1
|
Sakamoto K, Masuda S, Takano S, Tsukuda T. Carbon-supported Au 25 cluster catalysts partially decorated with dendron thiolates: enhanced loading weight and durability for hydrogen evolution reaction. NANOSCALE 2024; 16:20608-20616. [PMID: 39440912 DOI: 10.1039/d4nr03385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In order to establish a design principle for efficient Au electrocatalysis, it is desirable to synthesize a highly loaded, robust, and atomically precise Au cluster catalyst on a conductive carbon support. In this work, heterogeneous Au25 catalysts were prepared by calcining 5.0 wt% of mixed ligated [Au25(D2S)x(PET)18-x]0 (D2S = second generation Fréchet-type dendron thiolate, PET = 2-phenylethanethiolate) on a carbon support. X-ray absorption fine structure analysis, powder X-ray diffraction, and aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) revealed the successful synthesis of carbon-supported partially thiolated Au25 clusters by calcining [Au25(D2S)10.7(PET)7.3]0 at 425 °C for ≥12 h, whereas calcination of [Au25(PET)18]0 under the same conditions resulted in thermally induced aggregation into larger Au nanoparticles. The D2S-modified Au25 catalyst showed better durability than PET-modified Au25 in electrocatalytic hydrogen evolution reaction. The higher durability was attributed to the suppression of aggregation of Au25 clusters during the reaction, as confirmed by AC-HAADF-STEM. These results indicate that the residual D2S ligands on Au25 enhance the stability against aggregation more than the residual PET due to stronger non-covalent interactions with carbon supports and/or greater steric hindrance of dendritic structure. This work demonstrates that the stability of Au catalysts can be improved by partial decoration with designed ligands.
Collapse
Affiliation(s)
- Kosuke Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Zhang JZ, Zhang YB, Chai HL, Luo HL, Du CX, Huang RW, Zang SQ. Selectivity Modulation of Multistep Reduction Reactions by Gold Nanoclusters. Angew Chem Int Ed Engl 2024:e202413418. [PMID: 39294887 DOI: 10.1002/anie.202413418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
The selective synthesis of valuable azo- and azoxyaromatic chemicals via transfer coupling of nitroaromatic compounds has been achieved by fine-tuning the catalyst structure. Here, a direct method to modulate nitrobenzene reduction and selectively alter the product from azobenzene to azoxybenzene by employing the size effect of Au is reported. Au nanoclusters (NCs) with smaller sizes embedded in ZIF-8 controllably converted nitrobenzene into azoxybenzene, while supported Au nanoparticles (NPs) selectively catalyzed nitrobenzene reduction to azobenzene. X-ray photoelectron spectroscopy (XPS) and Diffuse reflectance infrared Fourier transform spectroscopy on CO adsorption (CO-DRIFTS) of Au NC/ZIF-8 revealed a higher valence state and a lower electron density of Au than that of Au NP/ZIF-8, combined with the desorption of azoxybenzene from the Au NC and Au NP surface, suggesting that the Au NCs with lower electron density exhibit stronger adsorption. Density functional theory (DFT) calculations and charge density difference maps indicated that azoxybenzene bonded to Au NC/ZIF-8 with greater adsorption energy, resulting in more electron transfer between azoxybenzene and the generated Au sites, which inhibited further reduction of azoxybenzene and resulted in high azoxybenzene selectivity. The application of the size effect of Au particles to regulate nitrobenzene transfer coupling provided new insights into the structure-selectivity relationships.
Collapse
Affiliation(s)
- Jing-Zheng Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Bao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Li Chai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui-Ling Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Xia Du
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Krishnan M, Vijayaprabhakaran A, Kathiresan M. Improved electrochemical reduction of CO 2 to syngas with a highly exfoliated Ti 3C 2T x MXene-gold composite. NANOSCALE 2024; 16:16218-16226. [PMID: 39140346 DOI: 10.1039/d4nr01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Transforming carbon dioxide (CO2) into valuable chemicals via electroreduction presents a sustainable and viable approach to mitigating excess CO2 in the atmosphere. This report provides fresh insights into the design of a new titanium-based MXene composite as a catalyst for the efficient conversion of CO2 in a safe aqueous medium. Despite its excellent electrocatalytic activity towards CO2 reduction and high selectivity for CO production, the high cost of Au and the decline in catalytic activity on a larger scale hinder its large-scale CO2 conversion applications. In this research, we have successfully prepared an Au/Ti3C2Tx composite and tested its catalytic activity in the electrochemical CO2 reduction reaction (ECRR). The as-prepared composite features strong interactions between gold atoms and the MXene support, achieved through the formation of metal-oxygen/carbon bonds. The Au/Ti3C2Tx electrode demonstrated a significant current density of 17.3 mA cm-2 at a potential of -0.42 V vs. RHE, in a CO2 saturated atmosphere (faradaic efficiency: CO = 48.3% and H2 = 25.6%). Nyquist plots further indicated a reduction in the charge-transfer resistance of the Au/Ti3C2Tx layer, signifying rapid charge transfer between the Au and Ti3C2Tx. Furthermore, it is known that liquid crossover through the Gas Diffusion Electrode (GDE) significantly improves CO2 diffusion to catalyst active sites, thereby enhancing CO2 conversion efficiency. The goal of this work is to design an interface between metal and MXene so that CO2 can be electroreduced to fuels and other useful chemical compounds with great selectivity.
Collapse
Affiliation(s)
- Murugan Krishnan
- Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi - 630003, Tamil Nadu, India.
| | - Aathilingam Vijayaprabhakaran
- Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi - 630003, Tamil Nadu, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Murugavel Kathiresan
- Electro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi - 630003, Tamil Nadu, India.
| |
Collapse
|
4
|
Zhang H, Xu H, Yao C, Chen S, Li F, Zhao D. Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis. ACS NANO 2024; 18:21836-21854. [PMID: 39108203 DOI: 10.1021/acsnano.4c07916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haitao Xu
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Canglang Yao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shanshan Chen
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Timoshenko J, Rettenmaier C, Hursán D, Rüscher M, Ortega E, Herzog A, Wagner T, Bergmann A, Hejral U, Yoon A, Martini A, Liberra E, Monteiro MCDO, Cuenya BR. Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nat Commun 2024; 15:6111. [PMID: 39030207 PMCID: PMC11271611 DOI: 10.1038/s41467-024-50379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Dorottya Hursán
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Timon Wagner
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | - Eric Liberra
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany
| | | | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.
| |
Collapse
|
7
|
Chauhan P, Georgi M, Herranz J, Müller G, Diercks JS, Eychmüller A, Schmidt TJ. Impact of Surface Composition Changes on the CO 2-Reduction Performance of Au-Cu Aerogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12288-12300. [PMID: 38805399 DOI: 10.1021/acs.langmuir.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Over the past decades, the electrochemical CO2-reduction reaction (CO2RR) has emerged as a promising option for facilitating intermittent energy storage while generating industrial raw materials of economic relevance such as CO. Recent studies have reported that Au-Cu bimetallic nanocatalysts feature a superior CO2-to-CO conversion as compared with the monometallic components, thus improving the noble metal utilization. Under this premise and with the added advantage of a suppressed H2-evolution reaction due to absence of a carbon support, herein, we employ bimetallic Au3Cu and AuCu aerogels (with a web thickness ≈7 nm) as CO2-reduction electrocatalysts in 0.5 M KHCO3 and compare their performance with that of a monometallic Au aerogel. We supplement this by investigating how the CO2RR-performance of these materials is affected by their surface composition, which we modified by systematically dissolving a part of their Cu-content using cyclic voltammetry (CV). To this end, the effect of this CV-driven composition change on the electrochemical surface area is quantified via Pb underpotential deposition, and the local structural and compositional changes are visually assessed by employing identical-location transmission electron microscopy and energy-dispersive X-ray analyses. When compared to the pristine aerogels, the CV-treated samples displayed superior CO Faradaic efficiencies (≈68 vs ≈92% for Au3Cu and ≈34 vs ≈87% for AuCu) and CO partial currents, with the AuCu aerogel outperforming the Au3Cu and Au counterparts in terms of Au-mass normalized CO currents among the CV-treated samples.
Collapse
Affiliation(s)
- Piyush Chauhan
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Maximilian Georgi
- Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Gian Müller
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Justus S Diercks
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Thomas J Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Jiao L, Mao C, Xu F, Cheng X, Cui P, Wang X, Yang L, Wu Q, Hu Z. Constructing Gold Single-Atom Catalysts on Hierarchical Nitrogen-Doped Carbon Nanocages for Carbon Dioxide Electroreduction to Syngas. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305513. [PMID: 38032150 DOI: 10.1002/smll.202305513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1 Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity.
Collapse
Affiliation(s)
- Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chenghui Mao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xueyi Cheng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Sedano Varo E, Egeberg Tankard R, Kryger-Baggesen J, Jinschek J, Helveg S, Chorkendorff I, Damsgaard CD, Kibsgaard J. Gold Nanoparticles for CO 2 Electroreduction: An Optimum Defined by Size and Shape. J Am Chem Soc 2024; 146:2015-2023. [PMID: 38196113 PMCID: PMC10811675 DOI: 10.1021/jacs.3c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Understanding the size-dependent behavior of nanoparticles is crucial for optimizing catalytic performance. We investigate the differences in selectivity of size-selected gold nanoparticles for CO2 electroreduction with sizes ranging from 1.5 to 6.5 nm. Our findings reveal an optimal size of approximately 3 nm that maximizes selectivity toward CO, exhibiting up to 60% Faradaic efficiency at low potentials. High-resolution transmission electron microscopy reveals different shapes for the particles and suggests that multiply twinned nanoparticles are favorable for CO2 reduction to CO. Our analysis shows that twin boundaries pin 8-fold coordinated surface sites and in turn suggests that a variation of size and shape to optimize the abundance of 8-fold coordinated sites is a viable path for optimizing the CO2 electrocatalytic reduction to CO. This work contributes to the advancement of nanocatalyst design for achieving tunable selectivity for CO2 conversion into valuable products.
Collapse
Affiliation(s)
- Esperanza Sedano Varo
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rikke Egeberg Tankard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Joakim Kryger-Baggesen
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Joerg Jinschek
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National
Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Stig Helveg
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christian Danvad Damsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- National
Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Center
for Visualizing Catalytic Processes (VISION), Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
12
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
13
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Li J, Zhang L, Gao S, Chen X, Wu R, Wang X, Wang Q. N-doped carbon nanocage-anchored bismuth atoms for efficient CO 2 reduction. Chem Commun (Camb) 2023; 59:11991-11994. [PMID: 37727123 DOI: 10.1039/d3cc02806b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (CO2RR) is a prospective but challenging method to decrease the CO2 concentration in the current atmosphere; in particular, the poor selectivity of the target product CO and large overpotentials limit its efficiency. Herein, we propose a top-down route to synthesize Bi single atoms (SAs) anchored by N-doped carbon (NCbox) nanoboxes starting from BiOCl nanoplates as the hard templates. In the CO2RR, the obtained Bi single-atom catalyst possesses remarkably-enhanced catalytic performance, achieving a maximal Faraday efficiency (FE) of 91.7% at -0.6 V, which is much higher than that of NCbox-supported Bi nanoparticles (NPs). Further investigations point out that the enhancement can be attributed to the unique coordination structure of the Bi SAs, as well as the fascinating properties of NCbox that can efficiently promote the electron transfer during the electro-catalysis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing 100048, China.
| | - Lingling Zhang
- State Key Laboratory of Rare Earth Resource Utilization, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China.
| | - Shuai Gao
- Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing 100048, China.
| | - Xingmin Chen
- College of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China
| | - Runjie Wu
- Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing 100048, China.
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China.
| | - Qiang Wang
- Department of Chemistry and College of Elementary Education, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
15
|
Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO 2 reduction: Strategy and challenge. EXPLORATION (BEIJING, CHINA) 2023; 3:20230001. [PMID: 37933280 PMCID: PMC10582615 DOI: 10.1002/exp.20230001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
The realization of a complete techno-economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low-carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non-noble metal, copper-based, and metal-organic framework-based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias-free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite-based solar cells for photovoltaics-assisted EC (PV-EC) and photovoltaics-assisted PEC (PV-PEC) CO2RR systems are cost-efficient, and the III-V semiconductor photoabsorbers achieved high solar-to-carbon efficiency. This work focuses on PV-EC and PV-PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale-up, along with proposed solutions.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Joonhee Ma
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
16
|
Darkwah WK, Appiagyei AB, Puplampu JB. Transforming the Petroleum Industry through Catalytic Oxidation Reactions vis-à-vis Preceramic Polymer Catalyst Supports. ACS OMEGA 2023; 8:34215-34234. [PMID: 37780012 PMCID: PMC10536879 DOI: 10.1021/acsomega.2c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/21/2023] [Indexed: 10/03/2023]
Abstract
Preceramic polymers, for instance, are used in a variety of chemical processing industries and applications. In this contribution, we report on the catalytic oxidation reactions generated using preceramic polymer catalyst supports. Also, we report the full knowledge of the use of the remarkable catalytic oxidation, and the excellent structures of these preceramic polymer catalyst supports are revealed. This finding, on the other hand, focuses on the functionality and efficacy of future applications of catalytic oxidation of preceramic polymer nanocrystals for energy and environmental treatment. The aim is to design future implementations that can address potential environmental impacts associated with fuel production, particularly in downstream petroleum industry processes. As a result, these materials are being considered as viable candidates for environmentally friendly applications such as refined fuel production and related environmental treatment.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School
of Chemical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052 NSW, Australia
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| | - Alfred Bekoe Appiagyei
- Department
of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B. Puplampu
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| |
Collapse
|
17
|
Wang N, Li H, Wang H, Yang H, Ren Z, Xu R. Temperature-Induced Low-Coordinate Ni Single-Atom Catalyst for Boosted CO 2 Electroreduction Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301469. [PMID: 37098645 DOI: 10.1002/smll.202301469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Single-atom catalysts (SACs) exhibit remarkable potential for electrochemical reduction of CO2 to value-added products. However, the commonly pursued methods for preparing SACs are hard to scale up, and sometimes, lack general applicability because of expensive raw materials and complex synthetic procedures. In addition, the fine tuning of coordination environment of SACs remains challenging due to their structural vulnerability. Herein, a simple and universal strategy is developed to fabricate Ni SACs with different nitrogen coordination numbers through one-step pyrolysis of melamine, Ni(NO3 )∙6H2 O, and polyvinylpyrrolidone at different temperatures. Experimental measurements and theoretical calculations reveal that the low-coordinate Ni SACs exhibit outstanding CO2 reduction performance and stability, achieving a Faradic efficiency (FECO ) of 98.5% at -0.76 V with CO current density of 24.6 mA cm-2 , and maintaining FECO of over 91.0% at all applied potential windows from -0.56 to -1.16 V, benefiting from its coordinatively unsaturated structure to afford high catalytic activity and low barrier for the formation of *COOH intermediate. No significant performance degradation is observed over 50 h of continuous operation. Additionally, several other metallic single-atom catalysts are successfully prepared by this synthetic method, demonstrating the universality of this strategy.
Collapse
Affiliation(s)
- Na Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Haoyue Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Haojing Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Huanhuan Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Rong Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- C4T CREATE, National Research Foundation, CREATE Tower 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
18
|
Wang Y, Li B, Xue B, Libretto N, Xie Z, Shen H, Wang C, Raciti D, Marinkovic N, Zong H, Xie W, Li Z, Zhou G, Vitek J, Chen JG, Miller J, Wang G, Wang C. CO electroreduction on single-atom copper. SCIENCE ADVANCES 2023; 9:eade3557. [PMID: 37494432 DOI: 10.1126/sciadv.ade3557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+ hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+ products.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bin Xue
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Nicole Libretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Canhui Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Han Zong
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wenjun Xie
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziyuan Li
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeff Vitek
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York City, NY 10027, USA
| | - Jeffery Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering and Ralph O'Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
19
|
Li M, Hu Y, Dong G, Wu T, Geng D. Achieving Tunable Selectivity and Activity of CO 2 Electroreduction to CO via Bimetallic Silver-Copper Electronic Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207242. [PMID: 36631289 DOI: 10.1002/smll.202207242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Limited comprehension of the reaction mechanism has hindered the development of catalysts for CO2 reduction reactions (CO2 RR). Here, the bimetallic AgCu nanocatalyst platform is employed to understand the effect of the electronic structure of catalysts on the selectivity and activity for CO2 electroreduction to CO. The atomic arrangement and electronic state structure vary with the atomic ratio of Ag and Cu, enabling tunable d-band centers to optimize the binding strength of key intermediates. Density functional theory calculations confirm that the variation of Cu content greatly affects the free energy of *COOH, *CO (intermediate of CO), and *H (intermediates of H2 ), which leads to the change of the rate-determining step. Specifically, Ag96 Cu4 reduces the free energy of the formation of *COOH while maintaining a relatively high theoretical overpotential for hydrogen evolution reaction(HER), thus achieving the best CO selectivity. While Ag70 Cu30 shows relatively low formation energy of both *COOH and *H, the compromised thermodynamic barrier and product selectivity allows Ag70 Cu30 the best CO partial current density. This study realizes the regulation of the selectivity and activity of electrocatalytic CO2 to CO, which provides a promising way to improve the intrinsic performance of CO2 RR on bimetallic AgCu.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tianci Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
20
|
Posada-Pérez S, Vidal-López A, Solà M, Poater A. 2D carbon nitride as a support with single Cu, Ag, and Au atoms for carbon dioxide reduction reaction. Phys Chem Chem Phys 2023; 25:8574-8582. [PMID: 36883855 PMCID: PMC10277901 DOI: 10.1039/d3cp00392b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The electrochemical conversion of CO2 into value-added chemicals is an important approach to recycling CO2. In this work, we have combined the most efficient metal catalysts for this reaction, namely Cu, Ag, and Au, as single-atom particles dispersed on a two-dimensional carbon nitride support, with the aim of exploring their performance in the CO2 reduction reaction. Here, we report density functional theory computations showing the effect of single metal-atom particles on the support. We found that bare carbon nitride needed a high overpotential to overcome the energy barrier for the first proton-electron transfer, while the second transfer was exergonic. The deposition of single metal atoms enhances the catalytic activity of the system as the first proton-electron transfer is favored in terms of energy, although strong binding energies were found for CO adsorption on Cu and Au single atoms. Our theoretical interpretations are consistent with the experimental evidence that the competitive H2 generation is favored due to the strong CO binding energies. Our computational study paves the road to finding suitable metals that catalyze the first proton-electron transfer in the carbon dioxide reduction reaction and produce reaction intermediates with moderate binding energies, promoting a spillover to the carbon nitride support and thereby serving as bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Anna Vidal-López
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
21
|
Zhu Q, Yang G, Tang L, Mi H, Sun L, Zhang Q, Deng L, Zhang P, Ren X, Li Y. Enhanced electrocatalytic performance for oxygen evolution reaction via active interfaces of Co 3O 4arrays@FeO x/Carbon cloth heterostructure by plasma-enhanced atomic layer deposition. NANOTECHNOLOGY 2023; 34:225703. [PMID: 36857776 DOI: 10.1088/1361-6528/acc038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Oxygen evolution reaction (OER) is a necessary procedure in various devices including water splitting and rechargeable metal-air batteries but required a higher potential to improve oxygen evolution efficiency due to its slow reaction kinetics. In order to solve this problem, a heterostructured electrocatalyst (Co3O4@FeOx/CC) is synthesized by deposition of iron oxides (FeOx) on carbon cloth (CC) via plasma-enhanced atomic layer deposition, then growth of the cobalt oxide (Co3O4) nanosheet arrays. The deposition cycle of FeOxon the CC strongly influences thein situgrowth and distribution of Co3O4nanosheets and electronic conductivity of the electrocatalyst. Owing to the high accessible and electroactive areas and improved electrical conductivity, the free-standing electrode of Co3O4@FeOx/CC with 100 deposition cycles of FeOxexhibits excellent electrocatalytic performance for OER with a low overpotential of 314.0 mV at 10 mA cm-2and a small Tafel slope of 29.2 mV dec-1in alkaline solution, which is much better than that of Co3O4/CC (448 mV), and even commercial RuO2(380 mV). This design and optimization strategy shows a promising way to synthesize ideally designed catalytic architectures for application in energy storage and conversion.
Collapse
Affiliation(s)
- Qingying Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Guoyong Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Limin Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hongwei Mi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
22
|
Microwave-assisted synthesis of metal-organic chalcogenolate assemblies as electrocatalysts for syngas production. Commun Chem 2023; 6:43. [PMID: 36859623 PMCID: PMC9977941 DOI: 10.1038/s42004-023-00843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
Today, many essential industrial processes depend on syngas. Due to a high energy demand and overall cost as well as a dependence on natural gas as its precursor, alternative routes to produce this valuable mixture of hydrogen and carbon monoxide are urgently needed. Electrochemical syngas production via two competing processes, namely carbon dioxide (CO2) reduction and hydrogen (H2) evolution, is a promising method. Often, noble metal catalysts such as gold or silver are used, but those metals are costly and have limited availability. Here, we show that metal-organic chalcogenolate assemblies (MOCHAs) combine several properties of successful electrocatalysts. We report a scalable microwave-assisted synthesis method for highly crystalline MOCHAs ([AgXPh] ∞: X = Se, S) with high yields. The morphology, crystallinity, chemical and structural stability are thoroughly studied. We investigate tuneable syngas production via electrocatalytic CO2 reduction and find the MOCHAs show a maximum Faraday efficiency (FE) of 55 and 45% for the production of carbon monoxide and hydrogen, respectively.
Collapse
|
23
|
Zhang X, Wang Y, Li Y. Mechanical Understanding of Li-CO 2 Batteries: The Critical Role of Forming Intermediate *Li 2O. J Phys Chem Lett 2023; 14:1604-1608. [PMID: 36749174 DOI: 10.1021/acs.jpclett.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging Li-CO2 batteries are considered a promising next-generation power system because they can fix CO2 while storing energy; however, their underlying mechanism remains elusive, impeding their efficient development. Meanwhile, apart from the conventional discharge product Li2CO3, the unexpected Li2O species has also been detected, but its formation process is thus far undecided. Here, we report a new mechanism for Li-CO2 batteries using first-principles calculations, which explains the long-standing puzzles. We show that such a process can be divided into two stages: (I) forming intermediate *Li2C2O4 via surface lithiation and (II) generating -Li2CO3 and C through a *Li2O-mediated pathway. We discover that the major kinetic barrier occurs in the coupling of *Li2CO2 and CO2 in the first stage. Especially, in the second stage, *CO produced from *Li2C2O4 decomposition is preferentially lithiated to *LiOC rather than disproportionated, and then *LiOC can be further lithiated to intermediate *Li2O after C nucleation, which contributes to the final formation of Li2CO3 in the presence of sufficient CO2.
Collapse
Affiliation(s)
- Xinxin Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
24
|
Qiao Z, Wei X, Liu H, Liu K, Gao C. Seed-Mediated Synthesis of Thin Gold Nanoplates with Tunable Edge Lengths and Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040711. [PMID: 36839081 PMCID: PMC9961956 DOI: 10.3390/nano13040711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/13/2023]
Abstract
Thin Au nanoplates show intriguing localized surface plasmon resonance (LSPR) properties with potential applications in various fields. The conventional synthesis of Au nanoplates usually involves the formation of spherical nanoparticles or produces nanoplates with large thicknesses. Herein, we demonstrate a synthesis of uniform thin Au nanoplates by using Au-Ag alloy nanoframes obtained by the galvanic replacement of Ag nanoplates with HAuCl4 as the seeds and a sulfite (SO32-) as a ligand. The SO32- ligand not only complexes with the Au salt for the controlled reduction kinetics but also strongly adsorbs on Au {111} facets for effectively constraining the crystal growth on both basal sides of the Au nanoplates for controlled shape and reduced thicknesses. This seed-mediated synthesis affords Au nanoplates with a thickness of only 7.5 nm, although the thickness increases with the edge length. The edge length can be customizable in a range of 48-167 nm, leading to tunable LSPR bands in the range of 600-1000 nm. These thin Au nanoplates are applicable not only to surface-enhanced Raman spectroscopy with enhanced sensitivity and reliability but also to a broader range of LSPR-based applications.
Collapse
Affiliation(s)
| | | | | | - Kai Liu
- Correspondence: (K.L.); (C.G.)
| | | |
Collapse
|
25
|
Azenha C, Mateos-Pedrero C, Lagarteira T, Mendes AM. Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Wang J, Huang YC, Wang Y, Deng H, Shi Y, Wei D, Li M, Dong CL, Jin H, Mao SS, Shen S. Atomically Dispersed Metal–Nitrogen–Carbon Catalysts with d-Orbital Electronic Configuration-Dependent Selectivity for Electrochemical CO 2-to-CO Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jialin Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City25137, Taiwan
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Hao Deng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Yuchuan Shi
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Daixing Wei
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Mingtao Li
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City25137, Taiwan
| | - Hui Jin
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Samuel S. Mao
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California94720, USA
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an710049, China
| |
Collapse
|
27
|
Solar light-driven selective photoelectrochemical CO2 reduction to CO in aqueous media using Si nanowire arrays decorated with Au and Au-based metal nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Electrochemical reduction of CO2 to useful fuel: recent advances and prospects. J APPL ELECTROCHEM 2023. [DOI: 10.1007/s10800-023-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Hu Y, Kang Y. Surface and Interface Engineering for the Catalysts of Electrocatalytic CO 2 Reduction. Chem Asian J 2023; 18:e202201001. [PMID: 36461703 DOI: 10.1002/asia.202201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Indexed: 12/04/2022]
Abstract
The massive use of fossil fuels releases a great amount of CO2 , which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO2 RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO2 RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO2 RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO2 RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO2 RR.
Collapse
Affiliation(s)
- Yiping Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
30
|
Koolen CD, Luo W, Züttel A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO 2 Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cedric David Koolen
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
31
|
Rutkowska IA, Chmielnicka A, Krzywiecki M, Kulesza PJ. Toward Effective CO 2 Reduction in an Acid Medium: Electrocatalysis at Cu 2O-Derived Polycrystalline Cu Sites Immobilized within the Network of WO 3 Nanowires. ACS MEASUREMENT SCIENCE AU 2022; 2:553-567. [PMID: 36785776 PMCID: PMC9885951 DOI: 10.1021/acsmeasuresciau.2c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A hybrid catalytic system composed of copper (I)-oxide-derived copper nanocenters immobilized within the network of tungsten oxide nanowires has exhibited electrocatalytic activity toward CO2 reduction in an acid medium (0.5 mol dm-3 H2SO4). The catalytic system facilitates conversion of CO2 to methanol and is fairly selective with respect to the competing hydrogen evolution. The preparative procedure has involved voltammetric electroreduction of Cu2O toward the formation and immobilization of catalytic Cu sites within the hexagonal structures of WO3 nanowires which are simultaneously partially reduced to mixed-valence hydrogen tungsten (VI, V) oxide bronzes, H x WO3, coexisting with sub-stoichiometric tungsten (VI, IV) oxides, WO3-y . After the initial loss of Cu through its dissolution to Cu2+ during positive potential scanning up to 1 V (vs RHE), the remaining copper is not electroactive and seems to be trapped within in the network of hexagonal WO3. Using the ultramicroelectrode-based probe, evidence has also been provided that partially reduced nonstoichiometric tungsten oxides induce reduction of CO2 to the CO-type reaction intermediates. The chronocoulometric data are consistent with the view that existence of copper sites dispersed in WO3 improves electron transfers and charge propagation within the hybrid catalytic layer. The enhanced tolerance of the catalyst to the competitive hydrogen evolution during CO2R should be explained in terms of the ability of H x WO3 to consume protons and absorb hydrogen as well as to shift the proton discharge at Cu toward more negative potentials. However, the capacity of WO3 to interact with catalytic copper and to adsorb CO-type reaction intermediates is expected to facilitate removal of the poisoning CO-type adsorbates from Cu sites.
Collapse
Affiliation(s)
- Iwona A. Rutkowska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Anna Chmielnicka
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| | - Maciej Krzywiecki
- Institute
of Physics−CSE, Silesian University
of Technology, Konarskiego
22B, Gliwice PL-44-100, Poland
| | - Pawel J. Kulesza
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw PL-02-093, Poland
| |
Collapse
|
32
|
Li S, Nagarajan AV, Du X, Li Y, Liu Z, Kauffman DR, Mpourmpakis G, Jin R. Dissecting Critical Factors for Electrochemical CO
2
Reduction on Atomically Precise Au Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202211771. [DOI: 10.1002/anie.202211771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Site Li
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
- National Energy Technology Laboratory (NETL) United States Department of Energy Pittsburgh, PA USA
| | | | - Xiangsha Du
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Yingwei Li
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Zhongyu Liu
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Douglas R. Kauffman
- National Energy Technology Laboratory (NETL) United States Department of Energy Pittsburgh, PA USA
| | - Giannis Mpourmpakis
- Department of Chemical Engineering University of Pittsburgh Pittsburgh PA 15261 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
33
|
Metal oxides for the electrocatalytic reduction of carbon dioxide: Mechanism of active sites, composites, interface and defect engineering strategies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Li S, Nagarajan AV, Du X, Li Y, Liu Z, Kauffman DR, Mpourmpakis G, Jin R. Dissecting Critical Factors for Electrochemical CO
2
Reduction on Atomically Precise Au Nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Site Li
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
- National Energy Technology Laboratory (NETL) United States Department of Energy Pittsburgh, PA USA
| | | | - Xiangsha Du
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Yingwei Li
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Zhongyu Liu
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Douglas R. Kauffman
- National Energy Technology Laboratory (NETL) United States Department of Energy Pittsburgh, PA USA
| | - Giannis Mpourmpakis
- Department of Chemical Engineering University of Pittsburgh Pittsburgh PA 15261 USA
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| |
Collapse
|
35
|
Shi H, Luo S, Ma H, Yu W, Wei X. Tuning the Properties of Metal‐Organic Cages through Platinum Nanoparticle Encapsulation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hui‐Rong Ma
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Xianwen Wei
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
36
|
Chen QS, Cui PL, Yang J, Chen D, Liu H, Feng H, Tsiakaras P, Shen PK. Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au nanocomposites. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.04.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Popović S, Nazrulla MA, Šket P, Kamal KM, Likozar B, Suhadolnik L, Pavko L, Surca AK, Bele M, Hodnik N. Electrochemically-grown Chloride-free Cu2O Nanocubes Favorably Electroreduce CO2 to Methane: The Interplay of Appropriate Electrochemical Protocol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Wang Y, Nong W, Gong N, Salim T, Luo M, Tan TL, Hippalgaonkar K, Liu Z, Huang Y. Tuning Electronic Structure and Composition of FeNi Nanoalloys for Enhanced Oxygen Evolution Electrocatalysis via a General Synthesis Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203340. [PMID: 36089653 DOI: 10.1002/smll.202203340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Developing low-cost and efficient oxygen evolution electrocatalysts is key to decarbonization. A facile, surfactant-free, and gram-level biomass-assisted fast heating and cooling synthesis method is reported for synthesizing a series of carbon-encapsulated dense and uniform FeNi nanoalloys with a single-phase face-centered-cubic solid-solution crystalline structure and an average particle size of sub-5 nm. This method also enables precise control of both size and composition. Electrochemical measurements show that among Fex Ni(1- x ) nanoalloys, Fe0.5 Ni0.5 has the best performance. Density functional theory calculations support the experimental findings and reveal that the optimally positioned d-band center of O-covered Fe0.5 Ni0.5 renders a half-filled antibonding state, resulting in moderate binding energies of key reaction intermediates. By increasing the total metal content from 25 to 60 wt%, the 60% Fe0.5 Ni0.5 /40% C shows an extraordinarily low overpotential of 219 mV at 10 mA cm-2 with a small Tafel slope of 23.2 mV dec-1 for the oxygen evolution reaction, which are much lower than most other FeNi-based electrocatalysts and even the state-of-the-art RuO2 . It also shows robust durability in an alkaline environment for at least 50 h. The gram-level fast heating and cooling synthesis method is extendable to a wide range of binary, ternary, quaternary nanoalloys, as well as quinary and denary high-entropy-alloy nanoparticles.
Collapse
Affiliation(s)
- Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Nong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Gong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Teck Leong Tan
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
39
|
Mi HC, Yi C, Gao MR, Yu M, Liu S, Luo JL. Theory-Guided Modulation of Optimal Silver Nanoclusters toward Efficient CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43257-43264. [PMID: 36112931 DOI: 10.1021/acsami.2c10930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR), when powered with intermittent but renewable energies, holds an attractive potential to close the anthropogenic carbon cycle through efficiently converting the exorbitantly discharged CO2 to value-added fuels and/or chemicals and consequently reduce the greenhouse gas emission. Through systematically integrating the density functional theory calculations, the modeling statistics of various proportions of CO2RR-preferred electroactive sites, and the theoretical work function results, it is found that the crystallographically unambiguous Ag nanoclusters (NCs) hold a high possibility to enable an outstanding CO2RR performance, particularly at an optimal size of around 2 nm. Motivated by this, homogeneously well-distributed ultrasmall Ag NCs with an average size of ∼2 nm (2 nm Ag NCs) were thus synthesized to electrochemically promote CO2RR, and the results demonstrate that the 2 nm Ag NCs are able to achieve a significantly larger CO partial current density [j(CO)], an impressively higher CO Faraday efficiency of over 93.8%, and a lower onset overpotential (η) of 146 mV as well as a remarkably higher energy efficiency of 62.8% and a superior stability of 45 h as compared to Ag nanoparticles (Ag NPs) and bulk Ag. Both theoretical computations and experimental results clearly and persuasively demonstrate an impressive promotion effect of the crystallographically explicit atomic structure for electrochemically reducing CO2 to CO, which exemplifies a novel design approach to more benchmark metal-based platforms for advancing the practically large-scale CO2RR application.
Collapse
Affiliation(s)
- Hong-Cheng Mi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Chenxing Yi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Min-Rui Gao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| |
Collapse
|
40
|
Computational screening of TMN4 based graphene-like BC6N for CO2 electroreduction to C1 hydrocarbon products. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Poon KC, Wan WY, Su H, Sato H. A review on recent advances in the electrochemical reduction of CO 2 to CO with nano-electrocatalysts. RSC Adv 2022; 12:22703-22721. [PMID: 36105973 PMCID: PMC9376860 DOI: 10.1039/d2ra03341k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
The electrochemical reduction (ECR) of CO2 is a powerful strategy to reduce the world's carbon footprint by converting CO2 to useful products such as CH3OH and CO. Recent techno-economic analysis has found that for the electro-conversion of CO2 to be adapted for practical use, the main products formed from this reaction need to be low-order, such as CO. This review summarizes recent progress in the ECR of CO2 to CO on nano-electrocatalysts (noble, non-noble metals and carbon nanomaterials) and provides the limitations and challenges that each electrocatalyst faces. It discusses the mechanism behind the performance of the electrocatalysts and offers the potential future prospects of the ECR process.
Collapse
Affiliation(s)
- Kee Chun Poon
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| | - Wei Yang Wan
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Hirotaka Sato
- School of Mechanical & Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798
| |
Collapse
|
42
|
Facile Synthesis and Environmental Applications of Noble Metal-Based Catalytic Membrane Reactors. Catalysts 2022. [DOI: 10.3390/catal12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Noble metal nanoparticle-loaded catalytic membrane reactors (CMRs) have emerged as a promising method for water decontamination. In this study, we proposed a convenient and green strategy to prepare gold nanoparticle (Au NPs)-loaded CMRs. First, the redox-active substrate membrane (CNT-MoS2) composed of carbon nanotube (CNT) and molybdenum disulfide (MoS2) was prepared by an impregnation method. Water-diluted Au(III) precursor (HAuCl4) was then spontaneously adsorbed on the CNT-MoS2 membrane only through filtration and reduced into Au(0) nanoparticles in situ, which involved a “adsorption–reduction” process between Au(III) and MoS2. The constructed CNT-MoS2@Au membrane demonstrated excellent catalytic activity and stability, where a complete 4-nitrophenol transformation can be obtained within a hydraulic residence time of <3.0 s. In addition, thanks to the electroactivity of CNT networks, the as-designed CMR could also be applied to the electrocatalytic reduction of bromate (>90%) at an applied voltage of −1 V. More importantly, by changing the precursors, one could further obtain the other noble metal-based CMR (e.g., CNT-MoS2@Pd) with superior (electro)catalytic activity. This study provided new insights for the rational design of high-performance CMRs toward various environmental applications.
Collapse
|
43
|
Hu H, Liu M, Kong Y, Montiel IZ, Hou Y, Rudnev AV, Broekmann P. Size‐dependent Structural Alterations in Ag Nanoparticles During CO2 Electrolysis in a Gas‐fed Zero‐gap Electrolyzer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huifang Hu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Menglong Liu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Ying Kong
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | | | - Yuhui Hou
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Alexander V. Rudnev
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| | - Peter Broekmann
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| |
Collapse
|
44
|
Hursán D, Ábel M, Baán K, Fako E, Samu GF, Nguyën HC, López N, Atanassov P, Kónya Z, Sápi A, Janáky C. CO 2 Conversion on N-Doped Carbon Catalysts via Thermo- and Electrocatalysis: Role of C–NO x Moieties. ACS Catal 2022; 12:10127-10140. [PMID: 36033366 PMCID: PMC9397536 DOI: 10.1021/acscatal.2c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Indexed: 11/29/2022]
Abstract
![]()
N-doped carbon (N–C) materials are increasingly
popular
in different electrochemical and catalytic applications. Due to the
structural and stoichiometric diversity of these materials, however,
the role of different functional moieties is still controversial.
We have synthesized a set of N–C catalysts, with identical
morphologies (∼27 nm pore size). By systematically changing
the precursors, we have varied the amount and chemical nature of N-functions
on the catalyst surface. The CO2 reduction (CO2R) properties of these catalysts were tested in both electrochemical
(EC) and thermal catalytic (TC) experiments (i.e., CO2 +
H2 reaction). CO was the major CO2R product
in all cases, while CH4 appeared as a minor product. Importantly,
the CO2R activity changed with the chemical composition,
and the activity trend was similar in the EC and TC scenarios. The
activity was correlated with the amount of different N-functions,
and a correlation was found for the −NOx species. Interestingly, the amount of this species decreased
radically during EC CO2R, which was coupled with the performance
decrease. The observations were rationalized by the adsorption/desorption
properties of the samples, while theoretical insights indicated a
similarity between the EC and TC paths.
Collapse
Affiliation(s)
- Dorottya Hursán
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Marietta Ábel
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Kornélia Baán
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Edvin Fako
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Gergely F. Samu
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- National Fuel Cell Research Center, University of California Irvine, Irvine, California 92697, United States
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
45
|
Doronin SV, Dokhlikova NV, Grishin MV. Descriptor of catalytic activity nanoparticles surface: Atomic and molecular hydrogen on gold. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Lu S, Zhang Y, Mady MF, Mekonnen Tucho W, Lou F, Yu Z. Efficient Electrochemical Reduction of CO 2 to CO by Ag-Decorated B-Doped g-C 3N 4: A Combined Theoretical and Experimental Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Song Lu
- Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Yang Zhang
- Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
- Beyonder AS, Kanalsletta 2, 4033 Stavanger, Norway
| | - Mohamed F. Mady
- Deaprtment of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036 Stavanger, Norway
| | - Wakshum Mekonnen Tucho
- Department of Mechanical and Structural Engineering and Material Science, University of Stavanger, 4036 Stavanger, Norway
| | - Fengliu Lou
- Beyonder AS, Kanalsletta 2, 4033 Stavanger, Norway
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
| |
Collapse
|
47
|
Takele Menisa L, Cheng P, Qiu X, Zheng Y, Huang X, Gao Y, Tang Z. Single atomic Fe-N 4 active sites and neighboring graphitic nitrogen for efficient and stable electrochemical CO 2 reduction. NANOSCALE HORIZONS 2022; 7:916-923. [PMID: 35730675 DOI: 10.1039/d2nh00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single atomic Fe-Nx moieties have shown great performance in CO2-to-CO conversion. However, understanding the structural descriptors that determine the activity of Fe-Nx remains vague, and promising strategies to enhance their catalytic activity are still not clear. Herein, we used a high-temperature pyrolysis strategy and post-synthesis acid treatment for the direct growth of a single Fe-Nx site adjacent to graphitic nitrogen for the electrochemical CO2 reduction reaction. This strategy could significantly reduce the amount of pyridinic and pyrrolic N atoms, while graphitic N surrounding the Fe-Nx site predominantly increases. An experimental study combined with density functional theory revealed that the increase in the neighboring graphitic N decreases the number of electrons transferred between CO and the catalyst for FeN4-2N-3 and FeN4-4N-3, which results in the decrease of the adsorption strength of CO and the energy barrier for desorbing CO*. The as-synthesized Fe-Nx neighbored by graphitic nitrogen exhibited maximum faradaic efficiency of 91% at a lower overpotential of 390 mV. Due to the increase in the graphitic N, the catalysts perform efficiently for 35 h without any drop in current density.
Collapse
Affiliation(s)
- Leta Takele Menisa
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ping Cheng
- College of Natural and Computational Sciences, Department of Chemistry, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
| | - Yonglong Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Syner-getic Innovation Centre for Advanced Materials, Nanjing Tech University, 211816, Nanjing, China
| | - Xuewei Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
| |
Collapse
|
48
|
Yang Y, Yang Z, Zhang C, Zhou J, Liu S, Cao Q. Single-Atom Catalysts Supported on the Graphene/Graphdiyne Heterostructure for Effective CO 2 Electroreduction. Inorg Chem 2022; 61:12012-12022. [PMID: 35862301 DOI: 10.1021/acs.inorgchem.2c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical reduction of CO2 to high-energy chemicals is a promising strategy for achieving carbon-neutral energy circulation. However, designing high-performance electrocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. In this work, by means of density functional theory calculations, we systematically investigate the transition metal (TM) anchored on the nitrogen-doped graphene/graphdiyne heterostructure (TM-N4@GRA/GDY) as a single-atom catalyst for CO2 electroreduction applications. The computational results show that Co-N4@GRA/GDY exhibits remarkable activity with a low limiting potential of -0.567 V for the reduction of CO2 to CH4. When the charged Co-N4@GRA/GDY system is immersed in a continuum solvent, the reaction barrier decreases to 0.366 eV, which is ascribed to stronger electron transfer between GDY and transition metal atoms in the GRA/GDY heterostructure. In addition, the GRA/GDY heterostructure system significantly weakens the linear scaling relationship between the adsorption free energy of key CO2 reduction intermediates, which leads to a catalytic activity that is higher than that of the single-GRA system and thus greatly accelerates the CO2RR. The electronic structure analysis reveals that the appropriate d-π interaction will affect the d orbital electron distribution, which is directly relevant to the selectivity and activity of catalysis. We hope these computational results not only provide a potential electrocatalyst candidate but also open up an avenue for improving the catalytic performance for efficient electrochemical CO2RR.
Collapse
Affiliation(s)
- Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Ziqian Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Canyu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jiao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| |
Collapse
|
49
|
Lim YJ, Seo D, Abbas SA, Jung H, Ma A, Lee K, Lee G, Lee H, Nam KM. Unraveling the Simultaneous Enhancement of Selectivity and Durability on Single-Crystalline Gold Particles for Electrochemical CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201491. [PMID: 35501291 PMCID: PMC9284124 DOI: 10.1002/advs.202201491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical carbon dioxide reduction is a mild and eco-friendly approach for CO2 mitigation and producing value-added products. For selective electrochemical CO2 reduction, single-crystalline Au particles (octahedron, truncated-octahedron, and sphere) are synthesized by consecutive growth and chemical etching using a polydiallyldimethylammonium chloride (polyDDA) surfactant, and are surface-functionalized. Monodisperse, single-crystalline Au nanoparticles provide an ideal platform for evaluating the Au surface as a CO2 reduction catalyst. The polyDDA-Au cathode affords high catalytic activity for CO production, with >90% Faradaic efficiency over a wide potential range between -0.4 and -1.0 V versus RHE, along with high durability owing to the consecutive interaction between dimethylammonium and chloride on the Au surface. The influence of polyDDA on the Au particles, and the origins of the enhanced selectivity and stability are fully investigated using theoretical studies. Chemically adsorbed polyDDA is consecutively affected the initial adsorption of CO2 and the stability of the *CO2 , *COOH, and *CO intermediates during continuous CO2 reduction reaction. The polyDDA functionalization is extended to improving the CO Faradaic efficiency of other metal catalysts such as Ag and Zn, indicating its broad applicability for CO2 reduction.
Collapse
Affiliation(s)
- Yun Ji Lim
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Dongho Seo
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Syed Asad Abbas
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Haeun Jung
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Ahyeon Ma
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Kug‐Seung Lee
- 8C Nano Probe XAFS BeamlinePohang Accelerator LaboratoryPohang37673Republic of Korea
| | - Gaehang Lee
- Korea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Hosik Lee
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| |
Collapse
|
50
|
Liu C, Mei X, Han C, Gong X, Song P, Xu W. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|