-electrophile ring-opening reaction of vinyl epoxides wherein aryl iodides, alkyl iodides, and benzyl chlorides can all serve as the electrophilic coupling partners, providing a new approach to preparing multisubstituted allylic alcohols. This new method features broad substrate scope (76 examples), good step-economy, and high L/B- and E/Z selectivity as well as mild reaction conditions.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Zhiyang Lin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
28
|
Qu J, Yan Z, Wang X, Deng J, Liu F, Rong ZQ. Nickel-catalyzed cross-coupling of epoxides with aryltriflates: rapid and regioselective construction of aryl ketones. Chem Commun (Camb) 2022; 58:9214-9217. [PMID: 35894937 DOI: 10.1039/d2cc02891c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aryl ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Presented herein is a facile synthetic method for the construction of ketones via Ni-catalyzed cross coupling of epoxides with aryltriflates. A range of easily accessible epoxides can be highly regioselectively converted to the corresponding aryl ketones with good yields in a redox neutral fashion.
Collapse
Affiliation(s)
- Jinglin Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China.
| |
Collapse
|
29
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ke Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Bai-Hao Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Lin-Lin Wang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Min Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wei-Min Ren
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology State Key Laboratory of Fine Chemicals E-330 West Campus, No.2 Linggong Road, High-Tech Zone 116024 Dalian CHINA
| |
Collapse
|
30
|
Zhang K, Ren BH, Liu XF, Wang LL, Zhang M, Ren WM, Lu XB, Zhang WZ. Direct and Selective Electrocarboxylation of Styrene Oxides with CO2 for Accessing β-Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207660. [PMID: 35862121 DOI: 10.1002/anie.202207660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Highly selective and direct electroreductive ring-opening carboxylation of epoxides with CO2 in an undivided cell is reported. This reaction shows broad substrate scopes within styrene oxides under mild conditions, providing practical and scalable access to important synthetic intermediate β-hydroxy acids. Mechanistic studies show that CO2 functions not only as a carboxylative reagent in this reaction but also as a promoter to enable efficient and chemoselective transformation of epoxides under additive-free electrochemical conditions. Cathodically generated α-radical and α-carbanion intermediates lead to the regioselective formation of α-carboxylation products.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Bai-Hao Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Fei Liu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Lin-Lin Wang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Min Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wei-Min Ren
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Xiao-Bing Lu
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, CHINA
| | - Wen-Zhen Zhang
- Dalian University of Technology, State Key Laboratory of Fine Chemicals, E-330 West Campus, No.2 Linggong Road, High-Tech Zone, 116024, Dalian, CHINA
| |
Collapse
|
31
|
Wu X, Chang Y, Lin S. Titanium Radical Redox Catalysis: Recent Innovations in Catalysts, Reactions, and Modes of Activation. Chem 2022; 8:1805-1821. [PMID: 36213842 PMCID: PMC9543366 DOI: 10.1016/j.chempr.2022.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical chemistry has emerged as a cornerstone in modern organic synthesis, providing chemists with numerous new tools to rapidly expand reactivity and chemical space in academic and industrial research. In this regard, titanium complexes have been recognized as an attractive class of catalysts owing to their rich redox activities in addition to the abundance and low toxicity of this early transition metal. Traditionally employed for the activation of epoxides and carbonyl compounds, Ti radical redox catalysis has broken into new grounds in recent years, giving rise to a diverse repertoire of useful transformations. In this Perspective, we highlight recent developments in the area of TiIII/IV catalysis with respect to the activation of different types of chemical bonds. Furthermore, we discuss future opportunities in integrating Ti radical chemistry with other catalytic systems as well as with emerging new technologies such as photochemistry and electrochemistry.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Yejin Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
32
|
Moser BR, Cermak SC, Doll KM, Kenar JA, Sharma BK. A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bryan R. Moser
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Steven C. Cermak
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Kenneth M. Doll
- United States Department of Agriculture, Agricultural Research Service, Bio‐Oils Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - James A. Kenar
- United States Department of Agriculture, Agricultural Research Service, Functional Foods Research Unit National Center for Agricultural Utilization Research Peoria Illinois USA
| | - Brajendra K. Sharma
- United States Department of Agriculture, Agricultural Research Service, Sustainable Biofuels and Co‐Products Research Unit Eastern Regional Research Center Wyndmoor Pennsylvania USA
| |
Collapse
|
33
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel-Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202201370. [PMID: 35147282 DOI: 10.1002/anie.202201370] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/03/2023]
Abstract
Enantioenriched alcohols comprise much of the framework of organic molecules. Here, we first report that chiral nickel complexes can catalyze the intermolecular enantioselective addition of aryl iodides across aldehydes to provide diverse optically active secondary alcohols using zinc metal as the reducing agent. This method shows a broad substrate scope under mild reaction conditions and precludes the traditional strategy through the pre-generation of organometallic reagents. Mechanistic studies indicate that an in situ formed arylnickel, instead of an arylzinc, adds efficiently to aldehydes, forming a new C-C bond and a chiral nickel alkoxide that may be turned over by zinc powder.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
34
|
Aida K, Hirao M, Funabashi A, Sugimura N, Ota E, Yamaguchi J. Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Zhang J, Chen Y, Luo X, Wen Z. Rhodium-catalyzed regioselective cross-coupling of styrene oxides with arylboronic acids in aqueous γ-valerolactone. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel‐Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziqi Zhu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jieshuai Xiao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mingjie Li
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zhuangzhi Shi
- Nanjing University 南京大学 School of Chemistry & Chemical Engineering 163 Xianlin Avenue栖霞区仙林大道163号南京大学化学化工学院 210046 Nanjing CHINA
| |
Collapse
|
37
|
Xi L, Du L, Shi Z. Nickel-catalyzed reductive cross-coupling of polyfluoroarenes with alkyl electrophiles by site-selective C–F bond activation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Gao N, Li Y, Teng D. Nickel-catalysed cross-electrophile coupling of aryl bromides and primary alkyl bromides. RSC Adv 2022; 12:3569-3572. [PMID: 35425390 PMCID: PMC8979266 DOI: 10.1039/d2ra00010e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
The structure of primary alkylated arenes plays an important role in the molecular action of drugs and natural products. The nickel/spiro-bidentate-pyox catalysed cross-electrophile coupling of aryl bromides and primary alkyl bromides was developed for the formation of the Csp2-Csp3 bond, which provided an efficient method for the synthesis of primary alkylated arenes. The reactions could tolerate functional groups such as ester, aldehyde, ketone, ether, benzyl, and imide.
Collapse
Affiliation(s)
- Nanxing Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yanshun Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Dawei Teng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
39
|
Liang Y, Luo J, Milstein D. Facile synthesis of amides via acceptorless dehydrogenative coupling of aryl epoxides and amines. Chem Sci 2022; 13:5913-5919. [PMID: 35685791 PMCID: PMC9132053 DOI: 10.1039/d2sc01959k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The synthesis of amides is significant in a wide variety of academic and industrial fields. We report here a new reaction, namely acceptorless dehydrogenative coupling of epoxides and amines to form amides catalyzed by ruthenium pincer complexes. Various aryl epoxides and amines smoothly convert into the desired amides in high yields with the generation of H2 gas as the only byproduct. Control experiments indicate that amides are generated kinetically faster than side products, possibly because of the facile activation of epoxides by metal–ligand cooperation, as supported by the observation of a ruthenium-enolate species. No alcohol or free aldehyde are involved. A mechanism is proposed involving a dual role of the catalyst, which is responsible for the high yield and selectivity of the new reaction. We report the ruthenium pincer complex catalyzed acceptorless dehydrogenative coupling of epoxides and amines to form amides. The reaction offers a facile and atom economical two-step strategy for transforming alkenes into amides.![]()
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
40
|
Xiao J, Li Z, Montgomery J. Nickel-Catalyzed Decarboxylative Coupling of Redox-Active Esters with Aliphatic Aldehydes. J Am Chem Soc 2021; 143:21234-21240. [PMID: 34894690 DOI: 10.1021/jacs.1c11170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addition of alkyl fragments to aliphatic aldehydes is a highly desirable transformation for fragment couplings, yet existing methods come with operational challenges related to the basicity and instability of the nucleophilic reagents commonly employed. We report herein that nickel catalysis using a readily available bioxazoline (BiOx) ligand can catalyze the reductive coupling of redox-active esters with aliphatic aldehydes using zinc metal as the reducing agent to deliver silyl-protected secondary alcohols. This protocol is operationally simple, proceeds under mild conditions, and tolerates a variety of functional groups. Initial mechanistic studies suggest a radical chain pathway. Additionally, alkyl tosylates and epoxides are suitable alkyl precursors to this transformation providing a versatile suite of catalytic reactions for the functionalization of aliphatic aldehydes.
Collapse
Affiliation(s)
- Jichao Xiao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - Zhenning Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| |
Collapse
|
41
|
Yang HQ, Chen ZX. Theoretical Studies on Bimetallic Salen Complexes Catalyzed Epoxide Hydration: Effects of Metal Centers, Substrates, and Ligands. J Phys Chem A 2021; 125:10155-10164. [PMID: 34793164 DOI: 10.1021/acs.jpca.1c07707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To provide guiding information for developing efficient and stable catalysts for epoxide hydration, we investigated the mechanism of propylene oxide (PO) to 1,2-propylene glycol (PG) using density functional theory (DFT) calculations. The mechanism was identified to follow the cooperative bimetallic mechanism in which a metal-salen complex activated H2O attacks the middle carbon atom of a metal-salen complex activated PO from the oxygen side of three-membered ring. Analyses reveal that the distortion energy correlates linearly with the barrier, and the hydrogen bonding between H2O and PO increases from reaction precursors to transition states. A nice linear relationship exists between the ratio of square root of ionic potential to the square of the distance from the metal ion spherical surface to the oxygen atom center of PO. It is demonstrated that the substrates with larger polarizability tend to have lower hydration barriers and the influence of ligands is less than that of metal centers and substrates. Modifying metal ions is the first choice for developing metal-salen catalysts, and metal ions with more formal charges and larger radius are expected to exhibit high activity. These findings shed lights on the mechanism and provide guiding information for developing efficient metal-salen catalysts for epoxide hydration.
Collapse
Affiliation(s)
- Hui-Qing Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Zhang S, Vayer M, Noël F, Vuković VD, Golushko A, Rezajooei N, Rowley CN, Lebœuf D, Moran J. Unlocking the Friedel-Crafts arylation of primary aliphatic alcohols and epoxides driven by hexafluoroisopropanol. Chem 2021. [DOI: 10.1016/j.chempr.2021.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Jin Y, Wen H, Yang F, Ding D, Wang C. Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Gierszal SG, Barker TJ. Cu-Catalyzed Cross-Coupling of Benzylboronic Esters and Epoxides. Tetrahedron Lett 2021; 82:153369. [PMID: 34658453 PMCID: PMC8516127 DOI: 10.1016/j.tetlet.2021.153369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reaction between epoxides and benzylboronic acid pinacol esters is described. CuI was found to be an effective catalyst of this transformation upon activation of the benzylboronic ester with an alkyllithium reagent. The reaction was very efficient and a variety of substituted epoxides were found to be good substrates with good regioselectivity for substitution at the less substituted side of the epoxide. A reaction using an enantioenriched secondary benzylboronic ester was found to not be stereospecific.
Collapse
Affiliation(s)
- Sophia G Gierszal
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424
| | - Timothy J Barker
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424
| |
Collapse
|
45
|
Lau SH, Borden MA, Steiman TJ, Wang LS, Parasram M, Doyle AG. Ni/Photoredox-Catalyzed Enantioselective Cross-Electrophile Coupling of Styrene Oxides with Aryl Iodides. J Am Chem Soc 2021; 143:15873-15881. [PMID: 34542286 DOI: 10.1021/jacs.1c08105] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Ni/photoredox-catalyzed enantioselective reductive coupling of styrene oxides and aryl iodides is reported. This reaction affords access to enantioenriched 2,2-diarylalcohols from racemic epoxides via a stereoconvergent mechanism. Multivariate linear regression (MVLR) analysis with 29 bioxazoline (BiOx) and biimidazoline (BiIm) ligands revealed that enantioselectivity correlates with electronic properties of the ligands, with more electron-donating ligands affording higher ee's. Experimental and computational mechanistic studies were conducted, lending support to the hypothesis that reductive elimination is enantiodetermining and the electronic character of the ligands influences the enantioselectivity by altering the position of the transition state structure along the reaction coordinate. This study demonstrates the benefits of utilizing statistical modeling as a platform for mechanistic understanding and provides new insight into an emerging class of chiral ligands for stereoconvergent Ni and Ni/photoredox cross-coupling.
Collapse
Affiliation(s)
- Sii Hong Lau
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Meredith A Borden
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Talia J Steiman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Lucy S Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
46
|
Potrząsaj A, Musiejuk M, Chaładaj W, Giedyk M, Gryko D. Cobalt Catalyst Determines Regioselectivity in Ring Opening of Epoxides with Aryl Halides. J Am Chem Soc 2021; 143:9368-9376. [PMID: 34081860 PMCID: PMC8297733 DOI: 10.1021/jacs.1c00659] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ring-opening of epoxides
furnishing either linear or branched products
belongs to the group of classic transformations in organic synthesis.
However, the regioselective cross-electrophile coupling of aryl epoxides
with aryl halides still represents a key challenge. Herein, we report
that the vitamin B12/Ni dual-catalytic system allows for
the selective synthesis of linear products under blue-light irradiation,
thus complementing methodologies that give access to branched alcohols.
Experimental and theoretical studies corroborate the proposed mechanism
involving alkylcobalamin as an intermediate in this reaction.
Collapse
Affiliation(s)
- Aleksandra Potrząsaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Musiejuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Giedyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
47
|
Zhao B, Rogge T, Ackermann L, Shi Z. Metal-catalysed C-Het (F, O, S, N) and C-C bond arylation. Chem Soc Rev 2021; 50:8903-8953. [PMID: 34190223 DOI: 10.1039/c9cs00571d] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of C-aryl bonds has been the focus of intensive research over the last decades for the construction of complex molecules from simple, readily available feedstocks. Traditionally, these strategies involve the coupling of organohalides (I, Br, Cl) with organometallic reagents (Mg, Zn, B, Si, Sn,…) such as Kumada-Corriu, Negishi, Suzuki-Miyaura, Hiyama and Sonogashira cross-couplings. More recently, alternative methods have provided access to these products by reactions with less reactive C-Het (F, O, S, N) and C-C bonds. Compared to traditional methods, the direct cleavage and arylation of these chemical bonds, the essential link in accessible feedstocks, has become increasingly important from the viewpoint of step-economy and functional-group compatibility. This comprehensive review aims to outline the development and advances of this topic, which was organized into (1) C-F bond arylation, (2) C-O bond arylation, (3) C-S bond arylation, (4) C-N bond arylation, and (5) C-C bond arylation. Substantial attention has been paid to the strategies and mechanistic investigations. We hope that this review can trigger chemists to discover more efficient methodologies to access arylation products by cleavage of these C-Het and C-C bonds.
Collapse
Affiliation(s)
- Binlin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | | | | | | |
Collapse
|
48
|
Rapp M, Margas-Musielak K, Kaczmarek P, Witkowska A, Cytlak T, Siodła T, Koroniak H. Highly Diastereoselective Construction of Carbon- Heteroatom Quaternary Stereogenic Centers in the Synthesis of Analogs of Bioactive Compounds: From Monofluorinated Epoxyalkylphosphonates to α-Fluoro-, β-, or γ-Amino Alcohol Derivatives of Alkylphosphonates. Front Chem 2021; 9:613633. [PMID: 34150715 PMCID: PMC8208234 DOI: 10.3389/fchem.2021.613633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis of the stable surrogates of an important amino acid (R)-4-amino-3-hydroxybutyric acid (GABOB) such as substituted hydroxy aminophosphonic acids bearing a quaternary stereogenic center is presented. Highly diastereoselective formations of fluorinated spiroepoxy alkylphosphonate or related tertiary carbon-containing oxiranes from β-keto phosphonates possessing methyl, phenyl, or cyclohexenyl substituents, are reported. Stereoselective acid-promoted epoxide opening by bromide or azide followed by reduction/protection afforded tertiary bromides or N-Boc derivatives of β-amino-γ-hydroxy alkylphosphonates in most cases, while the reactions of oxiranes with different amines yielded their β-hydroxy-γ-amino regioisomers. Surprisingly, during the synthesis of amino phosphonic acids, we observe that the acid-induced rearrangement proceeded in a high diastereospecific manner, leading finally to substituted β-hydroxy-γ-aminoalkylphosphonic acids.
Collapse
Affiliation(s)
- Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Patrycja Kaczmarek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Tomasz Cytlak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Tomasz Siodła
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Henryk Koroniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
49
|
Kasza G, Stumphauser T, Bisztrán M, Szarka G, Hegedüs I, Nagy E, Iván B. Thermoresponsive Poly( N, N-diethylacrylamide- co-glycidyl methacrylate) Copolymers and Its Catalytically Active α-Chymotrypsin Bioconjugate with Enhanced Enzyme Stability. Polymers (Basel) 2021; 13:987. [PMID: 33806995 PMCID: PMC8004754 DOI: 10.3390/polym13060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Responsive (smart, intelligent, adaptive) polymers have been widely explored for a variety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide) (PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropylacrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, characterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with various comonomer contents and monomer/initiator ratios are reported. It was found that all the investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hysteresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct, one-step reaction, leading to enzyme-polymer nanoparticle (EPNP) with average size of 56.9 nm. This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the enzyme-polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced by conjugation the with P(DEAAm-co-GMA) copolymer.
Collapse
Affiliation(s)
- György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Tímea Stumphauser
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Márk Bisztrán
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Györgyi Szarka
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| | - Imre Hegedüs
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37–47, H-1094 Budapest, Hungary
| | - Endre Nagy
- Chemical and Biochemical Procedures Laboratory, Institute of Biomolecular and Chemical Engineering, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary; (I.H.); (E.N.)
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (T.S.); (M.B.); (G.S.)
| |
Collapse
|
50
|
Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J Am Chem Soc 2021; 143:3536-3543. [PMID: 33621464 DOI: 10.1021/jacs.0c13093] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As alcohols are ubiquitous throughout chemical science, this functional group represents a highly attractive starting material for forging new C-C bonds. Here, we demonstrate that the combination of anodic preparation of the alkoxy triphenylphosphonium ion and nickel-catalyzed cathodic reductive cross-coupling provides an efficient method to construct C(sp2)-C(sp3) bonds, in which free alcohols and aryl bromides-both readily available chemicals-can be directly used as coupling partners. This nickel-catalyzed paired electrolysis reaction features a broad substrate scope bearing a wide gamut of functionalities, which was illustrated by the late-stage arylation of several structurally complex natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zijian Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xianxu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Yong Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| |
Collapse
|