1
|
Mougkogiannis P, Adamatzky A. Serotonergic Mechanisms in Proteinoid-Based Protocells. ACS Chem Neurosci 2025; 16:519-542. [PMID: 39840997 PMCID: PMC11803625 DOI: 10.1021/acschemneuro.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids. Cyclic voltammetry shows a big boost in electron transfer. This is proven by a smaller peak separation and higher electrochemical efficiency. SEM imaging shows a distinct core-shell structure and uniform density. This suggests ordered molecular assembly. These findings show that serotonin changes proteinoid self-assembly. It creates structured systems with better electron transfer pathways. The serotonin-modified proto-neurons show new properties. They give insights into early cellular organization and signaling. This helps us understand prebiotic information processing systems.
Collapse
Affiliation(s)
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
2
|
Ponomarenko NS, Zaluzec NJ, Zuo X, Borkiewicz OJ, Hoffman JM, Kwon G, Martinson ABF, Utschig LM, Tiede DM. Structural Characterization of the Platinum Nanoparticle Hydrogen-Evolving Catalyst Assembled on Photosystem I by Light-Driven Chemistry. ACS NANO 2025; 19:4170-4185. [PMID: 39846477 DOI: 10.1021/acsnano.4c08563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses. The results show that the PSI-supported NPs are approximately 1.8 nm diameter disk-shaped particles that assemble at discrete sites with 145 Å separation. This separation is too large to be consistent with NP nucleation and growth at a site adjacent to the FB cofactor site. Instead, we suggest a mechanism for NP growth at hydrophobic sites on the PSI stromal surface. The NPs photoreductively assembled on the PSI stromal surface are found to be analogous to the nanostructures produced by successive cycles of atomic layer deposition (ALD) of platinum onto 40 nm porous anodic alumina oxide supports, although the mechanisms for nucleation appear to differ. This work establishes a foundation for the investigation of the reductive assembly of abiotic metal catalysts at sites connected to photochemically reducing equivalent production in PSI.
Collapse
Affiliation(s)
| | - Nestor J Zaluzec
- Pritzer School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | | | | | | | - Gihan Kwon
- National Synchrotron Light source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | | | | | | |
Collapse
|
3
|
Hosokawa N, Ozawa K, Koike K, Tamaki Y, Ishitani O. The main factor that determines the formation-efficiencies of photochemically derived one-electron-reduced species. Chem Sci 2025:d4sc08268k. [PMID: 39926711 PMCID: PMC11803945 DOI: 10.1039/d4sc08268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
While the quantum yields of photosensitiser-derived one-electron-reduced species (OERSs) significantly impact the overall efficiencies of various redox-photosensitised photocatalytic reactions, the primary factors that influence them remain unclear. In this study, we systematically compared the photochemical formation quantum yields for OERSs associated with Ru(ii) and Os(ii) tris-diimine, cis, trans-[ReI(diimine)(CO)2(PR3)2]+, and cyclometalated Ir(iii) complexes in the presence of the same 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) reductant. The reduction potentials of the excited metal complexes, the heavy-atom effects of the central metal ions, and the oxidation potentials and charges of their OERSs were examined, which reveals that the driving force for photoinduced electron-transfer is the most important factor that determines the quantum yields associated with photochemical OERS formation. For complexes with higher oxidation power in their excited states, the formation quantum yield of OERSs divided by the quenching efficiency of the excited state by BIH is greater. This finding suggests that a higher photoinduced electron-transfer exergonicity promotes electron transfer over larger excited-complex/BIH distances, which in turn enables more-efficient separation of the resulting OERSs and one-electron-oxidised BIH species.
Collapse
Affiliation(s)
- Naoki Hosokawa
- Department of Chemistry, School of Science, Institute of Science Tokyo (Tokyo Institute of Technology) 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Kyohei Ozawa
- Department of Chemistry, School of Science, Institute of Science Tokyo (Tokyo Institute of Technology) 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Kazuhide Koike
- National Institute of Advanced Industrial Science and Technology Onogawa 16-1 Tsukuba Ibaraki 305-8569 Japan
| | - Yusuke Tamaki
- National Institute of Advanced Industrial Science and Technology 4-2-1 Nigatake, Miyaginoku Sendai Miyagi 983-8551 Japan
| | - Osamu Ishitani
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739 8526 Japan
| |
Collapse
|
4
|
Zhang H, Gao G, Fan Y, Zhi J. Revisiting the catalytic activity of single horseradish peroxidase clusters through electrochemical collision technique: Effect of electrolyte and substrate. Talanta 2025; 282:126951. [PMID: 39357400 DOI: 10.1016/j.talanta.2024.126951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Horseradish peroxidase (HRP) is a versatile biosensing label and signal reporter owing to its broad-spectrum catalytic ability. In present work, we characterized HRP's catalytic performance with various substrates using electrochemical collision technique and analyzed the associated electron transfer processes. Different electrolyte solutions greatly affected enzyme dispersibility and zeta potential, thereby impacting HRP collision dynamics in single H2O2 substrate system. The maximum turnover number (kcat) for single HRP molecules was calculated to be 3.611 ± 0.149 × 103 s-1 in 0.85 % NaCl and 2.967 ± 0.286 × 103 s-1 in 0.1 M PBS solution, reflecting differences in cluster size induced by the electrolyte conditions. More severe agglomeration of HRP molecules was observed in double-substrate systems, where the hydrophilic mediator (K4Fe(CN)6) and lipophilic mediator (ABTS) served as electron donors and signal reporters. The calculated kcat value of single HRP molecules in ABTS-H2O2 was 7.6 times higher than that in K4Fe(CN)6-H2O2. This difference is attributed to mediators' solubility, lipophilicity, and HRP's affinity for different substrates, with HRP demonstrated stronger affinity for ABTS-H2O2 substrates, which realized more efficient electron transfer and compensated for the low diffusion coefficient of ABTS. This work provides a comprehensive analysis of the effects of electrolytes and substrates on HRP collision and catalytic behavior, offering valuable insights for the advanced design of HRP-based biosensors and diagnostic platforms.
Collapse
Affiliation(s)
- Hanxin Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
5
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
6
|
Leonida MD, Kumar I, Elshaer MR, Mahmoud Z, Lozanovska B, Bijja UK, Belbekhouche S. Ecofriendly approaches to efficiently enhance catalase performance. Int J Biol Macromol 2024; 280:135597. [PMID: 39278428 DOI: 10.1016/j.ijbiomac.2024.135597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The present work reports on two approaches to enhance catalase (CAT) activity and its stability by using two simple, green processes. In the first procedure, CAT was transiently exposed to an ionic liquid (IL) in the presence of redox molecules related to CAT structure which resulted in partial denaturation. The other method, which uses high hydraulic pressure (HHP) to partially denature CAT (in the presence of redox molecules), has the advantage of being completely reagentless. In both cases, partial denaturation was followed by dialysis, hence refolding and entrapment of redox molecules within the modified 3-D CAT structure (affording a "wired" enzyme). The two approaches to enzyme "wiring" are discussed comparatively from the point of view of the parameters used during the procedure, residual enzyme activity, nature of the modifier, interaction between CAT and the redox molecules, antioxidant activity, and stability over time of the modified protein. Samples of CAT modified in the presence of iron sulfate heptahydrate from each series, respectively, were used to make enzyme electrodes which were tested as amperometric biosensors for hydrogen peroxide detection. Both showed catalytic effect and linear behavior and have potential for applications in the food industry, pharmaceuticals and the textile industry.
Collapse
Affiliation(s)
- M D Leonida
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, NJ 07666, USA.
| | - I Kumar
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - M R Elshaer
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Z Mahmoud
- FDU School of Pharmacy and Health Sciences, 230 Park Ave., Florham Park, NJ 07932, USA
| | - B Lozanovska
- Cosmax USA Corp, 105 Challenger Rd., Ridgefield Park, NJ 07660, USA
| | - U K Bijja
- Department of Chemistry, Biochemistry and Physics, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - S Belbekhouche
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
7
|
Chen X, Volkova I, Wang Y, Zhang Z, Nijhuis CA. Gradual Change between Coherent and Incoherent Tunneling Regimes Induced by Polarizable Halide Substituents in Molecular Tunnel Junctions. J Am Chem Soc 2024; 146:23356-23364. [PMID: 39115108 PMCID: PMC11345807 DOI: 10.1021/jacs.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
This paper describes a gradual transition of charge transport across molecular junctions from coherent to incoherent tunneling by increasing the number and polarizability of halide substituents of phenyl-terminated aliphatic monolayers of the form S(CH2)10OPhXn, X = F, Cl, Br, or I; n = 0, 1, 2, 3, or 5. In contrast to earlier work where incoherent tunneling was induced by introducing redox-active groups or increasing the molecular length, we show that increasing the polarizability, while keeping the organization of the monolayer structure unaltered, results in a gradual change in the mechanism of tunneling of charge carriers where the activation energy increased from 23 meV for n = 0 (associated with coherent tunneling) to 257 meV for n = 5 with X = Br (associated with incoherent tunneling). Interestingly, this increase in incoherent tunneling rate with polarizability resulted in an improved molecular diode performance. Our findings suggest an avenue to improve the electronic function of molecular devices by introducing polarizable atoms.
Collapse
Affiliation(s)
- Xiaoping Chen
- College
of Chemistry, Chemical Engineering and Environment, Fujian Provincial
Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ira Volkova
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yulong Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Centre
for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology and Molecules Centre, Faculty of
Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Mei K, Schwartz BJ. How Solvation Alters the Thermodynamics of Asymmetric Bond-Breaking: Quantum Simulation of NaK + in Liquid Tetrahydrofuran. J Phys Chem Lett 2024; 15:8187-8195. [PMID: 39093598 PMCID: PMC11331520 DOI: 10.1021/acs.jpclett.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Gas-phase potential energy surfaces (PESs) are often used to provide an intuitive understanding of molecular chemical reactivity. Most chemical reactions, however, take place in solution, and it is unclear whether gas-phase PESs accurately represent chemical processes in solvent environments. In this work we use quantum simulations to investigate the dissociation energetics of NaK+ in liquid tetrahydrofuran (THF) to understand the degree to which solvent interactions alter the gas-phase picture. Using umbrella sampling and thermodynamic integration techniques, we construct condensed-phase free energy surfaces of NaK+ on THF in both the ground and electronic excited states. We find that solvation by THF completely alters the nature of the NaK+ bond by reordering the thermodynamic dissociation products. Reaching the thermodynamic dissociation limit in THF also requires a long-range charge transfer process that has no counterpart in the gas phase. Gas-phase PESs, even with perturbations, cannot adequately describe the reactivity of simple asymmetric molecules in solution.
Collapse
Affiliation(s)
- Kenneth
J. Mei
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Benjamin J. Schwartz
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
9
|
Samajdar R, Meigooni M, Yang H, Li J, Liu X, Jackson NE, Mosquera MA, Tajkhorshid E, Schroeder CM. Secondary structure determines electron transport in peptides. Proc Natl Acad Sci U S A 2024; 121:e2403324121. [PMID: 39052850 PMCID: PMC11317557 DOI: 10.1073/pnas.2403324121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Proteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, nonequilibrium Green's function-density functional theory (NEGF-DFT), and unsupervised machine learning to understand the role of secondary structure on electron transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn or 310 helices) and a low-conductance state occurring for extended peptide structures. These results highlight the importance of helical conformations on electron transport in peptides. Conformer selection for the peptide structures is rationalized using principal component analysis of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonable qualitative agreement with experiments. Projected density of states calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides broad avenues for understanding the electronic properties of proteins.
Collapse
Affiliation(s)
- Rajarshi Samajdar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Moeen Meigooni
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Hao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Jialing Li
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Xiaolin Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Nicholas E. Jackson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Martín A. Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
10
|
Travaglini L, Lam NT, Sawicki A, Cha HJ, Xu D, Micolich AP, Clark DS, Glover DJ. Fabrication of Electronically Conductive Protein-Heme Nanowires for Power Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311661. [PMID: 38597694 DOI: 10.1002/smll.202311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity. The heme-incorporated protein nanowires demonstrate electron transfer over micrometer distances, with conductive atomic force microscopy showing individual nanowires having comparable conductance to other previously characterized heme-based bacterial nanowires. Exposure of multilayer nanowire films to humidity produces an electrical current, presumably through water molecules ionizing carboxyl groups in the filament and creating an unbalanced total charge distribution that is enhanced by the heme. Incorporation of heme and potentially other metal-center porphyrin molecules into protein nanostructures could pave the way for structurally- and electrically-defined protein-based bioelectronic devices.
Collapse
Affiliation(s)
- Lorenzo Travaglini
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Artur Sawicki
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hee-Jeong Cha
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Dawei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Adam P Micolich
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
11
|
Evans R, Krahn N, Weiss J, Vincent KA, Söll D, Armstrong FA. Replacing a Cysteine Ligand by Selenocysteine in a [NiFe]-Hydrogenase Unlocks Hydrogen Production Activity and Addresses the Role of Concerted Proton-Coupled Electron Transfer in Electrocatalytic Reversibility. J Am Chem Soc 2024; 146:16971-16976. [PMID: 38747098 PMCID: PMC11212049 DOI: 10.1021/jacs.4c03489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Hydrogenases catalyze hydrogen/proton interconversion that is normally electrochemically reversible (having minimal overpotential requirement), a special property otherwise almost exclusive to platinum metals. The mechanism of [NiFe]-hydrogenases includes a long-range proton-coupled electron-transfer process involving a specific Ni-coordinated cysteine and the carboxylate of a nearby glutamate. A variant in which this cysteine has been exchanged for selenocysteine displays two distinct changes in electrocatalytic properties, as determined by protein film voltammetry. First, proton reduction, even in the presence of H2 (a strong product inhibitor), is greatly enhanced relative to H2 oxidation: this result parallels a characteristic of natural [NiFeSe]-hydrogenases which are superior H2 production catalysts. Second, an inflection (an S-shaped "twist" in the trace) appears around the formal potential, the small overpotentials introduced in each direction (oxidation and reduction) signaling a departure from electrocatalytic reversibility. Concerted proton-electron transfer offers a lower energy pathway compared to stepwise transfers. Given the much lower proton affinity of Se compared to that of S, the inflection provides compelling evidence that concerted proton-electron transfer is important in determining why [NiFe]-hydrogenases are reversible electrocatalysts.
Collapse
Affiliation(s)
- Rhiannon
M. Evans
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Natalie Krahn
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United
States
| | - Joshua Weiss
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United
States
| | - Kylie A. Vincent
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Dieter Söll
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Fraser A. Armstrong
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
13
|
Bueno PR. On the fundamentals of quantum rate theory and the long-range electron transport in respiratory chains. Chem Soc Rev 2024; 53:5348-5365. [PMID: 38651285 DOI: 10.1039/d3cs00662j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
It has been shown that both the electron-transfer rate constant of an electrochemical reaction and the conductance quantum are correlated with the concept of quantum capacitance. This simple association between the two separate concepts has an entirely quantum rate basis that encompasses the electron-transfer rate theory as originally proposed by Rudolph A. Marcus whether statistical mechanics is appropriately taken into account. I have prepared a concise review of the quantum mechanical rate theory principles focused on its quantum electrodynamics character to demonstrate that it can reconcile the conflicting views established on attempting to use the super-exchange (supported on electron transfer) or 'metallic-like' (supported on conductance quantum) mechanisms separately to explain the highly efficient long-range electron transport observed in the respiratory processes of living cells. The unresolved issues related to long-range electron transport are clarified in light of the quantum rate theory with a discussion focused on Geobacter sulfurreducens films as a reference standard of the respiration chain. Theoretical analyses supported by experimental data suggest that the efficiency of respiration within a long-range electron transport path is intrinsically a quantum mechanical event that follows relativistic quantum electrodynamics principles as addressed by quantum rate theory.
Collapse
Affiliation(s)
- Paulo Roberto Bueno
- Institute of Chemistry, Department of Engineering, Physics and Mathematics, Sao Paulo State University, Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
14
|
Gaudin LF, Funston AM, Bentley CL. Drop-cast gold nanoparticles are not always electrocatalytically active for the borohydride oxidation reaction. Chem Sci 2024; 15:7243-7258. [PMID: 38756820 PMCID: PMC11095372 DOI: 10.1039/d4sc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University Clayton 3800 VIC Australia
| | - Alison M Funston
- School of Chemistry, Monash University Clayton 3800 VIC Australia
- ARC Centre of Excellence in Exciton Science, Monash University Clayton 3800 VIC Australia
| | | |
Collapse
|
15
|
Sonea A, Warren JJ. Assembling the pieces to improve catalysis. Nat Chem 2024; 16:678-679. [PMID: 38641679 DOI: 10.1038/s41557-024-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
16
|
Healing G, Nadinov I, Hadmojo WT, Yin J, Thomas S, Bakr OM, Alshareef HN, Anthopoulos TD, Mohammed OF. Ultrafast Coherent Hole Injection at the Interface between CuSCN and Polymer PM6 Using Femtosecond Mid-Infrared Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38573046 DOI: 10.1021/acsami.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time. This study uses photoabsorber PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)-benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))]) as a model system to explore and decipher the hole transfer dynamics of CuSCN using femtosecond (fs) mid-infrared (IR) spectroscopy. The time-resolved results indicate that excited PM6 exhibits a sharp vibrational mode at 1599 cm-1 attributed to the carbonyl group, matching the predicted frequency position obtained from time-dependent density functional theory (DFT) calculations. The fs mid-IR spectroscopy demonstrates a fast formation (<168 fs) and blue spectral shift of the CN stretching vibration from 2118 cm-1 for CuSCN alone to 2180 cm-1 for PM6/CuSCN, confirming the hole transfer from PM6 to CuSCN. The short interfacial distance and high frontier orbital delocalization obtained from the interfacial DFT models support a coherent and ultrafast regime for hole transfer. These results provide direct evidence for hole injection at the interface of CuSCN for the first time using femtosecond mid-IR spectroscopy and serve as a new investigative approach for interfacial chemistry and solar cell communities.
Collapse
Affiliation(s)
- George Healing
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wisnu Tantyo Hadmojo
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Simil Thomas
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Thomas D Anthopoulos
- KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Liu X, Shi Y, Liu R, Song K, Chen L. Structure of human phagocyte NADPH oxidase in the activated state. Nature 2024; 627:189-195. [PMID: 38355798 DOI: 10.1038/s41586-024-07056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Kangcheng Song
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
18
|
Melčák M, Šebesta F, Heyda J, Gray HB, Záliš S, Vlček A. Tryptophan to Tryptophan Hole Hopping in an Azurin Construct. J Phys Chem B 2024; 128:96-108. [PMID: 38145895 PMCID: PMC10788906 DOI: 10.1021/acs.jpcb.3c06568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Electron transfer (ET) between neutral and cationic tryptophan residues in the azurin construct [ReI(H126)(CO)3(dmp)](W124)(W122)CuI (dmp = 4,7-Me2-1,10-phenanthroline) was investigated by Born-Oppenheimer quantum-mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) simulations. We focused on W124•+ ← W122 ET, which is the middle step of the photochemical hole-hopping process *ReII(CO)3(dmp•-) ← W124 ← W122 ← CuI, where sequential hopping amounts to nearly 10,000-fold acceleration over single-step tunneling (ACS Cent. Sci. 2019, 5, 192-200). In accordance with experiments, UKS-DFT QM/MM/MD simulations identified forward and reverse steps of W124•+ ↔ W122 ET equilibrium, as well as back ET ReI(CO)3(dmp•-) → W124•+ that restores *ReII(CO)3(dmp•-). Strong electronic coupling between the two indoles (≥40 meV in the crossing region) makes the productive W124•+ ← W122 ET adiabatic. Energies of the two redox states are driven to degeneracy by fluctuations of the electrostatic potential at the two indoles, mainly caused by water solvation, with contributions from the protein dynamics in the W122 vicinity. ET probability depends on the orientation of Re(CO)3(dmp) relative to W124 and its rotation diminishes the hopping yield. Comparison with hole hopping in natural systems reveals structural and dynamics factors that are important for designing efficient hole-hopping processes.
Collapse
Affiliation(s)
- Martin Melčák
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Filip Šebesta
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-121 16 Prague, Czech Republic
| | - Jan Heyda
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Harry B. Gray
- Beckman
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Stanislav Záliš
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- Department
of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
19
|
Marciesky M, Aga DS, Bradley IM, Aich N, Ng C. Mechanisms and Opportunities for Rational In Silico Design of Enzymes to Degrade Per- and Polyfluoroalkyl Substances (PFAS). J Chem Inf Model 2023; 63:7299-7319. [PMID: 37981739 PMCID: PMC10716909 DOI: 10.1021/acs.jcim.3c01303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) present a unique challenge to remediation techniques because their strong carbon-fluorine bonds make them difficult to degrade. This review explores the use of in silico enzymatic design as a potential PFAS degradation technique. The scope of the enzymes included is based on currently known PFAS degradation techniques, including chemical redox systems that have been studied for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) defluorination, such as those that incorporate hydrated electrons, sulfate, peroxide, and metal catalysts. Bioremediation techniques are also discussed, namely the laccase and horseradish peroxidase systems. The redox potential of known reactants and enzymatic radicals/metal-complexes are then considered and compared to potential enzymes for degrading PFAS. The molecular structure and reaction cycle of prospective enzymes are explored. Current knowledge and techniques of enzyme design, particularly radical-generating enzymes, and application are also discussed. Finally, potential routes for bioengineering enzymes to enable or enhance PFAS remediation are considered as well as the future outlook for computational exploration of enzymatic in situ bioremediation routes for these highly persistent and globally distributed contaminants.
Collapse
Affiliation(s)
- Melissa Marciesky
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Diana S Aga
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Ian M Bradley
- Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, Buffalo, New York 14228, United States
- Research and Education in Energy, Environmental and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-0531, United States
| | - Carla Ng
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
20
|
Lei Y, Xie X, Ma H, Ma J. Vitality of Intralayer Vibration in hBN for Effective Long-Range Interlayer Hole Transfer across High Barriers in MoSe 2/hBN/WSe 2 Heterostructures. J Phys Chem Lett 2023:11190-11199. [PMID: 38055859 DOI: 10.1021/acs.jpclett.3c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Introducing the two-dimensional (2D) hexagonal boron nitride (hBN) between 2D transition metal dichalcogenide (TMD) layers promises convenient manipulation of the interlayer exciton (IX) and interlayer charge transfer in TMD/hBN/TMD heterostructures, while the role of inserted hBN layers during IX formation is controversial. Employing ab initio nonadiabatic molecular dynamics (NAMD) simulations and the electron-phonon coupling model, we systematically investigate interlayer hole transfer in MoSe2/WSe2 bilayers intercalated by hBN layers with various thicknesses. The conventional direct hole transfer from MoSe2 to WSe2 is decelerated by 2-3 orders of magnitude after the hBN insertion. Meanwhile, a novel channel intermediated by a deeper hole of WSe2 becomes dominant, where the intralayer shear mode of hBN plays a crucial role by reducing the energy barriers for this new channel. The unique role of hBN layers is revealed for the first time, enriching the knowledge of the underlying microscopic mechanisms and providing instructive guidance to practical van der Waals optoelectronic devices.
Collapse
Affiliation(s)
- Yuli Lei
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Xie
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Bera S, Fereiro JA, Saxena SK, Chryssikos D, Majhi K, Bendikov T, Sepunaru L, Ehre D, Tornow M, Pecht I, Vilan A, Sheves M, Cahen D. Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers. J Am Chem Soc 2023; 145. [PMID: 37933117 PMCID: PMC10655127 DOI: 10.1021/jacs.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Shailendra K. Saxena
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department
of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil
Nadu, India
| | - Domenikos Chryssikos
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Koushik Majhi
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatyana Bendikov
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lior Sepunaru
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - David Ehre
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marc Tornow
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Xiao W, Yoo K, Kim J, Xu H. Breaking Barriers to High-Practical Li-S Batteries with Isotropic Binary Sulfiphilic Electrocatalyst: Creating a Virtuous Cycle for Favorable Polysulfides Redox Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303916. [PMID: 37867214 PMCID: PMC10667854 DOI: 10.1002/advs.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Indexed: 10/24/2023]
Abstract
Investigations into lithium-sulfur batteries (LSBs) has focused primarily on the initial conversion of lithium polysulfides (LiPSs) to Li2 S2 . However, the subsequent solid-solid reaction from Li2 S2 to Li2 S and the Li2 S decomposition process should be equally prioritized. Creating a virtuous cycle by balancing all three chemical reaction processes is crucial for realizing practical LSBs. Herein, amorphous Ni3 B in synergy with carbon nanotubes (aNi3 B@CNTs) is proposed to implement the consecutive catalysis of S8(solid) → LiPSs(liquid) → Li2 S(solid) →LiPSs(liquid) . Systematic theoretical simulations and experimental analyses reveal that aNi3 B@CNTs with an isotropic structure and abundant active sites can ensure rapid LiPSs adsorption-catalysis as well as uniform Li2 S precipitation. The uniform Li2 S deposition in synergy with catalysis of aNi3 B enables instant/complete oxidation of Li2 S to LiPSs. The produced LiPSs are again rapidly and uniformly adsorbed for the next sulfur evolution process, thus creating a virtuous cycle for sulfur species conversion. Accordingly, the aNi3 B@CNTs-based cell presents remarkable rate capability, long-term cycle life, and superior cyclic stability, even under high sulfur loading and extreme temperature environments. This study proposes the significance of creating a virtuous cycle for sulfur species conversion to realize practical LSBs.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Kisoo Yoo
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Jong‐Hoon Kim
- Energy Storage and Conversion LaboratoryDepartment of Electrical EngineeringChungnam National UniversityDaejeon34134Republic of Korea
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
23
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
24
|
Bürgin T, Ogawa T, Wenger OS. Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage. Inorg Chem 2023; 62:13597-13607. [PMID: 37562775 PMCID: PMC10445269 DOI: 10.1021/acs.inorgchem.3c02008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have explored the kinetics of light-induced charge separation and thermal charge recombination in donor-acceptor compounds, but quantum efficiencies have rarely been investigated. Here, we report on two essentially isomeric molecular triads, both comprising a π-extended tetrathiafulvalene (ExTTF) donor, a ruthenium(II)-based photosensitizer, and a naphthalene diimide (NDI) acceptor. The key difference between the two triads is how the NDI acceptor is connected. Linkage at the NDI core provides stronger electronic coupling to the other molecular components than connection via the nitrogen atoms of NDI. This change in molecular connectivity is expected to accelerate both energy-storing charge separation and energy-wasting charge recombination processes, but it is not a priori clear how this will affect the triad's ability to store photochemical energy; any gain resulting from faster charge separation could potentially be (over)compensated by losses through accelerated charge recombination. The new key insight emerging from our study is that the quantum yield for the formation of a long-lived charge-separated state increases by a factor of 5 when going from nitrogen- to core-connected NDI, providing the important proof of concept that better molecular connectivity indeed enables more efficient photochemical energy storage. The physical origin of this behavior seems to root in different orbital connectivity pathways for charge separation and charge recombination, as well as in differences in the relevant orbital interactions depending on NDI connection. Our work provides guidelines for how to discriminate between energy-storing and energy-wasting electron transfer reactions in order to improve the quantum yields for photochemical energy storage and solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Tomohiro Ogawa
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
25
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
26
|
Pérez Ramos Á, Zheng Y, Peng J, Ridruejo Á. Structure, Partitioning, and Transport behavior of Microemulsion Electrolytes: Molecular Dynamics and Electrochemical Study. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
27
|
Kougkolos G, Golzio M, Laudebat L, Valdez-Nava Z, Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J Mater Chem B 2023; 11:2036-2062. [PMID: 36789648 DOI: 10.1039/d2tb02019j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity. These include hydrogels used as scaffolds for tissue engineering of electroactive cells, as strain-sensitive sensors and as platforms for controlled drug delivery. The incorporation of conductive nanomaterials in hydrogels results in nanocomposite materials which combine electrical conductivity with the soft nature, flexibility and high water content of hydrogels. Here, we review the state of the art of such materials, describing the theories of current conduction in nanocomposite hydrogels, outlining their limitations and highlighting methods for improving their electrical conductivity.
Collapse
Affiliation(s)
- Georgios Kougkolos
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- IPBS, Université de Toulouse, NRS UMR, UPS, 31077 Toulouse CEDEX 4, France
| | - Lionel Laudebat
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France. .,INU Champollion, Université de Toulouse, 81012 Albi, France
| | - Zarel Valdez-Nava
- LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse CEDEX 9, France.
| |
Collapse
|
28
|
Lee J, Song WJ. Photocatalytic C-O Coupling Enzymes That Operate via Intramolecular Electron Transfer. J Am Chem Soc 2023; 145:5211-5221. [PMID: 36825656 DOI: 10.1021/jacs.2c12226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Efficient and environmentally friendly conversion of light energy for direct utilization in chemical production has been a long-standing goal in enzyme design. Herein, we synthesized artificial photocatalytic enzymes by introducing an Ir photocatalyst and a Ni(bpy) complex to an optimal protein scaffold in close proximity. Consequently, the enzyme generated C-O coupling products with up to 96% yields by harvesting visible light and performing intramolecular electron transfer between the two catalysts. We systematically modulated the catalytic activities of the artificial photocatalytic cross-coupling enzymes by tuning the electrochemical properties of the catalytic components, their positions, and distances within a protein. As a result, we discovered the best-performing mutant that showed broad substrate scopes under optimized conditions. This work explicitly demonstrated that we could integrate and control both the inorganic and biochemical components of photocatalytic biocatalysis to achieve high yield and selectivity in valuable chemical transformations.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Wack JS, Brahm K, Babel P, Dalton JAR, Schmitz K. Effect of macrocyclization and tetramethylrhodamine labeling on chemokine binding peptides. J Pept Sci 2023:e3486. [PMID: 36843216 DOI: 10.1002/psc.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Receptor-derived peptides have played an important role in elucidating chemokine-receptor interactions. For the inflammatory chemokine CXC-class chemokine ligand 8 (CXCL8), a site II-mimetic peptide has been derived from parts of extracellular loops 2 and 3 and adjacent transmembrane helices of its receptor CXC-class chemokine receptor 1 (Helmer et al., RSC Adv., 2015, 5, 25657). The peptide sequence with a C-terminal glutamine did not bind to CXCL8, whereas one with a C-terminal glutamate did but with low micromolar affinity. We sought to improve the affinity and protease stability of the latter peptide through cyclization while also cyclizing the former for control purposes. To identify a cyclization strategy that permits a receptor-like interaction, we conducted a molecular dynamics simulation of CXCL8 in complex with full-length CXC-class chemokine receptor 1. We introduced a linker to provide an appropriate spacing between the termini and used an on-resin side-chain-to-tail cyclization strategy. Upon chemokine binding, the fluorescence intensity of the tetramethylrhodamine (TAMRA)-labeled cyclic peptides increased whereas the fluorescence anisotropy decreased. Additional molecular dynamics simulations indicated that the fluorophore interacts with the peptide macrocycle so that chemokine binding leads to its displacement and observed changes in fluorescence. Macrocyclization of both 18-amino acid-long peptides led to the same low micromolar affinity for CXCL8. Likewise, both TAMRA-labeled linear peptides interacted with CXCL8 with similar affinities. Interestingly, the linear TAMRA-labeled peptides were more resistant to tryptic digestion than the unlabeled counterparts, whereas the cyclized peptides were not degraded at all. We conclude that the TAMRA fluorophore tends to interact with peptides altering their protease stability and behavior in fluorescence-based assays.
Collapse
Affiliation(s)
- Julia S Wack
- Biological Chemistry, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Kevin Brahm
- Biological Chemistry, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Philipp Babel
- Computational Biology and Simulation, Technical University of Darmstadt, Darmstadt, Germany
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Ronin Institute, Montclair, New Jersey, USA
| | - Katja Schmitz
- Biological Chemistry, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
30
|
Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat Commun 2023; 14:792. [PMID: 36774355 PMCID: PMC9922329 DOI: 10.1038/s41467-023-36322-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
The electrochemical ammonia oxidation to dinitrogen as a means for energy and environmental applications is a key technology toward the realization of a sustainable nitrogen cycle. The state-of-the-art metal catalysts including Pt and its bimetallics with Ir show promising activity, albeit suffering from high overpotentials for appreciable current densities and the soaring price of precious metals. Herein, the immense design space of ternary Pt alloy nanostructures is explored by graph neural networks trained on ab initio data for concurrently predicting site reactivity, surface stability, and catalyst synthesizability descriptors. Among a few Ir-free candidates that emerge from the active learning workflow, Pt3Ru-M (M: Fe, Co, or Ni) alloys were successfully synthesized and experimentally verified to be more active toward ammonia oxidation than Pt, Pt3Ir, and Pt3Ru. More importantly, feature attribution analyses using the machine-learned representation of site motifs provide fundamental insights into chemical bonding at metal surfaces and shed light on design strategies for high-performance catalytic systems beyond the d-band center metric of binding sites.
Collapse
|
31
|
Kuai D, Balbuena PB. Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:1744-1751. [PMID: 38333544 PMCID: PMC10848255 DOI: 10.1021/acs.jpcc.2c07838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/30/2022] [Indexed: 02/10/2024]
Abstract
Solid electrolyte interphase (SEI) engineering is an efficient approach to enhancing the cycling performance of lithium metal batteries. Lithium hexafluorophosphate (LiPF6) is a popular electrolyte salt. Mechanistic insights into its degradation pathways near the lithium metal anode are critical in modifying the battery electrolyte and SEI. In this work, we elucidate plausible reaction pathways in multiple representative electrolyte systems. Through ab initio molecular dynamics simulations, lithiation and electron transfer are identified as the triggering factors for LiPF6 degradation. Meanwhile, we find that lithium morphology and charge distribution substantially impact the interfacial dissociation pathways. Thermodynamic evaluation of the solvation effects shows that higher electrolyte dielectric constant and lithiation extent profoundly assist the LiPF6 decomposition. These findings offer quantitative thermodynamic and electronic structure information, which promotes rational SEI engineering and electrolyte tuning for lithium metal anode performance enhancement.
Collapse
Affiliation(s)
- Dacheng Kuai
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Perla B. Balbuena
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
33
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Distinction between film loss and enzyme inactivation in protein-film voltammetry: a theoretical study in cyclic staircase voltammetry. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Conservation of Energetic Pathways for Electroautotrophy in the Uncultivated Candidate Order Tenderiales. mSphere 2022; 7:e0022322. [PMID: 36069437 PMCID: PMC9599434 DOI: 10.1128/msphere.00223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electromicrobiology can be used to understand extracellular electron uptake in previously undescribed chemolithotrophs. Enrichment and characterization of the uncultivated electroautotroph "Candidatus Tenderia electrophaga" using electromicrobiology led to the designation of the order Tenderiales. Representative Tenderiales metagenome-assembled genomes (MAGs) have been identified in a number of environmental surveys, yet a comprehensive characterization of conserved genes for extracellular electron uptake has thus far not been conducted. Using comparative genomics, we identified conserved orthologous genes within the Tenderiales and nearest-neighbor orders important for extracellular electron uptake based on a previously proposed pathway from "Ca. Tenderia electrophaga." The Tenderiales contained a conserved cluster we designated uetABCDEFGHIJ, which encodes proteins containing features that would enable transport of extracellular electrons to cytoplasmic membrane-bound energy-transducing complexes such as two conserved cytochrome cbb3 oxidases. For example, UetJ is predicted to be an extracellular undecaheme c-type cytochrome that forms a heme wire. We also identified clusters of genes predicted to facilitate assembly and maturation of electron transport proteins, as well as cellular attachment to surfaces. Autotrophy among the Tenderiales is supported by the presence of carbon fixation and stress response pathways that could allow cellular growth by extracellular electron uptake. Key differences between the Tenderiales and other known neutrophilic iron oxidizers were revealed, including very few Cyc2 genes in the Tenderiales. Our results reveal a possible conserved pathway for extracellular electron uptake and suggest that the Tenderiales have an ecological role in coupling metal or mineral redox chemistry and the carbon cycle in marine and brackish sediments. IMPORTANCE Chemolithotrophic bacteria capable of extracellular electron uptake to drive energy metabolism and CO2 fixation are known as electroautotrophs. The recently described order Tenderiales contains the uncultivated electroautotroph "Ca. Tenderia electrophaga." The "Ca. Tenderia electrophaga" genome contains genes proposed to make up a previously undescribed extracellular electron uptake pathway. Here, we use comparative genomics to show that this pathway is well conserved among Tenderiales spp. recovered by metagenome-assembled genomes. This conservation extends to near neighbors of the Tenderiales but not to other well-studied chemolithotrophs, including iron and sulfur oxidizers, indicating that these genes may be useful markers of growth using insoluble extracellular electron donors. Our findings suggest that extracellular electron uptake and electroautotrophy may be pervasive among the Tenderiales, and the geographic locations from which metagenome-assembled genomes were recovered offer clues to their natural ecological niche.
Collapse
|
36
|
Gope K, Livshits E, Bittner DM, Baer R, Strasser D. An "inverse" harpoon mechanism. SCIENCE ADVANCES 2022; 8:eabq8084. [PMID: 36170355 PMCID: PMC9519053 DOI: 10.1126/sciadv.abq8084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/15/2022] [Indexed: 05/21/2023]
Abstract
Electron-transfer reactions are ubiquitous in chemistry and biology. The electrons' quantum nature allows their transfer across long distances. For example, in the well-known harpoon mechanism, electron transfer results in Coulombic attraction between initially neutral reactants, leading to a marked increase in the reaction rate. Here, we present a different mechanism in which electron transfer from a neutral reactant to a multiply charged cation results in strong repulsion that encodes the electron-transfer distance in the kinetic energy release. Three-dimensional coincidence imaging allows to identify such "inverse" harpoon products, predicted by nonadiabatic molecular dynamics simulations to occur between H2 and HCOH2+ following double ionization of isolated methanol molecules. These dynamics are experimentally initiated by single-photon double ionization with ultrafast extreme ultraviolet pulses, produced by high-order harmonic generation. A detailed comparison of measured and simulated data indicates that while the relative probability of long-range electron-transfer events is correctly predicted, theory overestimates the electron-transfer distance.
Collapse
Affiliation(s)
- Krishnendu Gope
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ester Livshits
- Fritz Haber Research Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dror M. Bittner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Roi Baer
- Fritz Haber Research Center for Molecular Dynamics and the Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Corresponding author. (R.B.); (D.S.)
| | - Daniel Strasser
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Corresponding author. (R.B.); (D.S.)
| |
Collapse
|
37
|
Odella E, Secor M, Reyes Cruz EA, Guerra WD, Urrutia MN, Liddell PA, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Managing the Redox Potential of PCET in Grotthuss-Type Proton Wires. J Am Chem Soc 2022; 144:15672-15679. [PMID: 35993888 DOI: 10.1021/jacs.2c05820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expanding proton-coupled electron transfer to multiproton translocations (MPCET) provides a bioinspired mechanism to transport protons away from the redox site. This expansion has been accomplished by separating the initial phenolic proton donor from the pyridine-based terminal proton acceptor by a Grotthuss-type proton wire made up of concatenated benzimidazoles that form a hydrogen-bonded network. However, it was found that the midpoint potential of the phenol oxidation that launched the Grotthuss-type proton translocations is a function of the number of benzimidazoles in the hydrogen-bonded network; it becomes less positive (i.e., a weaker oxidant) as the number of bridging benzimidazoles increases. Herein, we report a strategy to maintain the high redox potential necessary for oxidative processes relevant to artificial photosynthesis, e.g., water oxidation and long-range MPCET processes for managing protons. The integrated structural and functional roles of the benzimidazole-based bridge provide sites for substitution of the benzimidazoles with electron-withdrawing groups (e.g., trifluoromethyl groups). Such substitution increases the midpoint potential of the phenoxyl radical/phenol couple so that proton translocations over ∼11 Å become thermodynamically comparable to that of an unsubstituted system where one proton is transferred over ∼2.5 Å. The extended, substituted system maintains the hydrogen-bonded network; infrared spectroelectrochemistry confirms reversible proton translocations from the phenol to the pyridyl terminal proton acceptor upon oxidation and reduction. Theory supports the change in driving force with added electron-withdrawing groups and provides insight into the role of electron density and electrostatic potential in MPCET processes associated with these Grotthuss-type proton translocations.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Maxim Secor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Walter D Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - María N Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul A Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
38
|
Cui J, Xu J, Xiu H, Wang H, Li J, Yang J. Graphene-Dominated Hybrid Coatings with Highly Compacted Structure on Stainless Steel Bipolar Plates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37059-37067. [PMID: 35938577 DOI: 10.1021/acsami.2c09999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Highly conductive corrosion protection coatings are necessary for metallic bipolar plates (BPs) of the proton-exchange membrane fuel cell. Graphene coatings have the potential of protecting metal substrates from corrosion without obscuring their excellent electrical conductivity. The electron transfer in the coatings facilitates the formation of galvanic cells, so the challenge is to block the mass transfer of the corrosion process. Here, we constructed highly compacted hybrid coatings with aligned water-dispersible graphene layers. The water-dispersible graphene (SG) held an electrical conductivity of >270 S cm-1 while providing an unprecedented dispersibility, which can be redispersed from filter cake with a concentration of 120 mg mL-1 or even dry state. The cohesion of the hybrid coatings was attributed to the interaction between highly aligned SG layers and the heterointerface between SG and polydopamine (PDA), as proven by the molecular dynamics simulations. The hybrid coatings presented a corrosion current density of 0.023 μA cm-2 and an interfacial contact resistance of 9.94 mΩ cm2, which meets the requirements of corrosion protection and electron transfer for the coatings on metallic BPs. The water-based fabrication method of the graphene-dominated hybrid coatings was a promising alternative of the vacuum-based deposition method for industrial production.
Collapse
Affiliation(s)
- Jincan Cui
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- School of Mechanical Engineering, Nantong University, No. 9 Seyuan Road, Jiangsu 226019, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Huixin Xiu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Heng Wang
- School of Mechanical Engineering, Nantong University, No. 9 Seyuan Road, Jiangsu 226019, China
| | - Jing Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Junhe Yang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Shanghai Jian Qiao University, No. 1111 Hucheng Ring Road, Shanghai 201306, China
| |
Collapse
|
39
|
Matyushov DV. Conformational dynamics modulating electron transfer. J Chem Phys 2022; 157:095102. [DOI: 10.1063/5.0102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diffusional dynamics of the donor-acceptor distance are responsible for the appearance of a new time scale of diffusion over the distance of electronic tunneling in electron-transfer reactions. The distance dynamics compete with the medium polarization dynamics in the dynamics-controlled electron-transfer kinetics. The pre-exponential factor of the electron-transfer rate constant switches, at the crossover distance, between a distance-independent, dynamics-controlled plateau and exponential distance decay. The crossover between two regimes is controlled by an effective relaxation time slowed down by a factor exponentially depending on the variance of the donor-acceptor displacement. Flexible donor-acceptor complexes must show a greater tendency for dynamics-controlled electron transfer. Energy chains based on electron transport are best designed by placing the redox cofactors near the crossover distance.
Collapse
Affiliation(s)
- Dmitry V. Matyushov
- Departments of Physics and School of Molecular Sciences, Arizona State University, United States of America
| |
Collapse
|
40
|
Renault JP, Huart L, Milosavljević AR, Bozek JD, Palaudoux J, Guigner JM, Marichal L, Leroy J, Wien F, Hervé Du Penhoat MA, Nicolas C. Electronic Structure and Solvation Effects from Core and Valence Photoelectron Spectroscopy of Serum Albumin. Int J Mol Sci 2022; 23:ijms23158227. [PMID: 35897833 PMCID: PMC9331649 DOI: 10.3390/ijms23158227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/07/2022] Open
Abstract
X-ray photoelectron spectroscopy of bovine serum albumin (BSA) in a liquid jet is used to investigate the electronic structure of a solvated protein, yielding insight into charge transfer mechanisms in biological systems in their natural environment. No structural damage was observed in BSA following X-ray photoelectron spectroscopy in a liquid jet sample environment. Carbon and nitrogen atoms in different chemical environments were resolved in the X-ray photoelectron spectra of both solid and solvated BSA. The calculations of charge distributions demonstrate the difficulty of assigning chemical contributions in complex systems in an aqueous environment. The high-resolution X-ray core electron spectra recorded are unchanged upon solvation. A comparison of the valence bands of BSA in both phases is also presented. These bands display a higher sensitivity to solvation effects. The ionization energy of the solvated BSA is determined at 5.7 ± 0.3 eV. Experimental results are compared with theoretical calculations to distinguish the contributions of various molecular components to the electronic structure. This comparison points towards the role of water in hole delocalization in proteins.
Collapse
Affiliation(s)
- Jean-Philippe Renault
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191 Gif-sur-Yvette, France; (L.H.); (L.M.); (J.L.)
- Correspondence: (J.-P.R.); (C.N.)
| | - Lucie Huart
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191 Gif-sur-Yvette, France; (L.H.); (L.M.); (J.L.)
- Synchrotron SOLEIL, 91192 Saint Aubin, France; (A.R.M.); (J.D.B.); (F.W.)
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 75252 Paris, France; (J.-M.G.); (M.-A.H.D.P.)
| | | | - John D. Bozek
- Synchrotron SOLEIL, 91192 Saint Aubin, France; (A.R.M.); (J.D.B.); (F.W.)
| | - Jerôme Palaudoux
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, UMR CNRS 7614, 75252 Paris, France;
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 75252 Paris, France; (J.-M.G.); (M.-A.H.D.P.)
| | - Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191 Gif-sur-Yvette, France; (L.H.); (L.M.); (J.L.)
| | - Jocelyne Leroy
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEA Saclay, 91191 Gif-sur-Yvette, France; (L.H.); (L.M.); (J.L.)
| | - Frank Wien
- Synchrotron SOLEIL, 91192 Saint Aubin, France; (A.R.M.); (J.D.B.); (F.W.)
| | - Marie-Anne Hervé Du Penhoat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, 75252 Paris, France; (J.-M.G.); (M.-A.H.D.P.)
| | - Christophe Nicolas
- Synchrotron SOLEIL, 91192 Saint Aubin, France; (A.R.M.); (J.D.B.); (F.W.)
- Correspondence: (J.-P.R.); (C.N.)
| |
Collapse
|
41
|
Mitra S, Ainavarapu SRK, Dasgupta J. Long-Range Charge Delocalization Mediates the Ultrafast Ligand-to-Metal Charge Transfer Dynamics at the Cu 2+-Active Site in Azurin. J Phys Chem B 2022; 126:5390-5399. [PMID: 35797135 DOI: 10.1021/acs.jpcb.2c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blue color metalloprotein in azurin has traditionally been attributed to the intense cysteine-to-Cu2+ ligand-to-metal charge transfer transition centered at 628 nm. Although resonance Raman measurements of the Cu2+ active site have implied that the LMCT transition electronically couples to the protein scaffold well beyond its primary metal-ligand coordination shell, the structural extent of this electronic coupling and visualization of the protein-mediated charge transfer dynamics have remained elusive. Here, using femtosecond broadband transient absorption and impulsive Raman spectroscopy, we provide direct evidence for a rapid relaxation between two distinct charge transfer states, having different spatial delocalization, within ∼300 fs followed by recombination of charges in subpicosecond time scales. We invoke the formation of a protein-centered radical cation, possibly Trp48 or a Phe residue, within 100 fs substantiating the long-range electronic coupling for the first time beyond the traditional copper active site. The Raman spectra of the excited CT state show the presence of protein-centric vibrations along with the vibrational modes assigned to the copper active site. Our results demonstrate a large delocalization length scale of the initially populated CT state, thereby highlighting the possibility of exploiting azurin photochemistry for energy conversion techniques.
Collapse
Affiliation(s)
- Soumyajit Mitra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
42
|
Morales M, Ravanfar R, Oyala PH, Gray HB, Winkler JR. Copper(II) Binding to the Intrinsically Disordered C-Terminal Peptide of SARS-CoV-2 Virulence Factor Nsp1. Inorg Chem 2022; 61:8992-8996. [PMID: 35658408 PMCID: PMC9195567 DOI: 10.1021/acs.inorgchem.2c01329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/28/2022]
Abstract
The first encoded SARS-CoV-2 protein (Nsp1) binds to the human 40S ribosome and blocks synthesis of host proteins, thereby inhibiting critical elements of the innate immune response. The final 33 residues of the natively unstructured Nsp1 C-terminus adopt a helix-turn-helix geometry upon binding to the ribosome. We have characterized the fluctuating conformations of this peptide using circular dichroism spectroscopy along with measurements of tryptophan fluorescence and energy transfer. Tryptophan fluorescence decay kinetics reveal that copper(II) binds to the peptide at micromolar concentrations, and electron paramagnetic resonance spectroscopy indicates that the metal ion coordinates to the lone histidine residue.
Collapse
Affiliation(s)
- Maryann Morales
- Beckman Institute, California Institute of Technology, Pasadena, California 91125 United States
| | - Raheleh Ravanfar
- Beckman Institute, California Institute of Technology, Pasadena, California 91125 United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125 United States
| |
Collapse
|
43
|
Du J, Xin J, Liu M, Zhang X, He H, Wu J, Xu X. Preparation of Photo-Bioelectrochemical Cells With the RC-LH Complex From Roseiflexus castenholzii. Front Microbiol 2022; 13:928046. [PMID: 35783423 PMCID: PMC9243436 DOI: 10.3389/fmicb.2022.928046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Roseiflexus castenholzii is an ancient green non-sulfur bacteria that absorbs the solar energy through bacteriochlorophylls (BChls) bound in the only light harvesting (LH) complex, and transfers to the reaction center (RC), wherein primary charge separation occurs and transforms the energy into electrochemical potentials. In contrast to purple bacteria, R. castenholzii RC-LH (rcRC-LH) does not contain an H subunit. Instead, a tightly bound tetraheme cytochrome c subunit is exposed on the P-side of the RC, which contains three BChls, three bacteriopheophytins (BPheos), two menaquinones, and one iron for electron transfer. These novel structural features of the rcRC-LH are advantageous for enhancing the electron transfer efficiency and subsequent photo-oxidation of the c-type hemes. However, the photochemical properties of rcRC-LH and its applications in developing the photo-bioelectrochemical cells (PBECs) have not been characterized. Here, we prepared a PBEC using overlapped fluorine-doped tin oxide (FTO) glass and Pt-coated glass as electrodes, and rcRC-LH mixed with varying mediators as the electrolyte. Absence of the H subunit allows rcRC-LH to be selectively adhered onto the hydrophilic surface of the front electrode with its Q-side. Upon illumination, the photogenerated electrons directly enter the front electrode and transfer to the counter electrode, wherein the accepted electrons pass through the exposed c-type hemes to reduce the excited P+, generating a steady-state current of up to 320 nA/cm2 when using 1-Methoxy-5-methylphenazinium methyl sulfate (PMS) as mediator. This study demonstrated the novel photoelectric properties of rcRC-LH and its advantages in preparing effective PBECs, showcasing a potential of this complex in developing new type PBECs.
Collapse
Affiliation(s)
- Jinsong Du
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jiyu Xin
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Menghua Liu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xin Zhang
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Huimin He
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Jingyi Wu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
| | - Xiaoling Xu
- Photosynthesis Research Center, Hangzhou Normal University, Hangzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
44
|
Chen Z, Zhang J, Lyu Q, Wang H, Ji X, Yan Z, Chen F, Dahlgren RA, Zhang M. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153857. [PMID: 35176368 DOI: 10.1016/j.scitotenv.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications. This review provides a comprehensive assessment of recent advancements in the design of living biomaterials that can be exploited to enhance bioelectrocatalytic performance. Further, modular configurations of abiotic and biotic components promise a powerful enhancement through integration of nano-based artificial mediators and synthetic biology. Herein, recent advancements in BESs are synthesized and assessed, including heterojunctions between conductive nanomaterials and EABs, in-situ hybrid self-assembly of EABs and nano-sized semiconductors, cytoprotection in biohybrids, synthetic biological modifications of EABs and electroactive biofilms. Since living biomaterials comprise a broad range of disciplines, such as molecular biology, electrochemistry and material sciences, full integration of technological advances applied in an interdisciplinary framework will greatly enhance/advance the utility and novelty of BESs. Overall, emerging fundamental knowledge concerning living biomaterials provides a powerful opportunity to markedly boost EET efficiency and facilitate the industrial application of BESs to meet global sustainability challenges/goals.
Collapse
Affiliation(s)
- Zheng Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China.
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| |
Collapse
|
45
|
Salay LE, Blee AM, Raza MK, Gallagher KS, Chen H, Dorfeuille AJ, Barton JK, Chazin WJ. Modification of the 4Fe-4S Cluster Charge Transport Pathway Alters RNA Synthesis by Yeast DNA Primase. Biochemistry 2022; 61:1113-1123. [PMID: 35617695 DOI: 10.1021/acs.biochem.2c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA synthesis during replication begins with the generation of an ∼10-nucleotide primer by DNA primase. Primase contains a redox-active 4Fe-4S cluster in the C-terminal domain of the p58 subunit (p58C). The redox state of this 4Fe-4S cluster can be modulated via the transport of charge through the protein and the DNA substrate (redox switching); changes in the redox state of the cluster alter the ability of p58C to associate with its substrate. The efficiency of redox switching in p58C can be altered by mutating tyrosine residues that bridge the 4Fe-4S cluster and the nucleic acid binding site. Here, we report the effects of mutating bridging tyrosines to phenylalanines in yeast p58C. High-resolution crystal structures show that these mutations, even with six tyrosines simultaneously mutated, do not perturb the three-dimensional structure of the protein. In contrast, measurements of the electrochemical properties on DNA-modified electrodes of p58C containing multiple tyrosine to phenylalanine mutations reveal deficiencies in their ability to engage in DNA charge transport. Significantly, this loss of electrochemical activity correlates with decreased primase activity. While single-site mutants showed modest decreases in activity compared to that of the wild-type primase, the protein containing six mutations exhibited a 10-fold or greater decrease. Thus, many possible tyrosine-mediated pathways for charge transport in yeast p58C exist, but inhibiting these pathways together diminishes the ability of yeast primase to generate primers. These results support a model in which redox switching is essential for primase activity.
Collapse
Affiliation(s)
- Lauren E Salay
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Alexandra M Blee
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Md Kausar Raza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kaitlyn S Gallagher
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Huiqing Chen
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Andrew J Dorfeuille
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
46
|
Shen W, Teo RD, Beratan DN, Warren JJ. Cofactor Dynamics Couples the Protein Surface to the Heme in Cytochrome c, Facilitating Electron Transfer. J Phys Chem B 2022; 126:3522-3529. [PMID: 35507916 PMCID: PMC9867876 DOI: 10.1021/acs.jpcb.2c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron transport through biomolecules and in biological transport networks is of great importance to bioenergetics and biocatalysis. More generally, it is of crucial importance to understand how the pathways that connect buried metallocofactors to other cofactors, and to protein surfaces, affect the biological chemistry of metalloproteins. In terms of electron transfer (ET), the strongest coupling pathways usually comprise covalent and hydrogen bonded networks, with a limited number of through-space contacts. Herein, we set out to determine the relative roles of hydrogen bonds involved in ET via an established heme-to-surface tunneling pathway in cytochrome (cyt) c (i.e., heme-W59-D60-E61-N62). A series of cyt c variants were produced where a ruthenium tris(diimine) photooxidant was placed at position 62 via covalent modification of the N62C residue. Surprisingly, variants where the H-bonding residues W59 and D60 were replaced (i.e., W59F and D60A) showed no change in ET rate from the ferrous heme to Ru(III). In contrast, changing the composition of an alternative tunneling pathway (i.e., heme-M64-N63-C62) with the M64L substitution shows a factor of 2 decrease in the rate of heme-to-Ru ET. This pathway involves a through-space tunneling step between the heme and M64 residue, and such steps are usually disfavored. To rationalize why the heme-M64-N63-C62 is preferred, molecular dynamics (MD) simulations and Pathways analysis were employed. These simulations show that the change in heme-Ru ET rates is attributed to different conformations with compressed donor-acceptor distances, by ∼2 Å in pathway distance, in the M64-containing protein as compared to the M64L protein. The change in distance is correlated with changes in the electronic coupling that are in accord with the experimentally observed heme-Ru ET rates. Remarkably, the M64L variation at the core of the protein translates to changes in cofactor dynamics at the protein surface. The surface changes identified by MD simulations include dynamic anion-π and dipole-dipole interactions. These interactions influence the strength of tunneling pathways and ET rates by facilitating decreases in through-space tunneling distances in key coupling pathways.
Collapse
Affiliation(s)
- William Shen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| | - Ruijie D. Teo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby CA V5A 1S6, Canada
| |
Collapse
|
47
|
Contaldo U, Curtil M, Pérard J, Cavazza C, Le Goff A. A Pyrene-Triazacyclononane Anchor Affords High Operational Stability for CO 2 RR by a CNT-Supported Histidine-Tagged CODH. Angew Chem Int Ed Engl 2022; 61:e202117212. [PMID: 35274429 PMCID: PMC9401053 DOI: 10.1002/anie.202117212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/10/2022]
Abstract
An original 1-acetato-4-(1-pyrenyl)-1,4,7-triazacyclononane (AcPyTACN) was synthesized for the immobilization of a His-tagged recombinant CODH from Rhodospirillum rubrum (RrCODH) on carbon-nanotube electrodes. The strong binding of the enzyme at the Ni-AcPyTACN complex affords a high current density of 4.9 mA cm-2 towards electroenzymatic CO2 reduction and a high stability of more than 6×106 TON when integrated on a gas-diffusion bioelectrode.
Collapse
Affiliation(s)
- Umberto Contaldo
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Julien Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM38000GrenobleFrance
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM38000GrenobleFrance
| |
Collapse
|
48
|
Zhuang B, Liebl U, Vos MH. Flavoprotein Photochemistry: Fundamental Processes and Photocatalytic Perspectives. J Phys Chem B 2022; 126:3199-3207. [PMID: 35442696 DOI: 10.1021/acs.jpcb.2c00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Flavins are highly versatile redox-active and colored cofactors in a large variety of proteins. These do include photoenzymes and photoreceptors, although the vast majority performs non-light-driven physiological functions. Nevertheless, electron transfer between flavins and specific nearby amino acid residues (in particular tyrosine, tryptophan, and presumably histidine and arginine) takes place upon excitation of flavin in many flavoproteins. For oxidized flavoproteins these reactions potentially have a photoprotective role. In this Perspective, we outline work on the characterization of early reaction intermediates not only in the relatively well-studied resting oxidized forms but also in the fully reduced and the intrinsically unstable semireduced forms, where ultrafast photooxidation of flavin was recently demonstrated. Along different lines, flavoprotein-based novel photocatalysts for biotechnological applications are presently emerging, employing both substrate photooxidation and photoreduction strategies. Deep insight into the fundamental flavin photochemical reactions may help in guiding and optimizing their development and in the exploration of novel photocatalytic approaches.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| |
Collapse
|
49
|
Liang SP, Masquelier E, Morse DE, Gordon MJ, Sepunaru L. Low Voltage Voltammetry Probes Proton Dissociation Equilibria of Amino Acids and Peptides. Anal Chem 2022; 94:4948-4953. [PMID: 35290024 DOI: 10.1021/acs.analchem.1c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Platinum-catalyzed electrochemical reduction of dissociable protons at low potentials was used to investigate proton dissociation equilibria of freely diffusing and peptide-incorporated charged amino acids. We first demonstrate with five charged essential amino acids and their analogs that the electrochemically induced deprotonation of each amino acid occurs at distinct formal reduction potential. Moreover, the observed direct reduction for all the charged species, excluding arginine, occurs at low potentials suitable for investigation under aqueous conditions (-0.4 to -0.9 V vs Ag/AgCl). The direct proton reduction was resolved via deconvolution of the observed differential pulse voltammogram (DPV) from background hydronium reduction and water electrolysis. A linear correlation was found between the formal reduction potentials and the pKa values of the dissociable protons hosted by various molecular moieties in the amino acids and their analogs and further verified with tripeptides. DPV of poly(l-lysine) decamer (Lys10) distinctively resolved the pKa values of the amino groups in the side chains and N-terminus, at a resolution not possible by conventional acid-base titration. This work demonstrates selective electrochemical titration of dissociable protons in charged amino acids in the free state and as residues in biomolecules, as well as the utility of DPV to indirectly interrogate local electrostatic environments that are essential to the stability and function of biomolecules.
Collapse
Affiliation(s)
- Sheng-Ping Liang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Eloise Masquelier
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Institute of Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael J Gordon
- Institute of Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
50
|
contaldo U, curtil M, perard J, cavazza C, Le Goff A. A pyrene‐triazacyclononane anchor affords high operational stability for CO2RR by a CNT‐supported histidine‐tagged CODH. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- umberto contaldo
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - mathieu curtil
- Université Grenoble Alpes: Universite Grenoble Alpes DCM FRANCE
| | - Julien perard
- CEA lRlG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble lcbm FRANCE
| | - christine cavazza
- CEA BIG: Commissariat a l'energie atomique et aux energies alternatives lnstitut de Recherche Interdisciplinaire de Grenoble LCBM FRANCE
| | - Alan Le Goff
- Universite Grenoble Alpes/CNRS Département de Chimie Moléculaire 570 rue de la chimie 38041 Grenoble FRANCE
| |
Collapse
|