1
|
Dupud R, Merugu KK, R R, Ramesh R. Synthesis of benzosultams via Ag(I)-catalyzed alkylative cyclization of vinyl sulfonamides. Org Biomol Chem 2024. [PMID: 39539236 DOI: 10.1039/d4ob01583e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A convenient method to access benzo-fused-γ-sultams via alkyl radical induced cyclization of vinyl sulfonamides is presented. A wide range of carboxylic acids including sterically hindered adamantanes participated as alkyl donors in this Ag(I)-catalyzed decarboxylative alkylation. The reaction utilizes readily available starting materials and demonstrates a broad substrate scope.
Collapse
Affiliation(s)
- Raju Dupud
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Karthik Kumar Merugu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remyachand R
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Dai T, Vijayakrishnan S, Szczypiński FT, Ayme JF, Simaei E, Fellowes T, Clowes R, Kotopanov L, Shields CE, Zhou Z, Ward JW, Cooper AI. Autonomous mobile robots for exploratory synthetic chemistry. Nature 2024:10.1038/s41586-024-08173-7. [PMID: 39506122 DOI: 10.1038/s41586-024-08173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making1,2. Most autonomous laboratories involve bespoke automated equipment3-6, and reaction outcomes are often assessed using a single, hard-wired characterization technique7. Any decision-making algorithms8 must then operate using this narrow range of characterization data9,10. By contrast, manual experiments tend to draw on a wider range of instruments to characterize reaction products, and decisions are rarely taken based on one measurement alone. Here we show that a synthesis laboratory can be integrated into an autonomous laboratory by using mobile robots11-13 that operate equipment and make decisions in a human-like way. Our modular workflow combines mobile robots, an automated synthesis platform, a liquid chromatography-mass spectrometer and a benchtop nuclear magnetic resonance spectrometer. This allows robots to share existing laboratory equipment with human researchers without monopolizing it or requiring extensive redesign. A heuristic decision-maker processes the orthogonal measurement data, selecting successful reactions to take forward and automatically checking the reproducibility of any screening hits. We exemplify this approach in the three areas of structural diversification chemistry, supramolecular host-guest chemistry and photochemical synthesis. This strategy is particularly suited to exploratory chemistry that can yield multiple potential products, as for supramolecular assemblies, where we also extend the method to an autonomous function assay by evaluating host-guest binding properties.
Collapse
Affiliation(s)
- Tianwei Dai
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Sriram Vijayakrishnan
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Filip T Szczypiński
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Jean-François Ayme
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Ehsan Simaei
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Thomas Fellowes
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Rob Clowes
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Lyubomir Kotopanov
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Caitlin E Shields
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Zhengxue Zhou
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - John W Ward
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design and Materials Innovation Factory, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Wei B, Huang P, Wang X, Liu Z, Tang F, Huang W, Liu B, Ye F, Wang P. Site-Selective Construction of N-Linked Glycopeptides through Photoredox Catalysis. Angew Chem Int Ed Engl 2024:e202415565. [PMID: 39420756 DOI: 10.1002/anie.202415565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The glycosylation of peptides and proteins can significantly impact their intrinsic properties, such as conformation, stability, antigenicity, and immunogenicity. Current methods for preparing N-linked glycopeptides typically rely on amide bond formation, which can be limited by the presence of reactive functional groups like acids and amines. Late-stage functionalization of peptides offers a promising approach to obtaining N-linked glycopeptides. In this study, we demonstrate the preparation of N-linked glycopeptides through a photoredox-catalyzed site-selective Giese addition between N-glycosyl oxamic acid and peptides containing dehydroalanine (Dha) under visible light conditions. Unlike traditional methods that rely on the coupling of aspartic acid and glycosylamine, this approach utilizes the conjugation of N-glycosylated carbamoyl radicals with Dha, facilitating the straightforward modification of complex peptides.
Collapse
Affiliation(s)
- Bingcheng Wei
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| | - Xinyao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Farong Ye
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Wang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| |
Collapse
|
4
|
Hirose M, Sakaguchi H, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Benzoic Acid Serves as Precursor of Catalytic HAT Reagent in a Two-Molecule Photoredox System. Chemistry 2024; 30:e202402285. [PMID: 38987225 DOI: 10.1002/chem.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
The photoinduced regioselective HAT reactions of acetals, ethers, and alcohols using benzoic acids in a two-molecule photoredox system led to the formation of new C-C bonds with alkenes under mild conditions. Aryl carboxy radicals generated from benzoic acids in a two-molecule photoredox system can function as catalytic HAT reagents, even though an excess amount of a hydrogen donor substrate is required. Various acetals, ethers, alcohols, and alkenes can be employed in the photoreaction to provide both high yields of adducts and high recoveries of benzoic acids.
Collapse
Affiliation(s)
- Masami Hirose
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hina Sakaguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Geshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
5
|
Tseliou V, Kqiku L, Berger M, Schiel F, Zhou H, Poelarends GJ, Melchiorre P. Stereospecific radical coupling with a non-natural photodecarboxylase. Nature 2024; 634:848-854. [PMID: 39255850 DOI: 10.1038/s41586-024-08004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Photoenzymes are light-powered biocatalysts that typically rely on the excitation of cofactors or unnatural amino acids for their catalytic activities1,2. A notable natural example is the fatty acid photodecarboxylase, which uses light energy to convert aliphatic carboxylic acids to achiral hydrocarbons3. Here we report a method for the design of a non-natural photodecarboxylase based on the excitation of enzyme-bound catalytic intermediates, rather than reliance on cofactor excitation4. Iminium ions5, transiently generated from enals within the active site of an engineered class I aldolase6, can absorb violet light and function as single-electron oxidants. Activation of chiral carboxylic acids, followed by decarboxylation, generates two radicals that undergo stereospecific cross-coupling, yielding products with two stereocentres. Using the appropriate enantiopure chiral substrate, the desired diastereoisomeric product is selectively obtained with complete enantiocontrol. This finding underscores the ability of the active site to transfer stereochemical information from the chiral radical precursor into the product, effectively addressing the long-standing problem of rapid racemization of chiral radicals. The resulting 'memory of chirality' scenario7 is a rarity in enantioselective radical chemistry.
Collapse
Affiliation(s)
- Vasilis Tseliou
- ICIQ, Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Laura Kqiku
- ICIQ, Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Martin Berger
- ICIQ, Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Florian Schiel
- ICIQ, Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Hangyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Paolo Melchiorre
- Department of Industrial Chemistry 'Toso Montanari', University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
7
|
Tamaki S, Kusamoto T, Tsurugi H. Decarboxylative Alkylation of Carboxylic Acids with Easily Oxidizable Functional Groups Catalyzed by an Imidazole-Coordinated Fe 3 Cluster under Visible Light Irradiation. Chemistry 2024:e202402705. [PMID: 39226120 DOI: 10.1002/chem.202402705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Decarboxylative alkylation of carboxylic acids with easily oxidizable functional groups such as phenol and indole functionalities was achieved using a catalytic amount of basic iron(III) acetate, Fe(OAc)2(OH), in the presence of benzimidazole under 427 nm LED irradiation. Kinetic analyses of this catalytic reaction revealed that the reaction rate is first-order in alkenes and is linearly correlated with the light intensity; the faster reaction rate for the benzimidazole-ligated species was consistent with the increased absorbance in the visible light region. Wide functional group tolerance for the easily oxidizable groups is ascribed to the weak oxidation ability of the in situ-generated oxo-bridged iron clusters compared with other iron(III) species.
Collapse
Affiliation(s)
- Sota Tamaki
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Tetsuro Kusamoto
- Osaka University, Department of Chemistry, Graduate School of Engineering Science, Toyonaka, Osaka, Japan
| | - Hayato Tsurugi
- Osaka University, Suita, Osaka, Department of Applied Chemistry, Graduate School of Engineering, Japan
| |
Collapse
|
8
|
Fatima N, Khalid S, Rasool N, Imran M, Parveen B, Kanwal A, Irimie M, Ciurea CI. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals (Basel) 2024; 17:1108. [PMID: 39338273 PMCID: PMC11434895 DOI: 10.3390/ph17091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.
Collapse
Affiliation(s)
- Noor Fatima
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Marius Irimie
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Codrut Ioan Ciurea
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
9
|
Quirós I, Martín M, Pérez-Sánchez C, Rigotti T, Tortosa M. Trityl isocyanide as a general reagent for visible light mediated photoredox-catalyzed cyanations. Chem Sci 2024:d4sc04199b. [PMID: 39149220 PMCID: PMC11320021 DOI: 10.1039/d4sc04199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
A photoredox catalytic strategy has been developed to enable the functionalization of a variety of commercially available, structurally different radical precursors by the use of a bench-stable isonitrile as an efficient cyanating reagent. Specifically, a radical-based reaction has provided a mild and convenient procedure for the cyanation of primary, secondary and tertiary radicals derived from widely accessible sp3-hybridized carboxylic acids, alcohols and halides under visible light irradiation. The reaction tolerates a variety of functional groups and it represents a complementary method for the cyanation of structurally different scaffolds that show diverse native functionalities, expanding the scope of previously reported methodologies.
Collapse
Affiliation(s)
- Irene Quirós
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - María Martín
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Carla Pérez-Sánchez
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Thomas Rigotti
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Faculty of Science, Autonomous University of Madrid (UAM) Madrid 28049 Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Autonomous University of Madrid (UAM) Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid (UAM) Madrid 28049 Spain
| |
Collapse
|
10
|
Pasca F, Gelato Y, Andresini M, Romanazzi G, Degennaro L, Colella M, Luisi R. Synthesis of alcohols: streamlined C1 to C n hydroxyalkylation through photoredox catalysis. Chem Sci 2024; 15:11337-11346. [PMID: 39055000 PMCID: PMC11268494 DOI: 10.1039/d4sc02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Naturally occurring and readily available α-hydroxy carboxylic acids (AHAs) are utilized as platforms for visible light-mediated oxidative CO2-extrusion furnishing α-hydroxy radicals proved to be versatile C1 to Cn hydroxyalkylating agents. The direct decarboxylative Giese reaction (DDGR) is operationally simple, not requiring activator or sacrificial oxidants, and enables the synthesis of a diverse range of hydroxylated products, introducing connectivity typically precluded from conventional polar domains. Notably, the methodology has been extended to widely used glycolic acid resulting in a highly efficient and unprecedented C1 hydroxyhomologation tactic. The use of flow technology further facilitates scalability and adds green credentials to this synthetic methodology.
Collapse
Affiliation(s)
- Francesco Pasca
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Yuri Gelato
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Michael Andresini
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | | | - Leonardo Degennaro
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
11
|
Cao Z, Sun W, Zhang J, Zhuo J, Yang S, Song X, Ma Y, Lu P, Han T, Li C. Total syntheses of (-)-macrocalyxoformins A and B and (-)-ludongnin C. Nat Commun 2024; 15:6052. [PMID: 39025872 PMCID: PMC11258297 DOI: 10.1038/s41467-024-50374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and diverse molecular architectures along with broad biological activities of ent-kauranoids natural products make them an excellent testing ground for the invention of synthetic methods and strategies. Recent efforts notwithstanding, synthetic access to the highly oxidized enmein-type ent-kauranoids still presents considerable challenges to synthetic chemists. Here, we report the enantioselective total syntheses of C-19 oxygenated enmein-type ent-kauranoids, including (-)-macrocalyxoformins A and B and (-)-ludongnin C, along with discussion and study of synthetic strategies. The enabling feature in our synthesis is a devised Ni-catalyzed decarboxylative cyclization/radical-polar crossover/C-acylation cascade that forges a THF ring concomitantly with the β-keto ester group. Mechanistic studies reveal that the C-acylation process in this cascade reaction is achieved through a carboxylation followed by an in situ esterification. Biological evaluation of these synthetic natural products reveals the indispensable role of the ketone on the D ring in their anti-tumor efficacy.
Collapse
Affiliation(s)
- Zichen Cao
- School of Life Sciences, Peking University, 100871, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Wenxuan Sun
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Junming Zhuo
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Shaoqiang Yang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaocui Song
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Panrui Lu
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Ting Han
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Chao Li
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
12
|
Ikeda T, Tanaka Y, Hashimoto R, Furutani T, Yamawaki M, Suzuki H, Yoshimi Y. Double difunctionalization of vinyl ether tethered nucleophile with electron-deficient alkene in two-molecule photoredox system. Photochem Photobiol Sci 2024; 23:1417-1423. [PMID: 38703275 DOI: 10.1007/s43630-024-00588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Double difunctionalization of a vinyl ether tethered hydroxy or carbamoyl group with electron-deficient alkenes such as acrylonitrile or acrylic esters was achieved by visible-light irradiation in a two-molecule photoredox system. Use of anhydrous acetonitrile solution as a solvent promoted both dimerization of the radical cation of electron-rich alkene with electron-rich alkene and intramolecular nucleophilic addition to generate an electron-rich radical that was added to electron-deficient alkene to furnish the double difunctionalized product. A variety of electronically differentiated rich and deficient alkenes were used in the photoreaction; a simple construction of a complex carbon framework containing acetal from simple alkenes was successful under mild conditions.
Collapse
Affiliation(s)
- Takumi Ikeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yosuke Tanaka
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Ryoga Hashimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Toshiki Furutani
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Mugen Yamawaki
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Genshi-cho, Fukui, 916-8507, Japan
| | - Hirotsugu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.
| |
Collapse
|
13
|
Tsuchiya N, Oku A, Nishikata T. Catalytic tert-alkylation of enamides via C-C bond cleavage under photoredox conditions. Chem Commun (Camb) 2024; 60:6623-6626. [PMID: 38847605 DOI: 10.1039/d4cc01643b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efficient C-C bond cleavage is recognized as a persistent challenge in the field of synthetic methodology. In this study, we found that tertiary alkyl radicals are smoothly formed from tertiary alkylated dienones (BHT adducts) via SET, using PDI as a photocatalyst. Resulting tert-alkyl radicals could be applied to the tert-alkylation of enamides. The driving force of this C-C bond cleavage reaction is the mesolytic cleavage of the BHT adducts. The mechanistic study revealed that PDI anion radical is the key active species during the catalytic cycle.
Collapse
Affiliation(s)
- Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Ayane Oku
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| |
Collapse
|
14
|
Guo G, Zhang Y, Li Y, Li Z. Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes. Molecules 2024; 29:2156. [PMID: 38731647 PMCID: PMC11085496 DOI: 10.3390/molecules29092156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The photoredox-catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and aryl nitriles has been achieved under an argon atmosphere in high yields. This method provides a fast way to obtain prevalent aryl acetic acids from an abundant natural source. A tentative radical mechanism has been proposed.
Collapse
Affiliation(s)
- Guozhe Guo
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources, College of Petroleum and Chemical Engineering, Longdong University, Qingyang 745000, China
| | | | | | | |
Collapse
|
15
|
Venditto NJ, Boerth JA. Deoxy-Arylation of Amides via a Tandem Hydrosilylation/Radical- Radical Coupling Sequence. Org Lett 2024; 26:3617-3621. [PMID: 38651818 DOI: 10.1021/acs.orglett.4c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Vaska's complex is a prominent catalyst for the hydrosilylation of amides. The O-silyl hemiaminal intermediate formed in these processes has been demonstrated as an electrophile for nucleophilic additions. More recently, these intermediates have been shown to be suitable for single electron reduction to generate α-amino radicals. Leveraging the ability to generate α-amino radicals from these hemiaminals, we describe a two-step, one-pot, deoxy-arylation of amides utilizing iridium-catalyzed hydrosilylation and photoredox catalysis. This transformation can be tailored toward the late-stage functionalization of biologically relevant molecules, with drug discovery applications as shown in the streamlined synthesis of an NPY Y2 inhibitor.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
16
|
Xiao RX, Tian T, Yang TY, Lan MX, Lv S, Mou XQ, Chen YZ, Cui BD. 2,2'-Bipyridine-Enabled Photocatalytic Radical [4+2] Cyclization of N-Aryl-α-amino Acids for Synthesizing Polysubstituted Tetrahydroquinolines. Org Lett 2024; 26:3195-3201. [PMID: 38563798 DOI: 10.1021/acs.orglett.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A facile photocatalytic radical [4+2] cyclization of N-aryl-α-amino acids with various alkenes to access structurally polysubstituted tetrahydroquinolines has been developed. Using a simple bipyridine as a catalyst, different N-aryl-α-amino acids could be utilized as the radical precursors to react with diverse electrophilic alkenes, including exocyclic terminal alkenes, acyclic terminal alkenes, and cycloalkenes, producing 10 types of nitrogen-containing heterocyclic compounds fused in multiple frameworks in generally moderate yields with good diastereoselectivities. Scale-up synthesis and transformations of the products further demonstrated the synthetic application of this protocol. Moreover, a decarboxylative radial pathway via a proton-coupled electron transfer process for illustration of this [4+2] cyclization was proposed on the basis of the control experiments. This process is highlighted by a simple bipyridine photocatalysis, mild reaction conditions, various N-aryl-α-amino acids and alkene materials, and application for the modification of natural products.
Collapse
Affiliation(s)
- Ren-Xu Xiao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ming-Xing Lan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Shuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
17
|
Rubanov ZM, Levin VV, Dilman AD. Dual Acridine/Decatungstate Photocatalysis for the Decarboxylative Radical Addition of Carboxylic Acids to Azomethines. Org Lett 2024; 26:3174-3178. [PMID: 38587457 DOI: 10.1021/acs.orglett.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A concept for the dual use of acridine and tetrabutylammonium decatungstate photocatalysts in the reactions of carboxylic acids is proposed. Imines generated in situ from aldehydes and p-methoxyaniline, as well as other azomethines, were used as radical acceptors. The role of the decatungstate is believed to facilitate the turnover of the acridine photocatalyst by means of hydrogen atom transfer.
Collapse
Affiliation(s)
- Zakhar M Rubanov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
18
|
Millward F, Zysman-Colman E. Mechanophotocatalysis: A Generalizable Approach to Solvent-minimized Photocatalytic Reactions for Organic Synthesis. Angew Chem Int Ed Engl 2024; 63:e202316169. [PMID: 38263796 DOI: 10.1002/anie.202316169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
This proof-of-concept study cements the viability and generality of mechanophotocatalysis, merging mechanochemistry and photocatalysis to enable solvent-minimized photocatalytic reactions. We demonstrate the transmutation of four archetypal solution-state photocatalysis reactions to a solvent-minimized environment driven by the combined actions of milling, light, and photocatalysts. The chlorosulfonylation of alkenes and the pinacol coupling of aldehydes and ketones were conducted under solvent-free conditions with competitive or superior efficiencies to their solution-state analogues. Furthermore, decarboxylative alkylations are shown to function efficiently under solvent-minimized conditions, while the photoinduced energy transfer promoted [2+2] cycloaddition of chalcone experiences a significant initial rate enhancement over its solution-state variant. This work serves as a platform for future discoveries in an underexplored field: validating that solvent-minimized photocatalysis is not only generalizable and competitive with solution-state photocatalysis, but can also offer valuable advantages.
Collapse
Affiliation(s)
- Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, United Kingdom
| |
Collapse
|
19
|
Bryden MA, Millward F, Lee OS, Cork L, Gather MC, Steffen A, Zysman-Colman E. Lessons learnt in photocatalysis - the influence of solvent polarity and the photostability of the photocatalyst. Chem Sci 2024; 15:3741-3757. [PMID: 38455004 PMCID: PMC10915810 DOI: 10.1039/d3sc06499a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Herein, we show that there is significant variation in both the triplet energies and redox properties of photocatalysts as a function of solvent based on a study of eight PCs in four solvents of varying polarity. A range of photocatalytic electron and energy transfer reactions were investigated using a subset of the PCs. For the photoredox reactions, the yields are not correlated with solvent polarity. Instead, when the PC could promote the formation of the target product, we observed photodegradation for all PCs across all solvents, something that is rarely investigated in the literature. This, therefore, makes it difficult to ascertain whether the parent PC and/or the photodegraded product is responsible for the photochemistry, or indeed, whether photodegradation is actually detrimental to the reaction yield. Conversely, the PCs were found to be photostable for energy transfer reactions; however, yields were not correlated to the triplet energies of the PCs, highlighting that triplet energies alone are not a suitable descriptor to discriminate the performance between PCs in photoinduced energy transfer processes.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Oliver S Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Lauren Cork
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| | - Malte C Gather
- Department of Chemistry, Humboldt Centre for Nano- and Biophotonics, University of Cologne Greinstr. 4-6 50939 Cologne Germany
| | - Andreas Steffen
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortumund Otto-Hahn-Str. 644227 Dortmund Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews Fife St Andrews KY16 9ST UK https://www.zysman-colman.com +44 (0)1334 463808 +44 (0)1334 463826
| |
Collapse
|
20
|
Wang JX, Fu MC, Yan LY, Lu X, Fu Y. Photoinduced Triphenylphosphine and Iodide Salt Promoted Reductive Decarboxylative Coupling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307241. [PMID: 38234213 DOI: 10.1002/advs.202307241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The transient electron donor-acceptor (EDA) complex has been an emerging area in the photoinduced organic synthesis field, generating radicals without exogenous transition-metal or organic dye-based photoredox catalysts. The catalytic platform to form suitable photoactive EDA complexes for photochemical reduction reactions remains underdeveloped. Herein, a general photoinduced reductive alkylation via the EDA complex strategy is described. A simple yet multifunctional system, triphenylphosphine and iodide salt, promotes the photoinduced decarboxylative hydroalkylation, and reductive defluorinative decarboxylative alkylation of trifluoromethyl alkenes, to access trifluoromethyl alkanes and gem-difluoroalkenes. Moreover, decarboxylative hydroalkylation can be applied to more kinds of electron-deficient alkenes as a general Giese addition reaction.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu-Yu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
22
|
Wang C, Liu X, Wang Q, Fang WH, Chen X. Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models. JACS AU 2024; 4:419-431. [PMID: 38425917 PMCID: PMC10900211 DOI: 10.1021/jacsau.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024]
Abstract
The synthesis of 1-aminonorbornane (1-aminoNB), a potential aniline bioisostere, through photochemistry or photoredox catalysis signifies a remarkable breakthrough with implications in organic chemistry, pharmaceutical chemistry, and sustainable chemistry. However, an understanding of the underlying mechanisms involved in these reactions remains limited and ambiguous. Herein, we employ high-precision CASPT2//CASSCF calculations to elucidate the intricate mechanisms regulating the intramolecular photo-(3 + 2)-cycloaddition reactions for the synthesis of 1-aminoNB in the presence or absence of the Ir-complex-based photocatalyst. Our investigations delve into radical cascades, stereoselectivity, particularly single-electron-transfer (SET) events, etc. Furthermore, we innovatively introduce and compare two SET models integrating Marcus electron-transfer theory and transition-state theory. These models combined with kinetic data contribute to recognizing the critical control factors in diverse photocatalysis, thereby guiding the design and manipulation of photoredox catalysis as well as the improvement and modification of photocatalysts.
Collapse
Affiliation(s)
- Chu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xiao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
23
|
Han F, Li J, Li S, Wang Z, Guo Y, Ye T. Total Synthesis of Incarnatapeptins A and B. Angew Chem Int Ed Engl 2024; 63:e202317636. [PMID: 38242844 DOI: 10.1002/anie.202317636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The first total synthesis of incarnatapeptins A and B, two novel marine natural products, was accomplished from readily available (S)-1-benzyloxycarbonylhexahydropyridazine-3-carboxylic acid. This route, whose longest linear sequence was 12 steps, provided the incarnatapeptins A and B in yields of 26.5 % and 19.7 %, respectively, and enabled the structure and stereochemistry of both natural products to be unambiguously confirmed. Highlights of our synthesis include the photoredox-mediated decarboxylative 1,4-addition reaction and a novel and practical N-acylation paradigm promoted by silver carbonate. The unusual facile atropisomerism of some linear peptidic intermediates was also observed by TLC analysis in the course of this work.
Collapse
Affiliation(s)
- Feipeng Han
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Jie Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Zhuo Wang
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yian Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
- QianYan (Shenzhen) Pharmatech. Ltd., Shenzhen, 518172, China
| |
Collapse
|
24
|
Hwang S, Choi M, Jeong M, Lee C. Synthesis of the C13-C27 Fragment of Madeirolide A Using Visible-Light-Promoted Radical Cyclization. Org Lett 2024; 26:1067-1072. [PMID: 38293710 DOI: 10.1021/acs.orglett.3c04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The convergent synthesis of a fully elaborated C13-C27 fragment of madeirolide A has been achieved. The key features of the synthesis include the stereocontrolled construction of both the THF and THP rings via visible-light-induced iridium-catalyzed radical cyclization and the late-stage union of the two oxacyclic subunits through nickel-catalyzed decarboxylative cross-coupling.
Collapse
Affiliation(s)
- Sunghyun Hwang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minchul Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myungeun Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulbom Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Anwar K, Capaldo L, Wan T, Noël T, Gómez-Suárez A. Modular synthesis of congested β 2,2-amino acids via the merger of photocatalysis and oxidative functionalisations. Chem Commun (Camb) 2024; 60:1456-1459. [PMID: 38223935 DOI: 10.1039/d3cc06172h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A two-step protocol for the modular synthesis of β2- and α-quaternary β2,2-amino acid derivatives is reported. The key steps are a photocatalytic hydroalkylation reaction, followed by an oxidative functionalisation to access N-protected β-amino acids, esters, and amides. This strategy can be effectively scaled up via continuous-flow technology.
Collapse
Affiliation(s)
- Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ting Wan
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
26
|
Ayurini M, Haridas D, Mendoza DJ, Garnier G, Hooper JF. RAFT Polymerisation by the Radical Decarboxylation of Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202317071. [PMID: 37990056 DOI: 10.1002/anie.202317071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
The controlled grafting of polymers from small- and macro-molecular substrates is an essential process for many advanced polymer applications. This usually requires the pre-functionalisation of substrates with an appropriate functional group, such as a RAFT agent or ATRP initiator, which requires additional synthetic steps. In this paper, we describe the direct grafting of RAFT polymers from carboxylate containing small molecules and polymers via photochemical radical decarboxylation. This method utilises the innate functional groups present in the substrates, and achieves efficient polymer initiation in a single step with excellent control of molecular weight and dispersity.
Collapse
Affiliation(s)
- Meri Ayurini
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| | - Darsan Haridas
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| | - David Joram Mendoza
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Joel F Hooper
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Bioresource Processing Research Institute of Australia (BioPRIA), Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
27
|
Al Zubaydi S, Onuigbo IO, Truesdell BL, Sevov CS. Cobalt-Catalyzed Electroreductive Alkylation of Unactivated Alkyl Chlorides with Conjugated Olefins. Angew Chem Int Ed Engl 2024; 63:e202313830. [PMID: 37963333 DOI: 10.1002/anie.202313830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Reactions of unactivated alkyl chlorides under mild and sustainable conditions are rare compared to those of alkyl bromides or iodides. As a result, synthetic methods capable of modifying the vast chemical space of chloroalkane reagents, wastes, and materials are limited. We report the cobalt-catalyzed reductive addition of unactivated alkyl chlorides to conjugated alkenes. Co-catalyzed activation of alkyl chlorides is performed under electroreductive conditions, and the resulting reactions constitute formal alkyl-alkyl bond formation. In addition to developing an operationally simple methodology, detailed mechanistic studies provide insights into the elementary steps of a proposed catalytic cycle. In particular, we propose a switch in the mechanism of C-Cl bond activation from nucleophilic substitution to halogen atom abstraction, which is critical for efficiently generating alkyl radicals. These mechanistic insights were leveraged in designing ligands that enable couplings of primary, secondary, and tertiary alkyl chlorides.
Collapse
Affiliation(s)
- Samir Al Zubaydi
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Immaculata O Onuigbo
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Blaise L Truesdell
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Kato T, Hagiwara K, Inoue M. Generation and Coupling of Radical Species from α-Alkoxy Bridgehead Carboxylic Acid, Selenide, Telluride, Acyl Selenide, and Acyl Telluride. Chem Pharm Bull (Tokyo) 2024; 72:767-771. [PMID: 39198181 DOI: 10.1248/cpb.c24-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
α-Alkoxy bridgehead radicals enable intermolecular construction of sterically congested C-C bonds due to their sterically accessible nature. We implemented these radical species into total syntheses of various densely oxygenated natural products and demonstrated their exceptional versatility. Herein, we employed different precursors to generate the same α-alkoxy bridgehead radical and compared the efficacy of the precursors for coupling reactions. Specifically, the bridgehead radical of the trioxaadamantane structure was formed from α-alkoxy carboxylic acid, selenide/telluride, and acyl selenide/acyl telluride, and reacted with 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one and 5-oxo-1-cyclopentene-1-carbonitrile. The efficiency of the bridgehead radical formation and subsequent coupling reaction significantly depended on the structures of the precursors and acceptors as well as the reaction conditions. Our findings provide new insights for selecting the appropriate substrates of key coupling reactions in the total synthesis of complex natural products.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
29
|
Li G, Shi S, Qian J, Norton JR, Xu GX, Liu JR, Hong X. Kinetics of H· Transfer from CpCr(CO) 3H to Various Enamides: Application to Construction of Pyrrolidines. JACS AU 2023; 3:3366-3373. [PMID: 38155656 PMCID: PMC10751771 DOI: 10.1021/jacsau.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/30/2023]
Abstract
The rate constants kH (kD) have been determined at 27 °C for H· (D·) transfer from CpCr(CO)3H(D) to the C=C bonds of various enamides. This process leads to the formation of α-amino radicals. Vinyl enamides with N-alkyl and N-phenyl substituents have proven to be good H· acceptors, with rate constants close to those of styrene and methyl methacrylate. A methyl substituent on the incipient radical site decreases kH by a factor of 4; a methyl substituent on the carbon that will receive the H· decreases kH by a factor of 380. The measured kH values indicate that these α-amino radicals can be used for the cyclization of enamides to pyrrolidines. A vanadium hydride, HV(CO)4(dppe), has proven more effective at the cyclization of enamides than Cr or Co hydrides-presumably because the weakness of the V-H bond leads to faster H· transfer. The use of the vanadium hydride is operationally simple, employs mild reaction conditions, and has a broad substrate scope. Calculations have confirmed that H· transfer is the slowest step in these cyclization reactions.
Collapse
Affiliation(s)
- Guangchen Li
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shicheng Shi
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Qian
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jack R. Norton
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Guo-Xiong Xu
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Ren Liu
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center
of Chemistry for Frontier Technologies, Department of Chemistry, State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing
National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, P.R. China
- Key
Laboratory of Precise Synthesis of Functional Molecules of Zhejiang
Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province , China
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
30
|
Watanabe Y, Sakata K, Urabe D, Hagiwara K, Inoue M. Formal Total Synthesis of Batrachotoxin Enabled by Radical and Weix Coupling Reactions. J Org Chem 2023. [PMID: 38051654 DOI: 10.1021/acs.joc.3c02290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Batrachotoxin (1), originally isolated from a Columbian poison-dart frog, is a steroidal alkaloid. Its 6/6/6/5-membered carbocycle (ABCD-ring) contains two double bonds, one nitrogen, and five oxygen functionalities. We developed a radical-based convergent strategy and realized the total synthesis of 1 in 28 steps. The AB-ring and D-ring fragments were efficiently synthesized and linked by exploiting a powerful Et3B/O2-mediated radical coupling reaction. Vinyl triflate and vinyl bromide were then utilized for a Pd/Ni-promoted Weix coupling reaction to cyclize the C-ring. A hydroxy group of the C-ring was stereoselectively installed by a decarboxylative hydroxylation reaction to prepare an advanced intermediate of our previous total synthesis of 1.
Collapse
Affiliation(s)
- Yuuki Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Komei Sakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Urabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
32
|
Wang W, Yan X, Ye F, Zheng S, Huang G, Yuan W. Nickel/Photoredox Dual-Catalyzed Regiodivergent Aminoalkylation of Unactivated Alkyl Halides. J Am Chem Soc 2023; 145:23385-23394. [PMID: 37824756 DOI: 10.1021/jacs.3c09705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A mild and regiodivergent aminoalkylation of unactivated alkyl halides is disclosed via a dual photoredox/nickel catalysis. Bipyridyl-type ligands without an ortho-substituent control the site-selective coupling at the original position, while ortho-disubstituted ligands tune the site-selectivity at a remote, unprefunctionalized position. Mechanistic studies combined with DFT calculations give insight into the mechanism and the origins of the ligand-controlled regioselectivity. Notably, this redox-neutral, regiodivergent alkyl-alkyl coupling features mild conditions, broad substrate scope for both alkyl coupling partners, and excellent site-selectivity and offers a straightforward way for α-alkylation of tertiary amines to synthesize structurally diverse alkylamines and value-added amino acid derivatives.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Xueyuan Yan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fu Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, People's Republic of China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, People's Republic of China
| |
Collapse
|
33
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
34
|
Kim J, Lee J, Choi H, Ha J, Cheon M, Seo Y, Kim Y, Yoo D. Strategic design of gold nanocatalysts for effective photocatalytic organic transformation. NANOSCALE 2023; 15:15950-15955. [PMID: 37698042 DOI: 10.1039/d3nr02755d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We demonstrate the design strategy of free-standing Au nanocatalysts by correlating their physicochemical characteristics with photocatalytic performance. By tailoring the particle size and surface characteristics, we found that small Au nanocatalysts called Au nanoclusters with discrete energy levels are more effective than large metallic Au nanoparticles, while the microenvironments (e.g., charge status and hydrophilicity/hydrophobicity) around the surface of Au-nanoclusters are crucial in determining the performance. With the optimized Au nanocatalyst, under visible light, decarboxylative radical addition reactions for C-C bond formation (i.e., Giese reaction) were first achieved with high yields and further utilized for the preparation of one of the bioactive γ-aminobutyric acid derivatives, pregabalin (Lyrica®), demonstrating its potential in pharmaceutical applications.
Collapse
Affiliation(s)
- Jongchan Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeonghyeon Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Hyunwoo Choi
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Juhee Ha
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Minsoo Cheon
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Youngran Seo
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
36
|
Delos Reyes AMV, Nieves Escobar CS, Muñoz A, Huffman MI, Tan DS. Direct conversion of amino acids to oxetanol bioisosteres via photoredox catalysis. Chem Sci 2023; 14:10524-10531. [PMID: 37799988 PMCID: PMC10548506 DOI: 10.1039/d3sc00936j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/26/2023] [Indexed: 10/07/2023] Open
Abstract
Carboxylic acids are an important structural feature in many drugs, but are associated with a number of unfavorable pharmacological properties. To address this problem, carboxylic acids can be replaced with bioisosteric mimics that interact similarly with biological targets but avoid these liabilities. Recently, 3-oxetanols have been identified as useful carboxylic acid bioisosteres that maintain similar hydrogen-bonding capacity while decreasing acidity and increasing lipophilicity. However, the installation of 3-oxetanols generally requires multistep de novo synthesis, presenting an obstacle to investigation of these promising bioisosteres. Herein, we report a new synthetic approach involving direct conversion of carboxylic acids to 3-oxetanols using a photoredox-catalyzed decarboxylative addition to 3-oxetanone. Two versions of the transformation have been developed, in the presence or absence of CrCl3 and TMSCl cocatalysts. The reactions are effective for a variety of N-aryl α-amino acids and have excellent functional group tolerance. The Cr-free conditions generally provide higher yields and avoid the use of chromium reagents. Further, the Cr-free conditions were extended to a series of N,N-dialkyl α-amino acid substrates. Mechanistic studies suggest that the Cr-mediated reaction proceeds predominantly via in situ formation of an alkyl-Cr intermediate while the Cr-free reaction proceeds largely via radical addition to a Brønsted acid-activated ketone. Chain propagation processes provide quantum yields of 5 and 10, respectively.
Collapse
Affiliation(s)
- Avelyn Mae V Delos Reyes
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Christopher S Nieves Escobar
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Alberto Muñoz
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Maya I Huffman
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Tri-Institutional Chemical Biology Summer Program, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Derek S Tan
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Tri-Institutional Chemical Biology Summer Program, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
37
|
Shao T, Ban X, Jiang Z. α-Amino Acids: An Emerging Versatile Synthon in Visible Light-Driven Decarboxylative Transformations. CHEM REC 2023; 23:e202300122. [PMID: 37276383 DOI: 10.1002/tcr.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Indexed: 06/07/2023]
Abstract
α-Amino acids have been widely recognized as environmental-benign and non-fossil carbon sources both in biological and synthetic chemistry. In recent years, with the remarkable development of visible-light photocatalysis in organic synthesis, α-amino acid and its derivatives have received tremendous attention as radical precursors via photocatalyzed decarboxylation, thus realizing diverse aminoalkylated transformations or constructions of novel N-bearing heterocyclic motifs by taking advantage of N-atoms from α-amino acid. This review aims to provide a comprehensive update on the recent exploitation of α-amino acids in visible light photocatalysis, with particular emphasis on the types of α-amino acids employed and their distinct mechanisms applied wherein.
Collapse
Affiliation(s)
- Tianju Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Jinming Campus, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
38
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
39
|
Carson Ii WP, Sarver PJ, Goudy NS, MacMillan DWC. Photoredox Catalysis-Enabled Sulfination of Alcohols and Bromides. J Am Chem Soc 2023; 145:20767-20774. [PMID: 37721547 PMCID: PMC10680125 DOI: 10.1021/jacs.3c08216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Sulfinates are important lynchpin intermediates in pharmaceutical production; however, their synthesis via photoredox catalysis is challenging because of their facile oxidation. We herein disclose a photocatalytic strategy for the direct conversion of alcohols and alkyl bromides into alkyl sulfinates. These transformations are enabled by the utilization of easily oxidized radical precursors─namely, alcohol N-heterocyclic carbene adducts and N-adamantyl aminosupersilane─that facilitate efficient synthesis of the oxidatively labile sulfinate products. A broad range of functional groups are amenable to the reported transformations, providing rapid access to sulfonamides, sulfonyl halides, sulfones, and sulfonic acids. The utility of these methods is further demonstrated via the late-stage diversification of natural products and drugs into pharmaceutically relevant sulfonamides and "clickable" sulfonyl fluorides. In summary, this work illustrates the potential of novel radical precursors to expand the breadth of photoredox transformations.
Collapse
Affiliation(s)
- William P Carson Ii
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Patrick J Sarver
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noelle S Goudy
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
40
|
Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee AL. Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free. Chem Sci 2023; 14:9806-9813. [PMID: 37736650 PMCID: PMC10510818 DOI: 10.1039/d3sc03143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Katie A Scott
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Elena Rongione
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Simon Nicolle
- GlaxoSmithKline Gunnels Wood Rd Stevenage SG1 2NY UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
41
|
Peng Q, Gogoi AR, Rentería-Gómez Á, Gutierrez O, Scheidt KA. Visible-light-induced coupling of carboxylic acids with alcohols/amines via a phosphorous linchpin strategy. Chem 2023; 9:1983-1993. [PMID: 37547627 PMCID: PMC10399973 DOI: 10.1016/j.chempr.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The combination of activated carboxylic acids and alcohols/amines to access esters and amides, respectively, is a cornerstone of organic chemistry and has been well developed over the past century. These dehydrations are extensively used in medicinal chemistry and natural product synthesis due to the prevalence of these functional groups in bioactive molecules. Here, we report a divergent process from the expected ester/amide outcomes through a light-induced coupling of activated carboxylic acids and alcohols/amines to efficiently prepare α-hydroxy/amino ketones or β-ketophosphonates via single-electron chemistry. A phosphorus linchpin strategy allows for the combination of these simple reagents through an intramolecular triplet state radical process, thereby enabling new carbon-carbon bond formation.
Collapse
Affiliation(s)
- Qiupeng Peng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Lead contact
| |
Collapse
|
42
|
Regni A, Bartoccini F, Piersanti G. Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine. Beilstein J Org Chem 2023; 19:918-927. [PMID: 37404801 PMCID: PMC10315889 DOI: 10.3762/bjoc.19.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
An unusual photoredox-catalyzed radical decarboxylative cyclization cascade reaction of γ,γ-dimethylallyltryptophan (DMAT) derivatives containing unactivated alkene moieties has been developed, providing green and efficient access to various six-, seven-, and eight-membered ring 3,4-fused tricyclic indoles. This type of cyclization, which was hitherto very difficult to comprehend in ergot biosynthesis and to accomplish by more conventional procedures, enables the synthesis of ergot alkaloid precursors. In addition, this work describes a mild, environmentally friendly method to activate, reductively and oxidatively, natural carboxylic acids for decarboxylative C-C bond formation by exploiting the same photocatalyst.
Collapse
Affiliation(s)
- Alessio Regni
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| |
Collapse
|
43
|
Venditto NJ, Boerth JA. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover. Org Lett 2023; 25:3429-3434. [PMID: 37163325 DOI: 10.1021/acs.orglett.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multicomponent radical polar crossover (RPC) reactions are useful for leveraging both radical and polar bond-forming steps to rapidly build molecular complexity in a single transformation. However, multicomponent RPC reactions that utilize carbonyl π-bond electrophiles are underrepresented in the literature. Herein, we describe a mild, photoredox-catalyzed decarboxylative multicomponent RPC reaction that couples carboxylic acids, Michael acceptors, and carbonyl electrophiles for the formation of diversely functionalized γ-amino butyric acid derivatives. This transformation also facilitates the synthesis of complex and biologically relevant γ-lactam compounds.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
44
|
Kang YW, Kim RH, Atriardi SR, Woo SK. Visible-Light Photoredox-Catalyzed Giese Reaction of α-Silyl Ethers with Various Michael Acceptors. J Org Chem 2023; 88:3555-3566. [PMID: 36853651 DOI: 10.1021/acs.joc.2c02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We developed a photocatalyzed Giese reaction of various weakly activated Michael acceptors with a neutral silicon-based radical precursor and applied it at large-scale using a continuous flow reactor. The developed method successfully overcomes the substrate scope limitations of previous studies, shows good functional groups tolerance, and affords good to excellent yields. On the basis of mechanistic studies, we propose a reaction mechanism that involves an in situ generated alkoxymethyl radical via single-electron oxidation of α-trimethylsilyl-substituted ethers.
Collapse
Affiliation(s)
- Young Woo Kang
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Ran Hui Kim
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | | | - Sang Kook Woo
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| |
Collapse
|
45
|
Seong CM, Ansel AQ, Roberts CC. Redox Inversion: A Radical Analogue of Umpolung Reactivity for Base- and Metal-Free Catalytic C(sp 3)-C(sp 3) Coupling. J Org Chem 2023; 88:3935-3940. [PMID: 36877204 DOI: 10.1021/acs.joc.2c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The construction of alkyl-alkyl bonds is a powerful tool in organic synthesis. Redox inversion, defined as switching the donor/acceptor profile of a functional group to its acceptor/donor profile, is used for C(sp3)-C(sp3) coupling. We report a photocatalytic coupling of carboxylic acids to form bibenzyls through a radical-radical coupling. Mechanistic insight is gained through control reactions. This unexplored redox-opposite relationship between a carboxylic acid and its redox-active ester is implemented in catalysis.
Collapse
Affiliation(s)
- Chris M Seong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annabel Q Ansel
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Dubois MAJ, Rojas JJ, Sterling AJ, Broderick HC, Smith MA, White AJP, Miller PW, Choi C, Mousseau JJ, Duarte F, Bull JA. Visible Light Photoredox-Catalyzed Decarboxylative Alkylation of 3-Aryl-Oxetanes and Azetidines via Benzylic Tertiary Radicals and Implications of Benzylic Radical Stability. J Org Chem 2023; 88:6476-6488. [PMID: 36868184 DOI: 10.1021/acs.joc.3c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
Collapse
Affiliation(s)
- Maryne A J Dubois
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Hannah C Broderick
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Milo A Smith
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - James J Mousseau
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
47
|
Iron/B2pin2 catalytic system enables the generation of alkyl radicals from inert alkyl C-O bonds for amine synthesis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
48
|
Imamura Y, Takaoka K, Komori Y, Nagatomo M, Inoue M. Total Synthesis of Taxol Enabled by Inter- and Intramolecular Radical Coupling Reactions. Angew Chem Int Ed Engl 2023; 62:e202219114. [PMID: 36646637 DOI: 10.1002/anie.202219114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Taxol is a clinically used drug for the treatment of various types of cancers. Its 6/8/6/4-membered ring (ABCD-ring) system is substituted by eight oxygen functional groups and flanked by four acyl groups, including a β-amino acid side chain. Here we report a 34-step total synthesis of this unusually oxygenated and intricately fused structure. Inter- and intramolecular radical coupling reactions connected the A- and C-ring fragments and cyclized the B-ring, respectively. Functional groups of the A- and C-rings were then efficiently decorated by employing newly developed chemo-, regio-, and stereoselective reactions. Finally, construction of the D-ring and conjugation with the β-amino acid delivered taxol. The powerful coupling reactions and functional group manipulations implemented in the present synthesis provide new valuable information for designing multistep target-oriented syntheses of diverse bioactive natural products.
Collapse
Affiliation(s)
- Yusuke Imamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kyohei Takaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuma Komori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Nagatomo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
49
|
Paul S, Filippini D, Silvi M. Polarity Transduction Enables the Formal Electronically Mismatched Radical Addition to Alkenes. J Am Chem Soc 2023; 145:2773-2778. [PMID: 36718934 PMCID: PMC9912259 DOI: 10.1021/jacs.2c12699] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 02/01/2023]
Abstract
The formation of carbon-carbon bonds via the intermolecular addition of alkyl radicals to alkenes is a cornerstone of organic chemistry and plays a central role in synthesis. However, unless specific electrophilic radicals are involved, polarity matching requirements restrict the alkene component to be electron deficient. This limits the scope of a fundamentally important carbon-carbon bond forming process that could otherwise be more universally applied. Herein, we introduce a polarity transduction strategy that formally overcomes this electronic limitation. Vinyl sulfonium ions are demonstrated to react with carbon-centered radicals, giving adducts that undergo in situ or sequential nucleophilic displacement to provide products that would be inaccessible via traditional methods. The broad generality of this strategy is demonstrated through the derivatization of unmodified complex bioactive molecules.
Collapse
|
50
|
Matsuo B, Granados A, Levitre G, Molander GA. Photochemical Methods Applied to DNA Encoded Library (DEL) Synthesis. Acc Chem Res 2023; 56:385-401. [PMID: 36656960 PMCID: PMC10415088 DOI: 10.1021/acs.accounts.2c00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA-encoded library technology (DELT) is a new screening modality that allows efficient, cost-effective, and rapid identification of small molecules with potential biological activity. This emerging technique represents an enormous advancement that, in combination with other technologies such as high-throughput screening (HTS), fragment-based lead generation, and structure-based drug design, has the potential to transform how drug discovery is carried out. DELT is a hybrid technique in which chemically synthesized compounds are linked to unique genetic tags (or "barcodes") that contain readable information. In this way, millions to billions of building blocks (BBs) attached on-DNA via split-and-pool synthesis can be evaluated against a biological target in a single experiment. Polymerase chain reaction (PCR) amplification and next-generation sequencing (NGS) analysis of the unique sequence of oligonucleotides in the DNA tag are used to identify those ligands with high affinity for the target. This innovative fusion of genetic and chemical technologies was conceived in 1992 by Brenner and Lerner (Proc. Natl. Acad. Sci. 1992, 89, 5381-5383) and is under accelerated development with the implementation of new synthetic techniques and protocols that are compatible with DNA. In fact, reaction compatibility is a key parameter to increasing the chances of identification of a drug target ligand, and a central focus has been the development of new transformations and the transition to robust protocols for on-DNA synthesis. Because the sole use of the DNA tag is as an amplifiable identification barcode, its structural integrity during a new chemical process is mandatory. As such, the use of these sensitive, polyfunctional biological molecules as substrates typically requires aqueous solutions within defined pH and temperature ranges, which is considered a notable challenge in DEL synthesis.Using low-energy visible light as the driving force to promote chemical transformations represents an attractive alternative to classical synthetic methods, and it is an important and well-established synthetic tool for forging chemical bonds in a unique way via radical intermediates. Recent advances in the field of photocatalysis are extraordinary, and this powerful research arena is still under continuous development. Several applications taking advantage of the mild reaction conditions of photoinduced transformations have been directed toward DEL synthesis, allowing the expansion of chemical space available for the evaluation of new building blocks on-DNA. There are no doubts that visible-light-driven reactions have become one of the most powerful approaches for DELT, given the easy way they provide to construct new bonds and the challenges to achieve equal success via classical protocols.Key characteristics of photocatalytic synthesis include the short reaction times and efficiency, which translate into retention of DNA integrity. In this Account, we describe recent advances in the photoinduced diversification of building blocks prepared on-DNA, highlighting the amenability of the techniques employed for preserving the genetic structure of the molecules. We demonstrate with recent research from our group the applicability of photocatalysis to the field and include in the summary a table containing all the photoinduced methods reported to date for DELT, demonstrating their key aspects such as scope, applications, and DNA compatibilities. With this information, practitioners are provided with compelling reasons for developing/choosing photocatalytic methods for DELT applications.
Collapse
Affiliation(s)
- Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| |
Collapse
|